fbpx
Wikipedia

Thrust-specific fuel consumption

Thrust-specific fuel consumption (TSFC) is the fuel efficiency of an engine design with respect to thrust output. TSFC may also be thought of as fuel consumption (grams/second) per unit of thrust (newtons, or N), hence thrust-specific. This figure is inversely proportional to specific impulse, which is the amount of thrust produced per unit fuel consumed.

TSFC or SFC for thrust engines (e.g. turbojets, turbofans, ramjets, rockets, etc.) is the mass of fuel needed to provide the net thrust for a given period e.g. lb/(h·lbf) (pounds of fuel per hour-pound of thrust) or g/(s·kN) (grams of fuel per second-kilonewton). Mass of fuel is used, rather than volume (gallons or litres) for the fuel measure, since it is independent of temperature.[1]

Specific fuel consumption of air-breathing jet engines at their maximum efficiency is more or less proportional to exhaust speed. The fuel consumption per mile or per kilometre is a more appropriate comparison for aircraft that travel at very different speeds.[citation needed] There also exists power-specific fuel consumption, which equals the thrust-specific fuel consumption divided by speed. It can have units of pounds per hour per horsepower.

Significance of SFC

SFC is dependent on engine design, but differences in the SFC between different engines using the same underlying technology tend to be quite small. Increasing overall pressure ratio on jet engines tends to decrease SFC.

In practical applications, other factors are usually highly significant in determining the fuel efficiency of a particular engine design in that particular application. For instance, in aircraft, turbine (jet and turboprop) engines are typically much smaller and lighter than equivalently powerful piston engine designs, both properties reducing the levels of drag on the plane and reducing the amount of power needed to move the aircraft. Therefore, turbines are more efficient for aircraft propulsion than might be indicated by a simplistic look at the table below.

SFC varies with throttle setting, altitude, climate. For jet engines, air flight speed is an important factor too. Air flight speed counteracts the jet's exhaust speed. (In an artificial and extreme case with the aircraft flying exactly at the exhaust speed, one can easily imagine why the jet's net thrust should be near zero.) Moreover, since work is force (i.e., thrust) times distance, mechanical power is force times speed. Thus, although the nominal SFC is a useful measure of fuel efficiency, it should be divided by speed when comparing engines at different speeds.

For example, Concorde cruised at 1354 mph, or 7.15 million feet per hour, with its engines giving an SFC of 1.195 lb/(lbf·h) (see below); this means the engines transferred 5.98 million foot pounds per pound of fuel (17.9 MJ/kg), equivalent to an SFC of 0.50 lb/(lbf·h) for a subsonic aircraft flying at 570 mph, which would be better than even modern engines; the Olympus 593 used in the Concorde was the world's most efficient jet engine.[2][3] However, Concorde ultimately has a heavier airframe and, due to being supersonic, is less aerodynamically efficient, i.e., the lift to drag ratio is far lower. In general, the total fuel burn of a complete aircraft is of far more importance to the customer.

Units

Specific impulse
(by weight)
Specific impulse
(by mass)
Effective
exhaust velocity
Specific fuel consumption
SI =X seconds =9.8066 X N·s/kg =9.8066 X m/s =101,972 (1/X) g/(kN·s) / {g/(kN·s)=s/m}
Imperial units =X seconds =X lbf·s/lb =32.16 X ft/s =3,600 (1/X) lb/(lbf·h)

