fbpx
Wikipedia

5 ft 6 in gauge railway

5 ft 6 in / 1,676 mm, a broad gauge, is the track gauge used in India, Pakistan, western Bangladesh, Sri Lanka, Argentina, Chile, and on BART in San Francisco, United States.

In North America, it is called Indian Gauge, Provincial, Portland, or Texas gauge. In Argentina and Chile, it is known as "trocha ancha" (Spanish for broad gauge). In the Indian subcontinent it is simply known as "broad gauge". Elsewhere it is known as Indian gauge. It is the widest gauge in regular passenger use anywhere in the world.

Asia

India

In India, the initial freight railway lines were built using standard gauge. In the 1850s, the Great Indian Peninsula Railway adopted the gauge of 1,676 mm (5 ft 6 in) for the first passenger railway in India between Bori Bunder and Thane.[1][2] This was then adopted as the standard for the nationwide network.

Indian Railways today predominantly operates on 1,676 mm (5 ft 6 in) broad gauge. Most of the metre gauge and narrow gauge railways have been converted to broad gauge. Small stretches of the network that remain on metre and narrow gauges are also being converted to broad gauge. Rapid transit lines are mostly on standard gauge, although some initial lines use 1,676 mm (5 ft 6 in) broad gauge.

Bangladesh

Bangladesh Railways uses a mix of 1,676 mm (5 ft 6 in) broad gauge and metre gauge. The broad gauge network is primarily located to the west of the Jamuna River, while the metre gauge network is primarily located to its east. The Jamuna Bridge is a mixed-use bridge that contains a dual gauge connection across the river linking both networks.

Nepal

In Nepal, all services currently operate on 1,676 mm (5 ft 6 in) broad gauge only.

Pakistan

In Pakistan, all services currently operate on 1,676 mm (5 ft 6 in) broad gauge only.

Sri Lanka

In Sri Lanka, all services currently operate on 1,676 mm (5 ft 6 in) broad gauge only.

Europe

United Kingdom

The 1,676 mm (5 ft 6 in) broad gauge was actually first used in Scotland for two short, isolated lines, the Dundee and Arbroath Railway (1836-1847) and the Arbroath and Forfar Railway (1838-). Both the lines were subsequently converted to standard gauge.

Spain and Portugal

The Iberian-gauge railways, that service much of Spain and Portugal, have a track gauge of 1,668 mm (5 ft 5+2132 in), just 8 mm (516 in) different from 1,676 mm (5 ft 6 in). Used rolling stock from Iberia has been employed on broad-gauge lines in Argentina and Chile.

North America

Canada

Canada became the first British colony, in the 1850s, to use 1,676 mm (5 ft 6 in) broad gauge. It was known as the "Provincial gauge" in Canada.

The earliest railways in Canada, including the 1836 Champlain and St. Lawrence and 1847 Montreal and Lachine Railway however, were built to 4 ft 8+12 in (1,435 mm) standard gauge.[3]

The Grand Trunk Railway which operated in several Canadian provinces (Quebec and Ontario) and American states (Connecticut, Maine, Massachusetts, New Hampshire, and Vermont) used it, but was changed to standard gauge in 1873. The Grand Trunk Railway operated from headquarters in Montreal, Quebec, although corporate headquarters were in London, England. The St. Lawrence and Atlantic Railroad which operated in Quebec, Vermont, New Hampshire and Maine also used it but was converted in 1873.

There is a longstanding rumour that the Provincial gauge was selected specifically to create a break-of-gauge with US railways, the War of 1812 still being a fresh memory. However, there is little supporting evidence for this, and this story appears to be traced to a single claim from the late 1800s.[3]

United States

The Bay Area Rapid Transit system is the only operating railroad in the United States to use 1,676 mm (5 ft 6 in) broad gauge, with 120 miles (190 km) of double tracked routes. The original engineers chose the wide gauge for its "great stability and smoother riding qualities"[4] and intended to make a state-of-the-art system for other municipalities to emulate. The use of 1,676 mm (5 ft 6 in) broad gauge rails was one of many unconventional design elements included in its design which, in addition to its unusual gauge, also used flat-edge rail, rather than typical rail that angles slightly inward[5] (although the shape of BART wheels and rail has been modified since then[6]). This has complicated maintenance of the system, as it requires custom wheelsets, brake systems, and track maintenance vehicles.[5]

