fbpx
Wikipedia

Thomas Midgley Jr.

Thomas Midgley Jr. (May 18, 1889 – November 2, 1944) was an American mechanical and chemical engineer. He played a major role in developing leaded gasoline (tetraethyl lead) and some of the first chlorofluorocarbons (CFCs), better known in the United States by the brand name Freon; both products were later banned from common use due to their harmful impact on human health and the environment. He was granted more than 100 patents over the course of his career.[2]

Thomas Midgley Jr.
Midgley c. 1930s–1940s
Born(1889-05-18)May 18, 1889
DiedNovember 2, 1944(1944-11-02) (aged 55)
Alma materCornell University
Known for
Spouse
Carrie Reynolds
(m. 1911)
Awards
Scientific career
Fields

Midgley contracted polio in 1940 and was left disabled; in 1944, he was found strangled to death by a device he devised to allow him to get out of bed unassisted. It was reported to the public that he had been accidentally killed by his own invention, but his death was privately declared a suicide.

His legacy is one of inventing the two chemicals that did the greatest environmental damage. Environmental historian J. R. McNeill stated that he "had more adverse impact on the atmosphere than any other single organism in Earth's history." Author Bill Bryson remarked that he possessed "an instinct for the regrettable that was almost uncanny." Science writer Fred Pearce described him as a "one-man environmental disaster".

Early life edit

Thomas Midgley Jr. was born in Beaver Falls, Pennsylvania, on May 18, 1889, the son of Hattie Louise (née Emerson) (1865 – 1950) and Thomas Midgley Sr. (1840 – 1934). His family had a history of inventing; his father was an inventor in the field of automobile tires while his maternal grandfather, James Emerson, invented the inserted tooth saw. He grew up in Columbus, Ohio, and graduated from Cornell University in 1911 with a degree in mechanical engineering.[2][3]

Career edit

Leaded gasoline edit

 
Sign on an antique gasoline pump advertising the TEL anti-knock compound Ethyl, a gasoline additive

In 1916, Midgley began working at General Motors. In December 1921, while working under the direction of Charles Kettering at Dayton Research Laboratories, a subsidiary of General Motors, he discovered (after discarding tellurium due to the difficult-to-eradicate smell) that the addition of tetraethyllead (TEL) to gasoline prevented knocking in internal combustion engines.[4] The company named the substance "Ethyl", avoiding all mention of lead in reports and advertising. Oil companies and automobile manufacturers (especially General Motors, which owned the patent jointly filed by Kettering and Midgley) promoted the TEL additive as an inexpensive alternative superior to ethanol or ethanol-blended fuels, on which they could make very little profit.[5][6][7] In December 1922, the American Chemical Society awarded Midgley the 1923 Nichols Medal for the "Use of Anti-Knock Compounds in Motor Fuels".[8] This was the first of several major awards he earned during his career.[2]

In 1923, Midgley took a long vacation in Miami to cure himself of lead poisoning. He said, "I find that my lungs have been affected and that it is necessary to drop all work and get a large supply of fresh air."[9] That year, General Motors created the General Motors Chemical Company (GMCC) to supervise the production of TEL by the DuPont company. Kettering was elected as president with Midgley as vice president. However, after two deaths and several cases of lead poisoning at the TEL prototype plant in Dayton, Ohio, the staff at Dayton was said in 1924 to be "depressed to the point of considering giving up the whole tetraethyl lead program".[6] Over the course of the next year, eight more people died at DuPont's plant in Deepwater, New Jersey.[9] In 1924, dissatisfied with the speed of DuPont's TEL production using the "bromide process", General Motors and the Standard Oil Company of New Jersey (now known as ExxonMobil) created the Ethyl Gasoline Corporation to produce and market TEL. Ethyl Corporation built a new chemical plant using a high-temperature ethyl chloride process at the Bayway Refinery in New Jersey.[9] However, within the first two months of its operation, the new plant was plagued by more cases of lead poisoning, hallucinations, insanity, and five deaths.[7]

The risks associated with exposure to lead have been known at least since 2000 BC,[10] while efforts to limit lead's use date back to at least the 16th century.[11][10][12] Midgley experienced lead poisoning himself, and was warned about the risk of lead poisoning from TEL as early as 1922.[13] Midgley well knew the hazards of lead. He investigated whether the risks, both in production and use, could be managed. Testing on the exhaust was completed, which he used to support the idea that 1 part tetraethyl lead per 1300 of gasoline could safely be used.[14] After the initial worker exposures, controls were developed to allow the process to operate safely. Leaded gasoline use grew exponentially. The chronic impacts of environmental lead were grossly underestimated.