Typical values of SFC for thrust engines

Rocket engines in vacuum
Model Type First
run
Application TSFC Isp (by weight) Isp (by weight)
lb/lbf·h g/kN·s s m/s
Avio P80 solid fuel 2006 Vega stage 1 13 360 280 2700
Avio Zefiro 23 solid fuel 2006 Vega stage 2 12.52 354.7 287.5 2819
Avio Zefiro 9A solid fuel 2008 Vega stage 3 12.20 345.4 295.2 2895
RD-843 liquid fuel Vega upper stage 11.41 323.2 315.5 3094
Kuznetsov NK-33 liquid fuel 1970s N-1F, Soyuz-2-1v stage 1 10.9 308 331[4] 3250
NPO Energomash RD-171M liquid fuel Zenit-2M, -3SL, -3SLB, -3F stage 1 10.7 303 337 3300
LE-7A cryogenic H-IIA, H-IIB stage 1 8.22 233 438 4300
Snecma HM-7B cryogenic Ariane 2, 3, 4, 5 ECA upper stage 8.097 229.4 444.6 4360
LE-5B-2 cryogenic H-IIA, H-IIB upper stage 8.05 228 447 4380
Aerojet Rocketdyne RS-25 cryogenic 1981 Space Shuttle, SLS stage 1 7.95 225 453[5] 4440
Aerojet Rocketdyne RL-10B-2 cryogenic Delta III, Delta IV, SLS upper stage 7.734 219.1 465.5 4565
NERVA NRX A6 nuclear 1967 869
Jet engines with Reheat, static, sea level
Model Type First
run
Application TSFC Isp (by weight) Isp (by weight)
lb/lbf·h g/kN·s s m/s
Turbo-Union RB.199 turbofan Tornado 2.5[6] 70.8 1440 14120
GE F101-GE-102 turbofan 1970s B-1B 2.46 70 1460 14400
Tumansky R-25-300 turbojet MIG-21bis 2.206[6] 62.5 1632 16000
GE J85-GE-21 turbojet F-5E/F 2.13[6] 60.3 1690 16570
GE F110-GE-132 turbofan F-16E/F 2.09[6] 59.2 1722 16890
Honeywell/ITEC F125 turbofan F-CK-1 2.06[6] 58.4 1748 17140
Snecma M53-P2 turbofan Mirage 2000C/D/N 2.05[6] 58.1 1756 17220
Snecma Atar 09C turbojet Mirage III 2.03[6] 57.5 1770 17400
Snecma Atar 09K-50 turbojet Mirage IV, 50, F1 1.991[6] 56.4 1808 17730
GE J79-GE-15 turbojet F-4E/EJ/F/G, RF-4E 1.965 55.7 1832 17970
Saturn AL-31F turbofan Su-27/P/K 1.96[7] 55.5 1837 18010
GE F110-GE-129 turbofan F-16C/D, F-15EX 1.9[6] 53.8 1895 18580
Soloviev D-30F6 turbofan MiG-31, S-37/Su-47 1.863[6] 52.8 1932 18950
Lyulka AL-21F-3 turbojet Su-17, Su-22 1.86[6] 52.7 1935 18980
Klimov RD-33 turbofan 1974 MiG-29 1.85 52.4 1946 19080
Saturn AL-41F-1S turbofan Su-35S/T-10BM 1.819 51.5 1979 19410
Volvo RM12 turbofan 1978 Gripen A/B/C/D 1.78[6] 50.4 2022 19830
GE F404-GE-402 turbofan F/A-18C/D 1.74[6] 49 2070 20300
Kuznetsov NK-32 turbofan 1980 Tu-144LL, Tu-160 1.7 48 2100 21000
Snecma M88-2 turbofan 1989 Rafale 1.663 47.11 2165 21230
Eurojet EJ200 turbofan 1991 Eurofighter 1.66–1.73 47–49[8] 2080–2170 20400–21300
Dry jet engines, static, sea level
Model Type First
run
Application TSFC Isp (by weight) Isp (by weight)
lb/lbf·h g/kN·s s m/s
GE J85-GE-21 turbojet F-5E/F 1.24[6] 35.1 2900 28500
Snecma Atar 09C turbojet Mirage III 1.01[6] 28.6 3560 35000
Snecma Atar 09K-50 turbojet Mirage IV, 50, F1 0.981[6] 27.8 3670 36000
Snecma Atar 08K-50 turbojet Super Étendard 0.971[6] 27.5 3710 36400
Tumansky R-25-300 turbojet MIG-21bis 0.961[6] 27.2 3750 36700
Lyulka AL-21F-3 turbojet Su-17, Su-22 0.86 24.4 4190 41100
GE J79-GE-15 turbojet F-4E/EJ/F/G, RF-4E 0.85 24.1 4240 41500
Snecma M53-P2 turbofan Mirage 2000C/D/N 0.85[6] 24.1 4240 41500
Volvo RM12 turbofan 1978 Gripen A/B/C/D 0.824[6] 23.3 4370 42800
RR Turbomeca Adour turbofan 1999 Jaguar retrofit 0.81 23 4400 44000
Honeywell/ITEC F124 turbofan 1979 L-159, X-45 0.81[6] 22.9 4440 43600
Honeywell/ITEC F125 turbofan F-CK-1 0.8[6] 22.7 4500 44100
PW J52-P-408 turbojet A-4M/N, TA-4KU, EA-6B 0.79 22.4 4560 44700
Saturn AL-41F-1S turbofan Su-35S/T-10BM 0.79 22.4 4560 44700
Snecma M88-2 turbofan 1989 Rafale 0.782 22.14 4600 45100
Klimov RD-33 turbofan 1974 MiG-29 0.77 21.8 4680 45800
RR Pegasus 11-61 turbofan AV-8B+ 0.76 21.5 4740 46500
Eurojet EJ200 turbofan 1991 Eurofighter 0.74–0.81 21–23[8] 4400–4900 44000–48000
GE F414-GE-400 turbofan 1993 F/A-18E/F 0.724[9] 20.5 4970 48800
Kuznetsov NK-32 turbofan 1980 Tu-144LL, Tu-160 0.72-0.73 20–21 4900–5000 48000–49000
Soloviev D-30F6 turbofan MiG-31, S-37/Su-47 0.716[6] 20.3 5030 49300
Snecma Larzac turbofan 1972 Alpha Jet 0.716 20.3 5030 49300
IHI F3 turbofan 1981 Kawasaki T-4 0.7 19.8 5140 50400
Saturn AL-31F turbofan Su-27 /P/K 0.666-0.78[7][9] 18.9–22.1 4620–5410 45300–53000