The New Orleans, Opelousas and Great Western Railroad (NOO&GW) used 1,676 mm (5 ft 6 in) broad gauge until 1872, and the Texas and New Orleans Railroad used 1,676 mm (5 ft 6 in) broad gauge ("Texas gauge") until 1876. The Grand Trunk Railway predecessor St. Lawrence and Atlantic Railroad which operated in Quebec, Vermont, New Hampshire and Maine also used 1,676 mm (5 ft 6 in) broad gauge ("Canadian gauge", "Provincial gauge" or "Portland gauge") but was converted in 1873. Several Maine railroads connected to the Grand Trunk Railway shared its "Portland Gauge". The Androscoggin and Kennebec Railroad and the Buckfield Branch Railroad were later consolidated as the Maine Central Railroad which converted to standard gauge in 1871. John A. Poor's chief engineer Alvin C. Morton compiled the following advantages of "Portland Gauge" for Maine railways in 1847:[7]

  • Frost heaves (swelling of wet soil upon freezing) produce an uneven running surface causing an irregular rocking motion as trains moved past. A wider wheelbase offered a steadier ride with less wear on the machinery and roadbed.
  • Wider cars offered more room for passengers and cargo. Train length would be reduced for cars carrying the same amount of cargo. Shorter trains would lessen the effects of side winds, and permit more efficient application of power.
  • Wide gauge locomotives offered more room to place reciprocating machinery inside, rather than outside the driving wheels. Reciprocating machinery was a source of vibration before mechanical engineering encompassed a good understanding of dynamics; and keeping such vibration close to the center of mass reduced the angular momentum causing rocking.
  • Wider fireboxes and boilers allowed more powerful locomotives. The alternative of longer boilers held the disadvantage of poor firebox draft through the increased frictional resistance of longer boiler tubes.
  • More powerful locomotives carrying fewer, larger cars would have reduced manpower requirement for engine crews and shop personnel.
  • For locomotives of equal power, fuel consumption increased as gauge decreased, especially in colder outside temperatures.
  • More powerful wide gauge locomotives would be more capable for plowing snow; and thereby provide more reliable winter service.
  • Several gauges were in widespread use, and none had yet come into clear dominance.
  • Freight transfer was preferable to exchange of cars between railways because unowned cars were abused on foreign railways.
  • The Grand Trunk Railway system feeding the seaport of Portland, Maine offered little need for gauge transfer prior to loading on export shipping.
  • Potential advantages of freight transfer to the standard gauge railroad from Portland to Boston seemed insignificant as long as competitive rates were available for transport on steamships between the two ports.
  • The majority of Canadian freight anticipated to be carried over rail lines to Portland was heavy and bulky in comparison to its value, and must be transported cheaply in large quantities to maintain profitability for producers and transporters.

South America

Argentina

The national railway network is predominantly on 1,676 mm (5 ft 6 in) broad gauge.

Chile

Most links of 1,676 mm (5 ft 6 in) broad gauge railways are in the center-south of the country. Only a few lines of the Ferrocarril del Sur (Southern Railroad Network) were 1,000 mm (3 ft 3+38 in) metre gauge or 1,435 mm (4 ft 8+12 in) standard gauge, the notable exceptions being one of the few active links: the Ramal Talca-Constitución branch and the Metro de Santiago. On the contrary, just a few branches of the FCN (Ferrocarril del Norte) were broad gauge, most notably the Mapocho-Puerto mainline between Santiago and Valparaiso, the Santiago–Valparaíso railway line. This link was directly connected to the southern railroad network using the Matucana tunnel that connected Mapocho and the Central Station in Santiago. The Transandine Railway that connected both Argentinean and Chilean broad gauge networks through the Uspallata pass in the Andes mountains was actually a 1,000 mm (3 ft 3+38 in) narrow gauge link.