On October 30, 1924, Midgley participated in a press conference to demonstrate the apparent safety of TEL, in which he poured TEL over his hands, placed a bottle of the chemical under his nose, and inhaled its vapor for 60 seconds, declaring that he could do this every day without succumbing to any problems.[7][15] However, the State of New Jersey ordered the Bayway plant to be closed a few days later, and Jersey Standard was forbidden to manufacture TEL again without state permission. Production was restarted in 1926 after intervention by the federal government. High-octane fuel, enabled by lead, was important to the military. Midgley later took a leave of absence from work after being diagnosed with lead poisoning.[16] He was relieved of his position as vice president of GMCC in April 1925, reportedly due to his inexperience in organizational matters, but he remained an employee of General Motors.[7]

Freon edit

In the late 1920s, air conditioning and refrigeration systems employed compounds such as ammonia (NH3), chloromethane (CH3Cl), propane, methyl formate (C2H4O2), and sulfur dioxide (SO2) as refrigerants. Though effective, these were toxic, flammable or explosive. The Frigidaire division of General Motors, at that time a leading manufacturer of such systems, sought a non-toxic, non-flammable alternative to these refrigerants.[17]

Midgley, working with Albert Leon Henne, soon narrowed his focus to alkyl halides (the combination of carbon chains and halogens), which were known to be highly volatile (a requirement for a refrigerant) and also chemically inert. They eventually settled on the concept of incorporating fluorine into a hydrocarbon. They rejected the assumption that such compounds would be toxic, believing that the stability of the carbon–fluorine bond would be sufficient to prevent the release of hydrogen fluoride or other potential breakdown products.[17] The team eventually synthesized dichlorodifluoromethane,[18] the first chlorofluorocarbon (CFC), which they named "Freon".[17][19] This compound is more commonly referred to today as "Freon 12", or "R12".[20]

Freon and other CFCs soon largely replaced other refrigerants, but also had other applications. A notable example was their use as a propellant in aerosol products and asthma inhalers.[21] The Society of Chemical Industry awarded Midgley the Perkin Medal in 1937 for this work.[22] In 1941, the American Chemical Society gave Midgley its highest award, the Priestley Medal.[23] This was followed by the Willard Gibbs Award in 1942. He also held two honorary degrees and was elected to the United States National Academy of Sciences. In 1944, he was elected president and chairman of the American Chemical Society.[2]

Death edit

In 1940, at the age of 51, Midgley contracted polio and was left severely disabled. He devised an elaborate system of ropes and pulleys to lift himself out of bed. On November 2, 1944, at the age of 55, he was found dead at his home in Worthington, Ohio. He had been killed by his own device after he became entangled in it and died of strangulation.[24][25][26][27] He left behind a widow, Carrie M. Reynolds from Delaware, Ohio, whom he had married on August 3, 1911.[3] It was reported to the public that his death was an accident, but it was privately declared a suicide.[27][28][29]

Legacy edit

Midgley's legacy is the negative environmental impact of leaded gasoline and freon.[30] Environmental historian J. R. McNeill opined that Midgley "had more adverse impact on the atmosphere than any other single organism in Earth's history",[31] and Bill Bryson remarked that Midgley possessed "an instinct for the regrettable that was almost uncanny".[32] Fred Pearce, writing for New Scientist, described Midgley as a "one-man environmental disaster".[28]

Use of leaded gasoline, which he invented, released large quantities of lead into the atmosphere all over the world.[30] High atmospheric lead levels have been linked with serious long-term health problems from childhood, including neurological impairment,[33][34][35] and with increased levels of violence and criminality in America[36][37][38][39] and around the world.[40][41] Time magazine included both leaded gasoline and CFCs on its list of "The 50 Worst Inventions".[42]