RR Spey RB.168 turbofan AMX 0.66[6] 18.7 5450 53500
GE F110-GE-129 turbofan F-16C/D, F-15 0.64[9] 18 5600 55000
GE F110-GE-132 turbofan F-16E/F 0.64[9] 18 5600 55000
Turbo-Union RB.199 turbofan Tornado ECR 0.637[6] 18.0 5650 55400
PW F119-PW-100 turbofan 1992 F-22 0.61[9] 17.3 5900 57900
Turbo-Union RB.199 turbofan Tornado 0.598[6] 16.9 6020 59000
GE F101-GE-102 turbofan 1970s B-1B 0.562 15.9 6410 62800
PW TF33-P-3 turbofan B-52H, NB-52H 0.52[6] 14.7 6920 67900
RR AE 3007H turbofan RQ-4, MQ-4C 0.39[6] 11.0 9200 91000
GE F118-GE-100 turbofan 1980s B-2 0.375[6] 10.6 9600 94000
GE F118-GE-101 turbofan 1980s U-2S 0.375[6] 10.6 9600 94000
CFM CF6-50C2 turbofan A300, DC-10-30 0.371[6] 10.5 9700 95000
GE TF34-GE-100 turbofan A-10 0.37[6] 10.5 9700 95000
CFM CFM56-2B1 turbofan C-135, RC-135 0.36[10] 10 10000 98000
Progress D-18T turbofan 1980 An-124, An-225 0.345 9.8 10400 102000
PW F117-PW-100 turbofan C-17 0.34[11] 9.6 10600 104000
PW PW2040 turbofan Boeing 757 0.33[11] 9.3 10900 107000
CFM CFM56-3C1 turbofan 737 Classic 0.33 9.3 11000 110000
GE CF6-80C2 turbofan 744, 767, MD-11, A300/310, C-5M 0.307-0.344 8.7–9.7 10500–11700 103000–115000
EA GP7270 turbofan A380-861 0.299[9] 8.5 12000 118000
GE GE90-85B turbofan 777-200/200ER/300 0.298[9] 8.44 12080 118500
GE GE90-94B turbofan 777-200/200ER/300 0.2974[9] 8.42 12100 118700
RR Trent 970-84 turbofan 2003 A380-841 0.295[9] 8.36 12200 119700
GE GEnx-1B70 turbofan 787-8 0.2845[9] 8.06 12650 124100
RR Trent 1000C turbofan 2006 787-9 0.273[9] 7.7 13200 129000
Jet engines, cruise
Model Type First
run
Application TSFC Isp (by weight) Isp (by weight)
lb/lbf·h g/kN·s s m/s
Ramjet Mach 1 4.5 130 800 7800
J-58 turbojet 1958 SR-71 at Mach 3.2 (Reheat) 1.9[6] 53.8 1895 18580
RR/Snecma Olympus turbojet 1966 Concorde at Mach 2 1.195[12] 33.8 3010 29500
PW JT8D-9 turbofan 737 Original 0.8[13] 22.7 4500 44100
Honeywell ALF502R-5 GTF BAe 146 0.72[11] 20.4 5000 49000
Soloviev D-30KP-2 turbofan Il-76, Il-78 0.715 20.3 5030 49400
Soloviev D-30KU-154 turbofan Tu-154M 0.705 20.0 5110 50100
RR Tay RB.183 turbofan 1984 Fokker 70, Fokker 100 0.69 19.5 5220 51200
GE CF34-3 turbofan 1982 Challenger, CRJ100/200 0.69 19.5 5220 51200
GE CF34-8E turbofan E170/175 0.68 19.3 5290 51900
Honeywell TFE731-60 GTF Falcon 900 0.679[14] 19.2 5300 52000
CFM CFM56-2C1 turbofan DC-8 Super 70 0.671[11] 19.0 5370 52600
GE CF34-8C turbofan CRJ700/900/1000 0.67-0.68 19–19 5300–5400 52000–53000
CFM CFM56-3C1 turbofan 737 Classic 0.667 18.9 5400 52900
CFM CFM56-2A2 turbofan 1974 E-3, E-6 0.66[10] 18.7 5450 53500
RR BR725 turbofan 2008 G650/ER 0.657 18.6 5480 53700
CFM CFM56-2B1 turbofan C-135, RC-135 0.65[10] 18.4 5540 54300
GE CF34-10A turbofan ARJ21 0.65 18.4 5540 54300
CFE CFE738-1-1B turbofan 1990 Falcon 2000 0.645[11] 18.3 5580 54700
RR BR710 turbofan 1995 G. V/G550, Global Express 0.64 18 5600 55000
GE CF34-10E turbofan E190/195 0.64 18 5600 55000
CFM CF6-50C2 turbofan A300B2/B4/C4/F4, DC-10-30 0.63[11] 17.8 5710 56000
PowerJet SaM146 turbofan Superjet LR 0.629 17.8 5720 56100
CFM CFM56-7B24 turbofan 737 NG 0.627[11] 17.8 5740 56300
RR BR715 turbofan 1997 717 0.62 17.6 5810 56900
GE CF6-80C2-B1F turbofan 747-400 0.605[12] 17.1 5950 58400
CFM CFM56-5A1 turbofan A320 0.596 16.9 6040 59200
Aviadvigatel PS-90A1 turbofan Il-96-400 0.595 16.9 6050 59300
PW PW2040 turbofan 757-200 0.582[11] 16.5 6190 60700
PW PW4098 turbofan 777-300 0.581[11] 16.5 6200 60800
GE CF6-80C2-B2 turbofan 767 0.576[11] 16.3 6250 61300
IAE V2525-D5 turbofan MD-90 0.574[15] 16.3 6270 61500
IAE V2533-A5 turbofan A321-231 0.574[15] 16.3 6270 61500
RR Trent 700 turbofan 1992 A330 0.562 15.9 6410 62800
RR Trent 800 turbofan 1993 777-200/200ER/300 0.560 15.9 6430 63000
Progress D-18T turbofan 1980 An-124, An-225 0.546 15.5 6590 64700
CFM CFM56-5B4 turbofan A320-214 0.545 15.4 6610 64800
CFM CFM56-5C2 turbofan A340-211 0.545 15.4 6610 64800
RR Trent 500 turbofan 1999 A340-500/600 0.542 15.4 6640 65100
CFM LEAP-1B turbofan 2014 737 MAX 0.53-0.56 15–16 6400–6800 63000–67000
Aviadvigatel PD-14 turbofan 2014 MC-21-310 0.526 14.9 6840 67100
RR Trent 900 turbofan 2003 A380 0.522 14.8 6900 67600