Similar gauges and compatibility

The Iberian gauge (1,668 mm or 5 ft 5+2132 in) is closely similar to the Indian gauge, with only 8 mm (516 in) difference, and allows compatibility with the rolling stock. For example, in recent years Chile and Argentina have bought second hand Spanish/Portuguese Iberian-gauge rolling stock. 1,668 mm trains can run on 1,676 mm gauge without adaptation, but for better stability in high-speed running a wheelset replacement may be required (for example, Russian-Finnish train Allegro has 1,522 mm or 4 ft 11+2932 in gauge, intermediate between Russian 1,520 mm or 4 ft 11+2732 in and Finnish 1,524 mm or 5 ft). Backward compatibility—1,676 mm trains on 1,668 mm gauge—is possible, but no examples and data exist. Due to the narrower gauge, a strong wear of wheelsets may occur without replacement.

Operational railways

Country/territory Railway Route length Notes
Argentina San Martín Railway operating
Argentina Sarmiento Railway operating
Argentina Mitre Railway except Tren de la Costa in standard gauge; operating
Argentina Roca Railway except La Trochita, Central Chubut Railway and Ramal Ferro Industrial Río Turbio [es] in 750 mm (2 ft 5 1⁄2 in) gauge; operating
Bangladesh Bangladesh Railway 1,575 km (979 mi) operating
Chile Empresa de los Ferrocarriles del Estado - EFE Sur operating
Chile Empresa de los Ferrocarriles del Estado - EFE Central Except Ramal Talca-Constitución; operating
Chile Empresa de los Ferrocarriles del Estado - Metro de Valparaíso operating
Chile Empresa de los Ferrocarriles del Estado - Biotrén operating
India Indian Railways 126,366 km
(78,520 mi)
operating
India Delhi Metro 65 km (40 mi) Phase-1 lines only; operating
India Kolkata Metro 27.22 km (16.91 mi) Line 1 only; operating
Iran Zahedan to border with Pakistan operating
Nepal Nepal Railways 59 km (37 mi) operating
Pakistan Pakistan Railways 7,791 km (4,841 mi) operating
Sri Lanka Sri Lanka Railways 1,508 km (937 mi) operating
United States Bay Area Rapid Transit (BART) San Francisco Bay Area 109 mi (175 km) operating

Closed railways

Country/territory Railway Length Notes
Canada Grand Trunk Railway Converted to 4 ft 8+12 in (1,435 mm) standard gauge in 1873
Canada St. Lawrence and Atlantic Railroad Converted to 4 ft 8+12 in (1,435 mm) standard gauge in 1873
Canada Grand Trunk Railway of Canada Converted to 4 ft 8+12 in (1,435 mm) standard gauge
Canada Intercolonial Railway of Canada Converted to 4 ft 8+12 in (1,435 mm) standard gauge in 1875
Paraguay Paraguayan railway From Asunción to Encarnación was originally laid in this gauge in the hope that the connecting line from Posadas to Buenos Aires would be built to the same gauge; that line was laid to standard gauge, and when the FCPCAL reached Encarnación in 1912 the whole line had to be re-gauged to standard gauge to allow through-working.
United Kingdom Arbroath and Forfar Railway see Scotch gauge, converted to standard gauge
United Kingdom Dundee and Arbroath Railway 16+34 mi (27.0 km) see Scotch gauge, converted to standard gauge
United States Maine Central Railroad converted to standard gauge in 1871

See also

References

  1. ^ "Railroads Asia - Up And Down India".
  2. ^ Indian Railways: Some Fascinating Facts, “Train Atlas”, Train Atlas, Indian Railways, 2003
  3. ^ a b Omer Lavallee, "The Rise and Fall of the Provincial Gauge", Canadian Rail, February 1963, pp. 22-37
  4. ^ "Why Does BART Use Wider Non-Standard Gauge Rails". BayRail Alliance.
  5. ^ a b Gafni, Matthias (March 25, 2016). "Has BART's cutting-edge 1972 technology design come back to haunt it?". San Jose Mercury News. Retrieved March 28, 2016.
  6. ^ Tuzik, Bob (February 26, 2019). "Refining Approaches to Corrective and Preventive Rail Grinding". ON Track Maintenance.
  7. ^ Holt, Jeff (1985). The Grand Trunk in New England. Railfare. p. 78. ISBN 0-919130-43-7.