Midgley died three decades before the ozone-depleting and greenhouse gas effects of CFCs in the atmosphere became widely known.[43] In 1987, the Montreal Protocol phased out the use of CFCs like Freon.[44]

The harm of leaded gasoline and chlorofluorocarbons have been framed as lessons in known unknowns and unknown unknowns, respectively. When leaded gasoline was invented it was known that lead had harmful effects on human health in large quantities, and that leaded gasoline caused emissions of trace amounts of lead to the atmosphere, but it was not known whether those trace amounts had adverse effects. The existence of the ozone layer, however, and the potential for chlorofluorocarbons to harm it, was not known at the time.[45]

References edit

  1. ^ . Franklin Institute. Archived from the original on October 15, 2013. Retrieved November 18, 2011.
  2. ^ a b c d "Thomas Midgley, Jr". invent.org. National Inventors Hall of Fame. May 17, 2023.
  3. ^ a b Kettering, Charles F. "Thomas Midgley Jr. 1889–1944" (PDF). Biographical Memoirs. National Academy of Sciences. 24: 359–380.
  4. ^ Loeb, A.P., "Birth of the Kettering Doctrine: Fordism, Sloanism and Tetraethyl Lead," Business and Economic History, Vol. 24, No. 2, Fall 1995.
  5. ^ Jacobson, Mark Z. (2002). Atmospheric pollution : history, science, and regulation. Cambridge University Press. pp. 75–80. ISBN 0521010446.
  6. ^ a b Kovarik, William (2005). (PDF). International Journal of Occupational and Environmental Health. 11 (4): 384–397. doi:10.1179/oeh.2005.11.4.384. PMID 16350473. S2CID 44633845. Archived from the original (PDF) on June 17, 2018. Retrieved October 7, 2018.
  7. ^ a b c d Kitman, Jamie Lincoln (March 2, 2000). "The Secret History of Lead". ISSN 0027-8378. Retrieved 2022-04-27.
  8. ^ Nichols Medalists
  9. ^ a b c Kovarik, Bill. "Charles F. Kettering and the 1921 Discovery of Tetraethyl Lead In the Context of Technological Alternatives", presented to the Society of Automotive Engineers Fuels & Lubricants Conference, Baltimore, Maryland., 1994; revised in 1999.
  10. ^ a b Dapul H, Laraque D (August 2014). "Lead poisoning in children". Advances in Pediatrics. 61 (1): 313–33. doi:10.1016/j.yapd.2014.04.004. PMID 25037135.
  11. ^ Needleman H (2004). "Lead poisoning". Annual Review of Medicine. 55: 209–22. doi:10.1146/annurev.med.55.091902.103653. PMID 14746518.
  12. ^ Needleman, Herbert L.; Gunnoe, Charles; Leviton, Alan; Reed, Robert; Peresie, Henry; Maher, Cornelius; Barrett, Peter (March 29, 1979). "Deficits in Psychologic and Classroom Performance of Children with Elevated Dentine Lead Levels". New England Journal of Medicine. 300 (13): 689–695. doi:10.1056/NEJM197903293001301. PMID 763299. Retrieved November 17, 2020.
  13. ^ Seyferth, Dietmar (December 1, 2003). "The Rise and Fall of Tetraethyllead. 2". Organometallics. 22 (25): 5154–5178. doi:10.1021/om030621b. and (Erratum: doi:10.1021/om0343925)
  14. ^ Midgley, Thomas (August 1, 1925). "Tetraethyl Lead Poison Hazards". Industrial and Engineering Chemistry. 17 (8): 827–828. doi:10.1021/ie50188a020. After mixing tetraethyl lead with gasoline, no great precaution need be exercised, the ratio being 1 part tetraethyl lead to 1300 of gasoline. From this point on no health hazards actually exist unless the gasoline is used very abnormally for purposes for which it was not intended.
  15. ^ Markowitz, Gerald and Rosner, David. Deceit and Denial: The Deadly Politics of Industrial Pollution. Berkeley, California: University of California Press, 2002
  16. ^ The Poisoner's Handbook December 27, 2016, at the Wayback Machine American Experience at 51:48 January 2014
  17. ^ a b c Sneader, Walter (2005). "Chapter 8: Systematic medicine". Drug discovery: a history. Chichester, England: John Wiley and Sons. pp. 74–87. ISBN 978-0-471-89980-8. Retrieved September 13, 2010.
  18. ^ Midgley, Thomas; Henne, Albert L. (1930). "Organic Fluorides as Refrigerants1". Industrial & Engineering Chemistry. 22 (5): 542. doi:10.1021/ie50245a031.
  19. ^ Thompson, R. J. (1932). "Freon, a Refrigerant". Industrial & Engineering Chemistry. 24 (6): 620–623. doi:10.1021/ie50270a008.
  20. ^ Garrett, Alfred B. (1962). "Freon: Thomas Midgley and Albert L. Henne". Journal of Chemical Education. 39 (7): 361. Bibcode:1962JChEd..39..361G. doi:10.1021/ed039p361.