GE GE90-85B turbofan 777-200/200ER 0.52[11][16] 14.7 6920 67900
GE GEnx-1B76 turbofan 2006 787-10 0.512[13] 14.5 7030 69000
PW PW1400G GTF MC-21 0.51[17] 14.4 7100 69000
CFM LEAP-1C turbofan 2013 C919 0.51 14.4 7100 69000
CFM LEAP-1A turbofan 2013 A320neo family 0.51[17] 14.4 7100 69000
RR Trent 7000 turbofan 2015 A330neo 0.506 14.3 7110 69800
RR Trent 1000 turbofan 2006 787 0.506 14.3 7110 69800
RR Trent XWB-97 turbofan 2014 A350-1000 0.478 13.5 7530 73900
PW 1127G GTF 2012 A320neo 0.463[13] 13.1 7780 76300
Civil engines[18]
Model SL thrust BPR OPR SL SFC cruise SFC Weight Layout cost ($M) Introduction
GE GE90 90,000 lbf
400 kN
8.4 39.3 0.545 lb/(lbf⋅h)
15.4 g/(kN⋅s)
16,644 lb
7,550 kg
1+3LP 10HP
2HP 6LP
11 1995
RR Trent 71,100–91,300 lbf
316–406 kN
4.89-5.74 36.84-42.7 0.557–0.565 lb/(lbf⋅h)
15.8–16.0 g/(kN⋅s)
10,550–13,133 lb
4,785–5,957 kg
1LP 8IP 6HP
1HP 1IP 4/5LP
11-11.7 1995
PW4000 52,000–84,000 lbf
230–370 kN
4.85-6.41 27.5-34.2 0.348–0.359 lb/(lbf⋅h)
9.9–10.2 g/(kN⋅s)
9,400–14,350 lb
4,260–6,510 kg
1+4-6LP 11HP
2HP 4-7LP
6.15-9.44 1986-1994
RB211 43,100–60,600 lbf
192–270 kN
4.30 25.8-33 0.570–0.598 lb/(lbf⋅h)
16.1–16.9 g/(kN⋅s)
7,264–9,670 lb
3,295–4,386 kg
1LP 6/7IP 6HP
1HP 1IP 3LP
5.3-6.8 1984-1989
GE CF6 52,500–67,500 lbf
234–300 kN
4.66-5.31 27.1-32.4 0.32–0.35 lb/(lbf⋅h)
9.1–9.9 g/(kN⋅s)
0.562–0.623 lb/(lbf⋅h)
15.9–17.6 g/(kN⋅s)
8,496–10,726 lb
3,854–4,865 kg
1+3/4LP 14HP
2HP 4/5LP
5.9-7 1981-1987
D-18 51,660 lbf
229.8 kN
5.60 25.0 0.570 lb/(lbf⋅h)
16.1 g/(kN⋅s)
9,039 lb
4,100 kg
1LP 7IP 7HP
1HP 1IP 4LP
1982
PW2000 38,250 lbf
170.1 kN
6 31.8 0.33 lb/(lbf⋅h)
9.3 g/(kN⋅s)
0.582 lb/(lbf⋅h)
16.5 g/(kN⋅s)
7,160 lb
3,250 kg
1+4LP 11HP
2HP 5LP
4 1983
PS-90 35,275 lbf
156.91 kN
4.60 35.5 0.595 lb/(lbf⋅h)
16.9 g/(kN⋅s)
6,503 lb
2,950 kg
1+2LP 13HP
2 HP 4LP
1992
IAE V2500 22,000–33,000 lbf
98–147 kN
4.60-5.40 24.9-33.40 0.34–0.37 lb/(lbf⋅h)
9.6–10.5 g/(kN⋅s)
0.574–0.581 lb/(lbf⋅h)
16.3–16.5 g/(kN⋅s)
5,210–5,252 lb
2,363–2,382 kg
1+4LP 10HP
2HP 5LP
1989-1994
CFM56 20,600–31,200 lbf
92–139 kN
4.80-6.40 25.70-31.50 0.32–0.36 lb/(lbf⋅h)
9.1–10.2 g/(kN⋅s)
0.545–0.667 lb/(lbf⋅h)
15.4–18.9 g/(kN⋅s)
4,301–5,700 lb
1,951–2,585 kg
1+3/4LP 9HP
1HP 4/5LP
3.20-4.55 1986-1997
D-30 23,850 lbf
106.1 kN
2.42 0.700 lb/(lbf⋅h)
19.8 g/(kN⋅s)
5,110 lb
2,320 kg
1+3LP 11HP
2HP 4LP
1982
JT8D 21,700 lbf
97 kN
1.77 19.2 0.519 lb/(lbf⋅h)
14.7 g/(kN⋅s)
0.737 lb/(lbf⋅h)
20.9 g/(kN⋅s)
4,515 lb
2,048 kg
1+6LP 7HP
1HP 3LP
2.99 1986
BR700 14,845–19,883 lbf
66.03–88.44 kN
4.00-4.70 25.7-32.1 0.370–0.390 lb/(lbf⋅h)
10.5–11.0 g/(kN⋅s)
0.620–0.640 lb/(lbf⋅h)
17.6–18.1 g/(kN⋅s)
3,520–4,545 lb
1,597–2,062 kg
1+1/2LP 10HP
2HP 2/3LP
1996
D-436 16,865 lbf
75.02 kN
4.95 25.2 0.610 lb/(lbf⋅h)
17.3 g/(kN⋅s)
3,197 lb
1,450 kg
1+1L 6I 7HP
1HP 1IP 3LP
1996
RR Tay 13,850–15,400 lbf
61.6–68.5 kN
3.04-3.07 15.8-16.6 0.43–0.45 lb/(lbf⋅h)
12–13 g/(kN⋅s)
0.690 lb/(lbf⋅h)
19.5 g/(kN⋅s)
2,951–3,380 lb
1,339–1,533 kg
1+3LP 12HP
2HP 3LP
2.6 1988-1992
RR Spey 9,900–11,400 lbf
44–51 kN
0.64-0.71 15.5-18.4 0.56 lb/(lbf⋅h)
16 g/(kN⋅s)
0.800 lb/(lbf⋅h)
22.7 g/(kN⋅s)
2,287–2,483 lb
1,037–1,126 kg
4/5LP 12HP
2HP 2LP
1968-1969
GE CF34 9,220 lbf
41.0 kN
21 0.35 lb/(lbf⋅h)
9.9 g/(kN⋅s)
1,670 lb
760 kg
1F 14HP
2HP 4LP
1996
AE3007 7,150 lbf
31.8 kN
24.0 0.390 lb/(lbf⋅h)
11.0 g/(kN⋅s)
1,581 lb
717 kg
ALF502/LF507 6,970–7,000 lbf
31.0–31.1 kN
5.60-5.70 12.2-13.8 0.406–0.408 lb/(lbf⋅h)
11.5–11.6 g/(kN⋅s)
0.414–0.720 lb/(lbf⋅h)
11.7–20.4 g/(kN⋅s)
1,336–1,385 lb
606–628 kg
1+2L 7+1HP
2HP 2LP
1.66 1982-1991
CFE738 5,918 lbf
26.32 kN
5.30 23.0 0.369 lb/(lbf⋅h)
10.5 g/(kN⋅s)
0.645 lb/(lbf⋅h)
18.3 g/(kN⋅s)
1,325 lb
601 kg
1+5LP+1CF
2HP 3LP
1992
PW300 5,266 lbf
23.42 kN
4.50 23.0 0.391 lb/(lbf⋅h)
11.1 g/(kN⋅s)
0.675 lb/(lbf⋅h)
19.1 g/(kN⋅s)
993 lb
450 kg
1+4LP+1HP
2HP 3LP
1990
JT15D 3,045 lbf
13.54 kN
3.30 13.1 0.560 lb/(lbf⋅h)
15.9 g/(kN⋅s)
0.541 lb/(lbf⋅h)
15.3 g/(kN⋅s)
632 lb
287 kg
1+1LP+1CF
1HP 2LP
1983
WI FJ44-4A 1,900 lbf
8.5 kN
0.456 lb/(lbf⋅h)
12.9 g/(kN⋅s)
445 lb
202 kg
1+1L 1C 1H
1HP 2LP
1992
WI FJ33-5A 1,000–1,800 lbf
4.4–8.0 kN
0.486 lb/(lbf⋅h)
13.8 g/(kN⋅s)
300 lb
140 kg
2016