gauge, railway, broad, gauge, track, gauge, used, india, pakistan, western, bangladesh, lanka, argentina, chile, bart, francisco, united, states, north, america, called, indian, gauge, provincial, portland, texas, gauge, argentina, chile, known, trocha, ancha,. 5 ft 6 in 1 676 mm a broad gauge is the track gauge used in India Pakistan western Bangladesh Sri Lanka Argentina Chile and on BART in San Francisco United States In North America it is called Indian Gauge Provincial Portland or Texas gauge In Argentina and Chile it is known as trocha ancha Spanish for broad gauge In the Indian subcontinent it is simply known as broad gauge Elsewhere it is known as Indian gauge It is the widest gauge in regular passenger use anywhere in the world Contents 1 Asia 1 1 India 1 2 Bangladesh 1 3 Nepal 1 4 Pakistan 1 5 Sri Lanka 2 Europe 2 1 United Kingdom 2 2 Spain and Portugal 3 North America 3 1 Canada 3 2 United States 4 South America 4 1 Argentina 4 2 Chile 5 Similar gauges and compatibility 6 Operational railways 7 Closed railways 8 See also 9 ReferencesAsia EditIndia Edit Main article Rail transport in IndiaSee also Indian Railways In India the initial freight railway lines were built using standard gauge In the 1850s the Great Indian Peninsula Railway adopted the gauge of 1 676 mm 5 ft 6 in for the first passenger railway in India between Bori Bunder and Thane 1 2 This was then adopted as the standard for the nationwide network Indian Railways today predominantly operates on 1 676 mm 5 ft 6 in broad gauge Most of the metre gauge and narrow gauge railways have been converted to broad gauge Small stretches of the network that remain on metre and narrow gauges are also being converted to broad gauge Rapid transit lines are mostly on standard gauge although some initial lines use 1 676 mm 5 ft 6 in broad gauge Bangladesh Edit Main article Bangladesh Railway Bangladesh Railways uses a mix of 1 676 mm 5 ft 6 in broad gauge and metre gauge The broad gauge network is primarily located to the west of the Jamuna River while the metre gauge network is primarily located to its east The Jamuna Bridge is a mixed use bridge that contains a dual gauge connection across the river linking both networks Nepal Edit Main article Nepal Railway Company Limited In Nepal all services currently operate on 1 676 mm 5 ft 6 in broad gauge only Pakistan Edit Main article Pakistan Railways In Pakistan all services currently operate on 1 676 mm 5 ft 6 in broad gauge only Sri Lanka Edit Main article Sri Lanka Railways In Sri Lanka all services currently operate on 1 676 mm 5 ft 6 in broad gauge only Europe EditUnited Kingdom Edit The 1 676 mm 5 ft 6 in broad gauge was actually first used in Scotland for two short isolated lines the Dundee and Arbroath Railway 1836 1847 and the Arbroath and Forfar Railway 1838 Both the lines were subsequently converted to standard gauge Spain and Portugal Edit The Iberian gauge railways that service much of Spain and Portugal have a track gauge of 1 668 mm 5 ft 5 21 32 in just 8 mm 5 16 in different from 1 676 mm 5 ft 6 in Used rolling stock from Iberia has been employed on broad gauge lines in Argentina and Chile North America EditMain article Track gauge in North America Canada Edit Main article Track gauge in Canada Canada became the first British colony in the 1850s to use 1 676 mm 5 ft 6 in broad gauge It was known as the Provincial gauge in Canada The earliest railways in Canada including the 1836 Champlain and St Lawrence and 1847 Montreal and Lachine Railway however were built to 4 ft 8 1 2 in 1 435 mm standard gauge 3 The Grand Trunk Railway which operated in several Canadian provinces Quebec and Ontario and American states Connecticut Maine Massachusetts New Hampshire and Vermont used it but was changed to standard gauge in 1873 The Grand Trunk Railway operated from headquarters in Montreal Quebec although corporate headquarters were in London England The St Lawrence and Atlantic Railroad which operated in Quebec Vermont New Hampshire and Maine also used it but was converted in 1873 There is a longstanding rumour that the Provincial gauge was selected specifically to create a break of gauge with US railways the War of 1812 still being a fresh memory However there is little supporting evidence for this and this story appears to be traced to a single claim from the late 1800s 3 United States Edit Main article Track gauge in the United States The Bay Area Rapid Transit system