  21. ^ Andersen, Stephen O.; Halberstadt, Marcel L.; Borgford-Parnell, Nathan (2013). "Stratospheric ozone, global warming, and the principle of unintended consequences—An ongoing science and policy success story". Journal of the Air & Waste Management Association. 63 (6): 607–647. Bibcode:2013JAWMA..63..607A. doi:10.1080/10962247.2013.791349. PMID 23858990 – via Taylor & Francis Online. CFCs and HCFCs rapidly replaced other refrigerants in all but applications where companies accepted the increased risk of flammable and toxic refrigerant releases or in applications where the existing technologies were more energy efficient.
  22. ^ "Will Award Perkin Medal Jan. 8 to Thomas Midgley, Jr". Refrigerating Engineering. 33 (1): 54. January 1937 – via Google Books.
  23. ^ American Chemical Society
  24. ^ Bryson, Bill (2004) [First published 2003]. A Short History of Nearly Everything (Black Swan paperback ed.). Transworld Publishers. p. 196. ISBN 0-552-99704-8.
  25. ^ Bellows, Alan (December 8, 2007). "The Ethyl-Poisoned Earth".
  26. ^ Time, November 13, 1944.
  27. ^ a b Giunta, Carmen (2006). "Thomas Midgley, Jr., and The Invention of Chlorofluorocarbon Refrigerants: It Ain't Necessarily So" (PDF). Bulletin for the History of Chemistry. 31 (2): 66–74. (PDF) from the original on April 13, 2019. Retrieved January 28, 2023.
  28. ^ a b Pearce, Fred (June 7, 2017). "Inventor hero was a one-man environmental disaster". New Scientist. doi:10.1016/S0262-4079(17)31121-1. Retrieved April 25, 2022.
  29. ^ Eschner, Kat (May 18, 2017). "One Man Invented Two of the Deadliest Substances of the 20th Century". Smithsonian. Retrieved September 21, 2021.
  30. ^ a b Laurence Knight (October 12, 2014). "The fatal attraction of lead". BBC News. Retrieved August 23, 2016.
  31. ^ McNeill, J.R. Something New Under the Sun: An Environmental History of the Twentieth-Century World (2001) New York: Norton, xxvi, 421 pp. (as reviewed in the . Archived from the original on March 28, 2004. Retrieved October 10, 2009.)
  32. ^ Bryson, Bill (2004) [First published 2003]. A Short History of Nearly Everything (Black Swan paperback ed.). Transworld Publishers. p. 195. ISBN 0-552-99704-8.
  33. ^ (PDF). Agency for Toxic Substances and Disease Registry/Division of Toxicology and Environmental Medicine. 2006. Archived from the original (PDF) on October 9, 2009.
  34. ^ Golub, Mari S., ed. (2005). "Summary". Metals, fertility, and reproductive toxicity. Boca Raton, Florida: Taylor and Francis. p. 153. ISBN 978-0-415-70040-5.
  35. ^ Hu, Howard (1991). "Knowledge of diagnosis and reproductive history among survivors of childhood plumbism". American Journal of Public Health. 81 (8): 1070–1072. doi:10.2105/AJPH.81.8.1070. PMC 1405695. PMID 1854006.
  36. ^ Mielke, Howard W.; Zahran, Sammy (August 2012). "The urban rise and fall of air lead (Pb) and the latent surge and retreat of societal violence". Environment International. 43: 48–55. doi:10.1016/j.envint.2012.03.005. PMID 22484219. Retrieved April 22, 2022.
  37. ^ Brody, Jane E. (February 7, 1996). . The New York Times. Archived from the original on November 25, 2010. Retrieved March 22, 2023.
  38. ^ Hoffman, Jascha (October 21, 2007). . The New York Times. Archived from the original on September 19, 2012.
  39. ^ Drum, Kevin (February 2013). "Lead: America's Real Criminal Element". Mother Jones.
  40. ^ Nevin, Rick (July 2007). "Understanding international crime trends: The legacy of preschool lead exposure". Environmental Research. 104 (3): 315–336. Bibcode:2007ER....104..315N. doi:10.1016/j.envres.2007.02.008. PMID 17451672. Retrieved April 22, 2022.
  41. ^ Taylor, Mark Patrick; Forbes, Miriam K.; Opeskin, Brian; Parr, Nick; Lanphear, Bruce P. (February 16, 2016). "The relationship between atmospheric lead emissions and aggressive crime: an ecological study". Environmental Health. 15: 23. doi:10.1186/s12940-016-0122-3. PMC 4756504. PMID 26884052.
  42. ^ Gentilviso, Chris (May 27, 2010). "The 50 Worst Inventions: Leaded Gasoline". Time. Retrieved February 1, 2018.
  43. ^ Laurence Knight (June 6, 2015). "How 1970s deodorant is still doing harm". BBC News. Retrieved August 23, 2016.
  44. ^ Climate change: 'Monumental' deal to cut HFCs, fastest growing greenhouse gases
  45. ^ Johnson, Steven (March 15, 2023). "The Brilliant Inventor Who Made Two of History's Biggest Mistakes". The New York Times. ISSN 0362-4331. Retrieved January 21, 2024.