The following table gives the efficiency for several engines when running at 80% throttle, which is approximately what is used in cruising, giving a minimum SFC. The efficiency is the amount of power propelling the plane divided by the rate of energy consumption. Since the power equals thrust times speed, the efficiency is given by

 

where V is speed and h is the energy content per unit mass of fuel (the higher heating value is used here, and at higher speeds the kinetic energy of the fuel or propellant becomes substantial and must be included).

typical subsonic cruise, 80% throttle, min SFC[19]
Turbofan efficiency
GE90 36.1%
PW4000 34.8%
PW2037 35.1% (M.87 40K)
PW2037 33.5% (M.80 35K)
CFM56-2 30.5%
TFE731-2 23.4%

See also

References

  1. ^ Specific Fuel Consumption.
  2. ^ Supersonic Dream
  3. ^ "The turbofan engine 2015-04-18 at the Wayback Machine", page 5. SRM Institute of Science and Technology, Department of aerospace engineering
  4. ^ "NK33". Encyclopedia Astronautica.
  5. ^ "SSME". Encyclopedia Astronautica.
  6. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag Nathan Meier (21 Mar 2005). . Archived from the original on 11 February 2021.
  7. ^ a b "Flanker". AIR International Magazine. 23 March 2017.
  8. ^ a b "EJ200 turbofan engine" (PDF). MTU Aero Engines. April 2016.
  9. ^ a b c d e f g h i j k Kottas, Angelos T.; Bozoudis, Michail N.; Madas, Michael A. "Turbofan Aero-Engine Efficiency Evaluation: An Integrated Approach Using VSBM Two-Stage Network DEA" (PDF). doi:10.1016/j.omega.2019.102167.
  10. ^ a b c Élodie Roux (2007). "Turbofan and Turbojet Engines: Database Handbook" (PDF). p. 126. ISBN 9782952938013.
  11. ^ a b c d e f g h i j k Nathan Meier (3 Apr 2005). . Archived from the original on 17 August 2021.
  12. ^ a b Ilan Kroo. . Aircraft Design: Synthesis and Analysis. Stanford University. Archived from the original on 11 January 2017.
  13. ^ a b c David Kalwar (2015). "Integration of turbofan engines into the preliminary design of a high-capacity short-and medium-haul passenger aircraft and fuel efficiency analysis with a further developed parametric aircraft design software" (PDF).
  14. ^ "Purdue School of Aeronautics and Astronautics Propulsion Web Page - TFE731".
  15. ^ a b Lloyd R. Jenkinson & al. (30 Jul 1999). "Civil Jet Aircraft Design: Engine Data File". Elsevier/Butterworth-Heinemann.
  16. ^ Élodie Roux (2007). "Turbofan and Turbojet Engines: Database Handbook". ISBN 9782952938013.
  17. ^ a b Vladimir Karnozov (August 19, 2019). "Aviadvigatel Mulls Higher-thrust PD-14s To Replace PS-90A". AIN Online.
  18. ^ Lloyd R. Jenkinson; et al. (30 Jul 1999). "Civil Jet Aircraft Design: Engine Data File". Elsevier/Butterworth-Heinemann.
  19. ^ Ilan Kroo. . Aircraft Design: Synthesis and Analysis. Stanford University. Archived from the original on November 24, 2016.