is the only operating railroad in the United States to use 1 676 mm 5 ft 6 in broad gauge with 120 miles 190 km of double tracked routes The original engineers chose the wide gauge for its great stability and smoother riding qualities 4 and intended to make a state of the art system for other municipalities to emulate The use of 1 676 mm 5 ft 6 in broad gauge rails was one of many unconventional design elements included in its design which in addition to its unusual gauge also used flat edge rail rather than typical rail that angles slightly inward 5 although the shape of BART wheels and rail has been modified since then 6 This has complicated maintenance of the system as it requires custom wheelsets brake systems and track maintenance vehicles 5 The New Orleans Opelousas and Great Western Railroad NOO amp GW used 1 676 mm 5 ft 6 in broad gauge until 1872 and the Texas and New Orleans Railroad used 1 676 mm 5 ft 6 in broad gauge Texas gauge until 1876 The Grand Trunk Railway predecessor St Lawrence and Atlantic Railroad which operated in Quebec Vermont New Hampshire and Maine also used 1 676 mm 5 ft 6 in broad gauge Canadian gauge Provincial gauge or Portland gauge but was converted in 1873 Several Maine railroads connected to the Grand Trunk Railway shared its Portland Gauge The Androscoggin and Kennebec Railroad and the Buckfield Branch Railroad were later consolidated as the Maine Central Railroad which converted to standard gauge in 1871 John A Poor s chief engineer Alvin C Morton compiled the following advantages of Portland Gauge for Maine railways in 1847 7 Frost heaves swelling of wet soil upon freezing produce an uneven running surface causing an irregular rocking motion as trains moved past A wider wheelbase offered a steadier ride with less wear on the machinery and roadbed Wider cars offered more room for passengers and cargo Train length would be reduced for cars carrying the same amount of cargo Shorter trains would lessen the effects of side winds and permit more efficient application of power Wide gauge locomotives offered more room to place reciprocating machinery inside rather than outside the driving wheels Reciprocating machinery was a source of vibration before mechanical engineering encompassed a good understanding of dynamics and keeping such vibration close to the center of mass reduced the angular momentum causing rocking Wider fireboxes and boilers allowed more powerful locomotives The alternative of longer boilers held the disadvantage of poor firebox draft through the increased frictional resistance of longer boiler tubes More powerful locomotives carrying fewer larger cars would have reduced manpower requirement for engine crews and shop personnel For locomotives of equal power fuel consumption increased as gauge decreased especially in colder outside temperatures More powerful wide gauge locomotives would be more capable for plowing snow and thereby provide more reliable winter service Several gauges were in widespread use and none had yet come into clear dominance Freight transfer was preferable to exchange of cars between railways because unowned cars were abused on foreign railways The Grand Trunk Railway system feeding the seaport of Portland Maine offered little need for gauge transfer prior to loading on export shipping Potential advantages of freight transfer to the standard gauge railroad from Portland to Boston seemed insignificant as long as competitive rates were available for transport on steamships between the two ports The majority of Canadian freight anticipated to be carried over rail lines to Portland was heavy and bulky in comparison to its value and must be transported cheaply in large quantities to maintain profitability for producers and transporters South America EditArgentina Edit Main article Rail transport in Argentina The national railway network is predominantly on 1 676 mm 5 ft 6 in broad gauge Chile Edit Main article Track gauge in Chile Most links of 1 676 mm 5 ft 6 in broad gauge railways are in the center south of the country Only a few lines of the Ferrocarril del Sur Southern Railroad Network were 1 000 mm 3 ft 3 3 8 in metre gauge or 1 435 mm 4 ft 8 1 2 in standard gauge the notable exceptions being one of the few active links the Ramal Talca Constitucion branch and the Metro de Santiago On the contrary just a few branches of the FCN Ferrocarril del Norte were broad gauge most notably the Mapocho Puerto mainline