Further reading edit

External links edit

  • Midgley, T. (1942). "A Critical Examination of Some Concepts in Rubber Chemistry". Science. 96 (2485): 143–6. Bibcode:1942Sci....96..143M. doi:10.1126/science.96.2485.143. PMID 17833986.
  • at the Wayback Machine (archived October 15, 2012)
  • Giunta, Carmen J. (2006). "Thomas Midgley Jr. and the Invention of Chlorofluorocarbon Refrigerants" (PDF). Bulletin for the History of Chemistry. 31 (2): 66–74.
  • The Man Who Accidentally Killed The Most People In History (video by YouTube producer Derek Muller on Thomas Midgley Jr., April 2022)

thomas, midgley, 1889, november, 1944, american, mechanical, chemical, engineer, played, major, role, developing, leaded, gasoline, tetraethyl, lead, some, first, chlorofluorocarbons, cfcs, better, known, united, states, brand, name, freon, both, products, wer. Thomas Midgley Jr May 18 1889 November 2 1944 was an American mechanical and chemical engineer He played a major role in developing leaded gasoline tetraethyl lead and some of the first chlorofluorocarbons CFCs better known in the United States by the brand name Freon both products were later banned from common use due to their harmful impact on human health and the environment He was granted more than 100 patents over the course of his career 2 Thomas Midgley Jr Midgley c 1930s 1940sBorn 1889 05 18 May 18 1889Beaver Falls Pennsylvania U S DiedNovember 2 1944 1944 11 02 aged 55 Worthington Ohio U S Alma materCornell UniversityKnown forLeaded petrolCFCsSpouseCarrie Reynolds m 1911 wbr AwardsWilliam H Nichols Medal 1922 Longstreth Medal 1925 1 Perkin Medal 1937 Priestley Medal 1941 Willard Gibbs Award 1942 Scientific careerFieldsMechanical engineeringchemical engineeringMidgley contracted polio in 1940 and was left disabled in 1944 he was found strangled to death by a device he devised to allow him to get out of bed unassisted It was reported to the public that he had been accidentally killed by his own invention but his death was privately declared a suicide His legacy is one of inventing the two chemicals that did the greatest environmental damage Environmental historian J R McNeill stated that he had more adverse impact on the atmosphere than any other single organism in Earth s history Author Bill Bryson remarked that he possessed an instinct for the regrettable that was almost uncanny Science writer Fred Pearce described him as a one man environmental disaster Contents 1 Early life 2 Career 2 1 Leaded gasoline 2 2 Freon 3 Death 4 Legacy 5 References 6 Further reading 7 External linksEarly life editThomas Midgley Jr was born in Beaver Falls Pennsylvania on May 18 1889 the son of Hattie Louise nee Emerson 1865 1950 and Thomas Midgley Sr 1840 1934 His family had a history of inventing his father was an inventor in the field of automobile tires while his maternal grandfather James Emerson invented the inserted tooth saw He grew up in Columbus Ohio and graduated from Cornell University in 1911 with a degree in mechanical engineering 2 3 Career editLeaded gasoline edit nbsp Sign on an antique gasoline pump advertising the TEL anti knock compound Ethyl a gasoline additiveIn 1916 Midgley began working at General Motors In December 1921 while working under the direction of Charles Kettering at Dayton Research Laboratories a subsidiary of General Motors he discovered after discarding tellurium due to the difficult to eradicate smell that the addition of tetraethyllead TEL to gasoline prevented knocking in internal combustion engines 4 The company named the substance Ethyl avoiding all mention of lead in reports and advertising Oil companies and automobile manufacturers especially General Motors which owned the patent jointly filed by Kettering and Midgley