External links

thrust, specific, fuel, consumption, tsfc, fuel, efficiency, engine, design, with, respect, thrust, output, tsfc, also, thought, fuel, consumption, grams, second, unit, thrust, newtons, hence, thrust, specific, this, figure, inversely, proportional, specific, . Thrust specific fuel consumption TSFC is the fuel efficiency of an engine design with respect to thrust output TSFC may also be thought of as fuel consumption grams second per unit of thrust newtons or N hence thrust specific This figure is inversely proportional to specific impulse which is the amount of thrust produced per unit fuel consumed TSFC or SFC for thrust engines e g turbojets turbofans ramjets rockets etc is the mass of fuel needed to provide the net thrust for a given period e g lb h lbf pounds of fuel per hour pound of thrust or g s kN grams of fuel per second kilonewton Mass of fuel is used rather than volume gallons or litres for the fuel measure since it is independent of temperature 1 Specific fuel consumption of air breathing jet engines at their maximum efficiency is more or less proportional to exhaust speed The fuel consumption per mile or per kilometre is a more appropriate comparison for aircraft that travel at very different speeds citation needed There also exists power specific fuel consumption which equals the thrust specific fuel consumption divided by speed It can have units of pounds per hour per horsepower Contents 1 Significance of SFC 2 Units 3 Typical values of SFC for thrust engines 4 See also 5 References 6 External linksSignificance of SFC EditSFC is dependent on engine design but differences in the SFC between different engines using the same underlying technology tend to be quite small Increasing overall pressure ratio on jet engines tends to decrease SFC In practical applications other factors are usually highly significant in determining the fuel efficiency of a particular engine design in that particular application For instance in aircraft turbine jet and turboprop engines are typically much smaller and lighter than equivalently powerful piston engine designs both properties reducing the levels of drag on the plane and reducing the amount of power needed to move the aircraft Therefore turbines are more efficient for aircraft propulsion than might be indicated by a simplistic look at the table below SFC varies with throttle setting altitude climate For jet engines air flight speed is an important factor too Air flight speed counteracts the jet s exhaust speed In an artificial and extreme case with the aircraft flying exactly at the exhaust speed one can easily imagine why the jet s net thrust should be near zero Moreover since work is force i e thrust times distance mechanical power is force times speed Thus although the nominal SFC is a useful measure of fuel efficiency it should be divided by speed when comparing engines at different speeds For example Concorde cruised at 1354 mph or 7 15 million feet per hour with its engines giving an SFC of 1 195 lb lbf h see below this means the engines transferred 5 98 million foot pounds per pound of fuel 17 9 MJ kg equivalent to an SFC of 0 50 lb lbf h for a subsonic aircraft flying at 570 mph which would be better than even modern engines the Olympus 593 used in the Concorde was the world s most efficient jet engine 2 3 However Concorde ultimately has a heavier airframe and due to being supersonic is less aerodynamically efficient i e the lift to drag ratio is far lower In general the total fuel burn of a complete aircraft is of far more importance to the customer Units EditThis section may be confusing or unclear to readers In particular Unclear what the table is all about How should it be used For what should it be used If it is supposed to state the units for different quantities then established definitions for unit name unit symbol quantity name and so on should be used See examples in the International System of units article https en wikipedia org wiki International System of Units Derived units Please help clarify the section There might be a discussion about this on the talk page February 2020 Learn how and when to remove this template message Specific impulse by weight Specific impulse by mass Effectiveexhaust velocity Specific fuel consumptionSI X seconds 9 8066 X N s kg 9 8066 X m s 101 972 1 X g kN s g kN s s m Imperial units X seconds X lbf s lb 32 16 X ft s 3 600 1 X lb lbf h Typical values of SFC for thrust engines EditRocket engines in vacuumModel Type Firstrun Application TSFC Isp by weight Isp by weight lb lbf h g kN s s m sAvio P80 solid fuel 2006 Vega stage 1 13 360 280 2700Avio Zefiro 23 solid fuel 2006 Vega stage 2 12 52 354 7 287 5 2819Avio Zefiro 9A solid fuel 2008 Vega stage 3 12 20 345 4 295 2 2895RD 843 liquid fuel Vega upper stage 11 41 323 2 315 5 3094Kuznetsov NK 33 liquid fuel 1970s N 1F Soyuz 2 1v stage 1 10 9 308 331 4 3250NPO Energomash RD 171M liquid fuel Zenit 2M 3SL 3SLB 3F stage 1 10 7 303 337 3300LE 7A cryogenic H IIA H IIB stage 1 8 22 233 438 4300Snecma HM 7B cryogenic Ariane 2 3 4 5 ECA upper stage 8 097 229 4 444 6 4360LE 5B 2 cryogenic H IIA H IIB upper stage 8 05 228 447 4380Aerojet Rocketdyne RS 25 cryogenic 1981 Space Shuttle SLS stage 1 7 95 225 453 5 4440Aerojet Rocketdyne RL 10B 2 cryogenic Delta III Delta IV SLS upper stage 7 734 219 1 465 5 4565NERVA NRX A6 nuclear 1967 869Jet engines with Reheat static sea levelModel Type Firstrun Application TSFC Isp by weight Isp by weight lb lbf h g kN s s m sTurbo Union RB 199 turbofan Tornado 2 5 6 70 8 1440 14120GE F101 GE 102 turbofan 1970s B 1B 2 46 70 1460 14400Tumansky R 25 300 turbojet MIG 21bis 2 206 6 62 5 1632 16000GE J85 GE 21 turbojet F 5E F 2 13 6 60 3 1690 16570GE F110 GE 132 turbofan F 16E F 2 09 6 59 2 1722 16890Honeywell ITEC F125 turbofan F CK 1 2 06 6 58 4 1748 17140Snecma M53 P2 turbofan Mirage 2000C D N 2 05 6 58 1 1756 17220Snecma Atar 09C turbojet Mirage III 2 03 6 57 5 1770 17400Snecma Atar 09K 50 turbojet Mirage IV 50 F1 1 991 6 56 4 1808 17730GE J79 GE 15 turbojet F 4E EJ F G RF 4E 1 965 55 7 1832 17970Saturn AL 31F turbofan Su 27 P K 1 96 7 55 5 1837 18010GE F110 GE 129 turbofan F 16C D F 15EX 1 9 6 53 8 1895 18580Soloviev D 30F6 turbofan MiG 31 S 37 Su 47 1 863 6 52 8 1932 18950Lyulka AL 21F 3 turbojet Su 17 Su 22 1 86 6 52 7 1935 18980Klimov RD 33 turbofan 1974 MiG 29 1 85 52 4 1946 19080Saturn AL 41F 1S turbofan Su 35S T 10BM 1 819 51 5 1979 19410Volvo RM12 turbofan 