between Santiago and Valparaiso the Santiago Valparaiso railway line This link was directly connected to the southern railroad network using the Matucana tunnel that connected Mapocho and the Central Station in Santiago The Transandine Railway that connected both Argentinean and Chilean broad gauge networks through the Uspallata pass in the Andes mountains was actually a 1 000 mm 3 ft 3 3 8 in narrow gauge link Similar gauges and compatibility EditMain articles Rail transport in Spain and Rail transport in Portugal The Iberian gauge 1 668 mm or 5 ft 5 21 32 in is closely similar to the Indian gauge with only 8 mm 5 16 in difference and allows compatibility with the rolling stock For example in recent years Chile and Argentina have bought second hand Spanish Portuguese Iberian gauge rolling stock 1 668 mm trains can run on 1 676 mm gauge without adaptation but for better stability in high speed running a wheelset replacement may be required for example Russian Finnish train Allegro has 1 522 mm or 4 ft 11 29 32 in gauge intermediate between Russian 1 520 mm or 4 ft 11 27 32 in and Finnish 1 524 mm or 5 ft Backward compatibility 1 676 mm trains on 1 668 mm gauge is possible but no examples and data exist Due to the narrower gauge a strong wear of wheelsets may occur without replacement Operational railways EditCountry territory Railway Route length NotesArgentina San Martin Railway operatingArgentina Sarmiento Railway operatingArgentina Mitre Railway except Tren de la Costa in standard gauge operatingArgentina Roca Railway except La Trochita Central Chubut Railway and Ramal Ferro Industrial Rio Turbio es in 750 mm 2 ft 5 1 2 in gauge operatingBangladesh Bangladesh Railway 1 575 km 979 mi operatingChile Empresa de los Ferrocarriles del Estado EFE Sur operatingChile Empresa de los Ferrocarriles del Estado EFE Central Except Ramal Talca Constitucion operatingChile Empresa de los Ferrocarriles del Estado Metro de Valparaiso operatingChile Empresa de los Ferrocarriles del Estado Biotren operatingIndia Indian Railways 126 366 km 78 520 mi operatingIndia Delhi Metro 65 km 40 mi Phase 1 lines only operatingIndia Kolkata Metro 27 22 km 16 91 mi Line 1 only operatingIran Zahedan to border with Pakistan operatingNepal Nepal Railways 59 km 37 mi operatingPakistan Pakistan Railways 7 791 km 4 841 mi operatingSri Lanka Sri Lanka Railways 1 508 km 937 mi operatingUnited States Bay Area Rapid Transit BART San Francisco Bay Area 109 mi 175 km operatingClosed railways EditCountry territory Railway Length NotesCanada Grand Trunk Railway Converted to 4 ft 8 1 2 in 1 435 mm standard gauge in 1873Canada St Lawrence and Atlantic Railroad Converted to 4 ft 8 1 2 in 1 435 mm standard gauge in 1873Canada Grand Trunk Railway of Canada Converted to 4 ft 8 1 2 in 1 435 mm standard gaugeCanada Intercolonial Railway of Canada Converted to 4 ft 8 1 2 in 1 435 mm standard gauge in 1875Paraguay Paraguayan railway From Asuncion to Encarnacion was originally laid in this gauge in the hope that the connecting line from Posadas to Buenos Aires would be built to the same gauge that line was laid to standard gauge and when the FCPCAL reached Encarnacion in 1912 the whole line had to be re gauged to standard gauge to allow through working United Kingdom Arbroath and Forfar Railway see Scotch gauge converted to standard gaugeUnited Kingdom Dundee and Arbroath Railway 16 3 4 mi 27 0 km see Scotch gauge converted to standard gaugeUnited States Maine Central Railroad converted to standard gauge in 1871See also Edit Trains portalBroad gauge railway Heritage railway List of track gaugesReferences Edit Wikimedia Commons has media related to 5 ft 6 in gauge railways Railroads Asia Up And Down India Indian Railways Some Fascinating Facts Train Atlas Train Atlas Indian Railways 2003 a b Omer Lavallee The Rise and Fall of the Provincial Gauge Canadian Rail February 1963 pp 22 37 Why Does BART Use Wider Non Standard Gauge Rails BayRail Alliance a b Gafni Matthias March 25 2016 Has BART s cutting edge 1972 technology design come back to haunt it San Jose Mercury News Retrieved March 28 2016 Tuzik Bob February 26 2019 Refining Approaches to Corrective and Preventive Rail Grinding ON Track Maintenance Holt Jeff 1985 The Grand Trunk in New England Railfare p 78 ISBN 0 919130 43 7 Retrieved from https en wikipedia org w index php title 5 ft 6 in gauge railway amp oldid 1135283508, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.