1978 Gripen A B C D 1 78 6 50 4 2022 19830GE F404 GE 402 turbofan F A 18C D 1 74 6 49 2070 20300Kuznetsov NK 32 turbofan 1980 Tu 144LL Tu 160 1 7 48 2100 21000Snecma M88 2 turbofan 1989 Rafale 1 663 47 11 2165 21230Eurojet EJ200 turbofan 1991 Eurofighter 1 66 1 73 47 49 8 2080 2170 20400 21300Dry jet engines static sea levelModel Type Firstrun Application TSFC Isp by weight Isp by weight lb lbf h g kN s s m sGE J85 GE 21 turbojet F 5E F 1 24 6 35 1 2900 28500Snecma Atar 09C turbojet Mirage III 1 01 6 28 6 3560 35000Snecma Atar 09K 50 turbojet Mirage IV 50 F1 0 981 6 27 8 3670 36000Snecma Atar 08K 50 turbojet Super Etendard 0 971 6 27 5 3710 36400Tumansky R 25 300 turbojet MIG 21bis 0 961 6 27 2 3750 36700Lyulka AL 21F 3 turbojet Su 17 Su 22 0 86 24 4 4190 41100GE J79 GE 15 turbojet F 4E EJ F G RF 4E 0 85 24 1 4240 41500Snecma M53 P2 turbofan Mirage 2000C D N 0 85 6 24 1 4240 41500Volvo RM12 turbofan 1978 Gripen A B C D 0 824 6 23 3 4370 42800RR Turbomeca Adour turbofan 1999 Jaguar retrofit 0 81 23 4400 44000Honeywell ITEC F124 turbofan 1979 L 159 X 45 0 81 6 22 9 4440 43600Honeywell ITEC F125 turbofan F CK 1 0 8 6 22 7 4500 44100PW J52 P 408 turbojet A 4M N TA 4KU EA 6B 0 79 22 4 4560 44700Saturn AL 41F 1S turbofan Su 35S T 10BM 0 79 22 4 4560 44700Snecma M88 2 turbofan 1989 Rafale 0 782 22 14 4600 45100Klimov RD 33 turbofan 1974 MiG 29 0 77 21 8 4680 45800RR Pegasus 11 61 turbofan AV 8B 0 76 21 5 4740 46500Eurojet EJ200 turbofan 1991 Eurofighter 0 74 0 81 21 23 8 4400 4900 44000 48000GE F414 GE 400 turbofan 1993 F A 18E F 0 724 9 20 5 4970 48800Kuznetsov NK 32 turbofan 1980 Tu 144LL Tu 160 0 72 0 73 20 21 4900 5000 48000 49000Soloviev D 30F6 turbofan MiG 31 S 37 Su 47 0 716 6 20 3 5030 49300Snecma Larzac turbofan 1972 Alpha Jet 0 716 20 3 5030 49300IHI F3 turbofan 1981 Kawasaki T 4 0 7 19 8 5140 50400Saturn AL 31F turbofan Su 27 P K 0 666 0 78 7 9 18 9 22 1 4620 5410 45300 53000RR Spey RB 168 turbofan AMX 0 66 6 18 7 5450 53500GE F110 GE 129 turbofan F 16C D F 15 0 64 9 18 5600 55000GE F110 GE 132 turbofan F 16E F 0 64 9 18 5600 55000Turbo Union RB 199 turbofan Tornado ECR 0 637 6 18 0 5650 55400PW F119 PW 100 turbofan 1992 F 22 0 61 9 17 3 5900 57900Turbo Union RB 199 turbofan Tornado 0 598 6 16 9 6020 59000GE F101 GE 102 turbofan 1970s B 1B 0 562 15 9 6410 62800PW TF33 P 3 turbofan B 52H NB 52H 0 52 6 14 7 6920 67900RR AE 3007H turbofan RQ 4 MQ 4C 0 39 6 11 0 9200 91000GE F118 GE 100 turbofan 1980s B 2 0 375 6 10 6 9600 94000GE F118 GE 101 turbofan 1980s U 2S 0 375 6 10 6 9600 94000CFM CF6 50C2 turbofan A300 DC 10 30 0 371 6 10 5 9700 95000GE TF34 GE 100 turbofan A 10 0 37 6 10 5 9700 95000CFM CFM56 2B1 turbofan C 135 RC 135 0 36 10 10 10000 98000Progress D 18T turbofan 1980 An 124 An 225 0 345 9 8 10400 102000PW F117 PW 100 turbofan C 17 0 34 11 9 6 10600 104000PW PW2040 turbofan Boeing 757 0 33 11 9 3 10900 107000CFM CFM56 3C1 turbofan 737 Classic 0 33 9 3 11000 110000GE CF6 80C2 turbofan 744 767 MD 11 A300 310 C 5M 0 307 0 344 8 7 9 7 10500 11700 103000 115000EA GP7270 turbofan A380 861 0 299 9 8 5 12000 118000GE GE90 85B turbofan 777 200 200ER 300 0 298 9 8 44 12080 118500GE GE90 94B turbofan 777 200 200ER 300 0 2974 9 8 42 12100 118700RR Trent 970 84 turbofan 2003 A380 841 0 295 9 8 36 12200 119700GE GEnx 1B70 turbofan 787 8 0 2845 9 8 06 12650 124100RR Trent 1000C turbofan 2006 787 9 0 273 9 7 7 13200 129000Jet engines cruiseModel Type Firstrun Application TSFC Isp by weight Isp by weight lb lbf h g kN s s m sRamjet Mach 1 4 5 130 800 7800J 58 turbojet 1958 SR 71 at Mach 3 2 Reheat 1 9 6 53 8 1895 18580RR Snecma Olympus turbojet 1966 Concorde at Mach 2 1 195 12 33 8 3010 29500PW JT8D 9 turbofan 737 Original 0 8 13 22 7 4500 44100Honeywell ALF502R 5 GTF BAe 146 0 72 11 20 4 5000 49000Soloviev D 30KP 2 turbofan Il 76 Il 78 0 715 20 3 5030 49400Soloviev D 30KU 154 turbofan Tu 154M 0 705 20 0 5110 50100RR Tay RB 183 turbofan 1984 Fokker 70 Fokker 100 0 69 19 5 5220 51200GE CF34 3 turbofan 1982 Challenger CRJ100 200 0 69 19 5 5220 51200GE CF34 8E turbofan E170 175 0 68 19 3 5290 51900Honeywell TFE731 60 GTF Falcon 900 0 679 14 19 2 5300 52000CFM CFM56 2C1 turbofan DC 8 Super 70 0 671 11 19 0 5370 52600GE CF34 8C turbofan CRJ700 900 1000 0 67 0 68 19 19 5300 5400 52000 53000CFM CFM56 3C1 turbofan 737 Classic 0 667 18 9 5400 52900CFM CFM56 2A2 turbofan 1974 E 3 E 6 0 66 10 18 7 5450 53500RR BR725 turbofan 2008 G650 ER 0 657 18 6 5480 53700CFM CFM56 2B1 turbofan C 135 RC 135 0 65 10 18 4 5540 54300GE CF34 10A turbofan ARJ21 0 65 18 4 5540 54300CFE CFE738 1 1B turbofan 1990 Falcon 2000 0 645 11 18 3 5580 54700RR BR710 turbofan 1995 G V G550 Global Express 0 64 18 5600 55000GE CF34 10E turbofan E190 195 0 64 18 5600 55000CFM CF6 50C2 turbofan A300B2 B4 C4 F4 DC 10 30 0 63 11 17 8 5710 56000PowerJet SaM146 turbofan Superjet LR 0 629 17 8 5720 56100CFM CFM56 7B24 turbofan 737 NG 0 627 11 17 8 5740 56300RR BR715 turbofan 1997 717 0 62 17 6 5810 56900GE CF6 80C2 B1F turbofan 747 400 0 605 12 17 1 5950 58400CFM CFM56 5A1 turbofan A320 0 596 16 9 6040 59200Aviadvigatel PS 90A1 turbofan Il 96 400 0 595 16 9 6050 59300PW PW2040 turbofan 757 200 0 582 11 16 5 6190 60700PW PW4098 turbofan 777 300 0 581 11 16 5 6200 60800GE CF6 80C2 B2 turbofan 767 0 576 11 16 3 6250 61300IAE V2525 D5 turbofan MD 90 0 574 15 16 3 6270 61500IAE V2533 A5 turbofan A321 231 0 574 15 16 3 6270 61500RR Trent 700 turbofan 1992 A330 0 562 15 9 6410 62800RR Trent 800 turbofan 1993 777 200 200ER 300 0 560 15 9 6430 63000Progress D 18T turbofan 1980 An 124 An 225 0 546 15 5 6590 64700CFM CFM56 5B4 turbofan A320 214 0 545 15 4 6610 64800CFM CFM56 5C2 turbofan A340 211 0 545 15 4 6610 64800RR Trent 500 turbofan 1999 A340 500 600 0 542 15 4 6640 65100CFM LEAP 1B turbofan 2014 737 MAX 0 53 0 56 15 16 6400 6800 63000 67000Aviadvigatel PD 14 turbofan 2014 MC 21 310 0 526 14 9 6840 67100RR Trent 900 turbofan 2003 A380 0 522 14 8 6900 67600GE GE90 85B turbofan 777 200 200ER 0 52 11 16 14 7 6920 67900GE GEnx 1B76 turbofan 2006 787 10 0 512 13 14 5 7030 69000PW PW1400G GTF MC 21 0 51 17 14 4 7100 69000CFM LEAP 1C turbofan 2013 C919 0 51 14 4 7100 69000CFM LEAP 1A turbofan 2013 A320neo family 0 51 17 14 4 7100 69000RR Trent 7000 turbofan 2015 A330neo 0 506 14 3 7110 69800RR Trent 1000 turbofan 2006 787 0 506 14 3 7110 69800RR Trent XWB 97 turbofan 2014 A350 1000 0 478 13 5 7530 73900PW 1127G GTF 2012 A320neo 0 463 13 13 1 7780 76300Civil engines 18 Model SL thrust BPR OPR SL SFC cruise SFC Weight Layout cost M IntroductionGE GE90 90 000 lbf400 kN 8 4 39 3 0 545 lb lbf h 15 4 g kN s 16 644 lb7 550 kg 1 3LP 10HP2HP 6LP 11 1995RR Trent 71 100 91 300 lbf316 406 kN 4 89 5 74 36 84 42 7 0 557 0 565 lb lbf h 15 8 16 0 g kN s 10 550 13 133 lb4 785 5 957 kg 1LP 8IP 6HP1HP 1IP 4 5LP 11 11 7 1995PW4000 52 000 84 000 lbf230 370 kN 4 85 6 41 27 5 34 2 0 348 0 359 lb lbf h 9 9 10 2 g kN s 9 400 14 350 lb4 260 6 510 kg 1 4 6LP 11HP2HP 4 7LP 6 15 9 44 1986 1994RB211 43 100 60 600 lbf192 270 kN 4 30 25 8 33 0 570 0 598 lb lbf h 16 1 16 9 g kN s 7 264 9 670 lb3 295 4 386 kg 1LP 6 7IP 6HP1HP 1IP 3LP 5 3 6 8 1984 1989GE CF6 52 500 67 500 lbf234 300 kN 4 66 5 31 27 1 32 4 0 32 0 35 lb lbf h 9 1 9 9 g kN s 0 562 0 623 lb lbf h 15 9 17 6 g kN s 8 496 10 726 lb3 854 4 865 kg 1 3 4LP 14HP2HP 4 5LP 5 9 7 1981 1987D 18 51 660 lbf229 8 kN 5 60 25 0 0 570 lb lbf h 16 1 g kN s 9 039 lb4 100 kg 1LP 7IP 7HP1HP 1IP 4LP 1982PW2000 38 250 lbf170 1 kN 6 31 8 0 33 lb lbf h 9 3 g kN s 0 582 lb lbf h 16 5 g kN s 7 160 lb3 250 kg 1 4LP 11HP2HP 5LP 4 1983PS 90 35 275 lbf156 91 kN 4 60 35 5 0 595 lb lbf h 16 9 g kN s 6 503 lb2 950 kg 1 2LP 13HP2 HP 4LP 1992IAE V2500 22 000 33 000 lbf98 147 kN 4 60 5 40 24 9 33 40 0 34 0 37 lb lbf h 9 6 10 5 g kN s 0 574 0 581 lb lbf h 16 3 16 5 g kN s 5 210 5 252 lb2 363 2 382 kg 1 4LP 10HP2HP 5LP 1989 1994CFM56 20 600 31 200 lbf92 139 kN 4 80 6 40 25 70 31 50 0 32 0 36 lb lbf h 9 1 10 2 g kN s 0 545 0 667 lb lbf h 15 4 18 9 g kN s 4 301 5 700 lb1 951 2 585 kg 1 3 4LP 9HP1HP 4 5LP 3 20 4 55 1986 1997D 30 23 850 lbf106 1 kN 2 42 0 700 lb lbf h 19 8 g kN s 5 110 lb2 320 kg 1 3LP 11HP2HP 4LP 1982JT8D 21 700 lbf97 kN 1 77 19 2 0 519 lb lbf h 14 7 g kN s 0 737 lb lbf h 20 9 g kN s 4 515 lb2 048 kg 1 6LP 7HP1HP 3LP 2 99 1986BR700 14 845 19 883 lbf66 03 88 44 kN 4 00 4 70 25 7 32 1 0 370 0 390 lb lbf h 10 5 11 0 g kN s 0 620 0 640 lb lbf h 17 6 18 1 g kN s 3 520 4 545 lb1 597 2 062 kg 1 1 2LP 10HP2HP 2 3LP 1996D 436 16 865 lbf75 02 kN 4 95 25 2 0 610 lb lbf h 17 3 g kN s 3 197 lb1 450 kg 1 1L 6I 7HP1HP 1IP 3LP 1996RR Tay 13 850 15 400 lbf61 6 68 5 kN 3 04 3 07 15 8 16 6 0 43 0 45 lb lbf h 12 13 g kN s 0 690 lb lbf h 19 5 g kN s 2 951 3 380 lb1 339 1 533 kg 1 3LP 12HP2HP 3LP 2 6 1988 1992RR Spey 9 900 11 400 lbf44 51 kN 0 64 0 71 15 5 18 4 0 56 lb lbf h 16 g kN s 0 800 lb lbf h 22 7 g kN s 2 287 2 483 lb1 037 1 126 kg 4 5LP 12HP2HP 2LP 1968 1969GE CF34 9 220 lbf41 0 kN 21 0 35 lb lbf h 9 9 g kN s 1 670 lb760 kg 1F 14HP2HP 4LP 1996AE3007 7 150 lbf31 8 kN 24 0 0 390 lb lbf h 11 0 g kN s 1 581 lb717 kgALF502 LF507 6 970 7 000 lbf31 0 31 1 kN 5 60 5 70 12 2 13 8 0 406 0 408 lb lbf h 11 5 11 6 g kN s 0 414 0 720 lb lbf h 11 7 20 4 g kN s 1 336 1 385 lb606 628 kg 1 2L 7 1HP2HP 2LP 1 66 1982 1991CFE738 5 918 lbf26 32 kN 5 30 23 0 0 369 lb lbf h 10 5 g kN s 0 645 lb lbf h 18 3 g kN s 1 325 lb601 kg 1 5LP 1CF2HP 3LP 1992PW300 5 266 lbf23 42 kN 4 50 23 0 0 391 lb lbf h 11 1 g kN s 0 675 lb lbf h 19 1 g kN s 993 lb450 kg 1 4LP 1HP2HP 3LP 1990JT15D 3 045 lbf13 54 kN 3 30 13 1 0 560 lb lbf h 15 9 g kN s 0 541 lb lbf h 15 3 g kN s 632 lb287 kg 1 1LP 1CF1HP 2LP 1983WI FJ44 4A 1 900 lbf8 5 kN 0 456 lb lbf h 12 9 g kN s 445 lb202 kg 1 1L 1C 1H1HP 2LP 1992WI FJ33 5A 1 000 1 800 lbf4 4 8 0 kN 0 486 lb lbf h 13 8 g kN s 300 lb140 kg 2016The following table gives the efficiency for several engines when running at 80 throttle which is approximately what is used in cruising giving a minimum SFC The efficiency is the amount of power propelling the plane divided by the rate of energy consumption Since the power equals thrust times speed the efficiency is given by h V S F C h displaystyle eta V SFC times h where V is speed and h is the energy content per unit mass of fuel the higher heating value is used here and at higher speeds the kinetic energy of the fuel or propellant becomes substantial and must be included typical subsonic cruise 80 throttle min SFC 19 Turbofan efficiencyGE90 36 1 PW4000 34 8 PW2037 35 1 M 87 40K PW2037 33 5 M 80 35K CFM56 2 30 5 TFE731 2 23 4 See also EditBrake specific fuel consumption Energies per unit mass Specific impulse Vehicle metricsReferences Edit Specific Fuel Consumption Supersonic Dream The turbofan engine Archived 2015 04 18 at the Wayback Machine page 5 SRM Institute of Science and Technology Department of aerospace engineering NK33 Encyclopedia Astronautica SSME Encyclopedia Astronautica a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag Nathan Meier 21 Mar 2005 Military Turbojet Turbofan Specifications Archived from the original on 11 February 2021 a b Flanker AIR International Magazine 23 March 2017 a b EJ200 turbofan engine PDF MTU Aero Engines April 2016 a b c d e f g h i j k Kottas Angelos T Bozoudis Michail N Madas Michael A Turbofan Aero Engine Efficiency Evaluation An Integrated Approach Using VSBM Two Stage Network DEA PDF doi 10 1016 j omega 2019 102167 a b c Elodie Roux 2007 Turbofan and Turbojet Engines Database Handbook PDF p 126 ISBN 9782952938013 a b c d e f g h i j k Nathan Meier 3 Apr 2005 Civil Turbojet Turbofan Specifications Archived from the original on 17 August 2021 a b Ilan Kroo Data on Large Turbofan Engines Aircraft Design Synthesis and Analysis Stanford University Archived from the original on 11 January 2017 a b c David Kalwar 2015 Integration of turbofan engines into the preliminary design of a high capacity short and medium haul passenger aircraft and fuel efficiency analysis with a further developed parametric aircraft design software PDF Purdue School of Aeronautics and Astronautics Propulsion Web Page TFE731 a b Lloyd R Jenkinson amp al 30 Jul 1999 Civil Jet Aircraft Design Engine Data File Elsevier Butterworth Heinemann Elodie Roux 2007 Turbofan and Turbojet Engines Database Handbook ISBN 9782952938013 a b Vladimir Karnozov August 19 2019 Aviadvigatel Mulls Higher thrust PD 14s To Replace PS 90A AIN Online Lloyd R Jenkinson et al 30 Jul 1999 Civil Jet Aircraft Design Engine Data File Elsevier Butterworth Heinemann Ilan Kroo Specific Fuel Consumption and Overall Efficiency Aircraft Design Synthesis and Analysis Stanford University Archived from the original on November 24 2016 External links EditGE CF6 website Archived 2011 09 04 at the Wayback Machine NASA Cruise SFC vs Year SFC by Engine Mfg Archived 2019 06 27 at the Wayback Machine Retrieved from https en wikipedia org w index php title Thrust specific fuel consumption amp oldid 1127066490, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.