promoted the TEL additive as an inexpensive alternative superior to ethanol or ethanol blended fuels on which they could make very little profit 5 6 7 In December 1922 the American Chemical Society awarded Midgley the 1923 Nichols Medal for the Use of Anti Knock Compounds in Motor Fuels 8 This was the first of several major awards he earned during his career 2 In 1923 Midgley took a long vacation in Miami to cure himself of lead poisoning He said I find that my lungs have been affected and that it is necessary to drop all work and get a large supply of fresh air 9 That year General Motors created the General Motors Chemical Company GMCC to supervise the production of TEL by the DuPont company Kettering was elected as president with Midgley as vice president However after two deaths and several cases of lead poisoning at the TEL prototype plant in Dayton Ohio the staff at Dayton was said in 1924 to be depressed to the point of considering giving up the whole tetraethyl lead program 6 Over the course of the next year eight more people died at DuPont s plant in Deepwater New Jersey 9 In 1924 dissatisfied with the speed of DuPont s TEL production using the bromide process General Motors and the Standard Oil Company of New Jersey now known as ExxonMobil created the Ethyl Gasoline Corporation to produce and market TEL Ethyl Corporation built a new chemical plant using a high temperature ethyl chloride process at the Bayway Refinery in New Jersey 9 However within the first two months of its operation the new plant was plagued by more cases of lead poisoning hallucinations insanity and five deaths 7 The risks associated with exposure to lead have been known at least since 2000 BC 10 while efforts to limit lead s use date back to at least the 16th century 11 10 12 Midgley experienced lead poisoning himself and was warned about the risk of lead poisoning from TEL as early as 1922 13 Midgley well knew the hazards of lead He investigated whether the risks both in production and use could be managed Testing on the exhaust was completed which he used to support the idea that 1 part tetraethyl lead per 1300 of gasoline could safely be used 14 After the initial worker exposures controls were developed to allow the process to operate safely Leaded gasoline use grew exponentially The chronic impacts of environmental lead were grossly underestimated On October 30 1924 Midgley participated in a press conference to demonstrate the apparent safety of TEL in which he poured TEL over his hands placed a bottle of the chemical under his nose and inhaled its vapor for 60 seconds declaring that he could do this every day without succumbing to any problems 7 15 However the State of New Jersey ordered the Bayway plant to be closed a few days later and Jersey Standard was forbidden to manufacture TEL again without state permission Production was restarted in 1926 after intervention by the federal government High octane fuel enabled by lead was important to the military Midgley later took a leave of absence from work after being diagnosed with lead poisoning 16 He was relieved of his position as vice president of GMCC in April 1925 reportedly due to his inexperience in organizational matters but he remained an employee of General Motors 7 Freon edit In the late 1920s air conditioning and refrigeration systems employed compounds such as ammonia NH3 chloromethane CH3Cl propane methyl formate C2H4O2 and sulfur dioxide SO2 as refrigerants Though effective these were toxic flammable or explosive The Frigidaire division of General Motors at that time a leading manufacturer of such systems sought a non toxic non flammable alternative to these refrigerants 17 Midgley working with Albert Leon Henne soon narrowed his focus to alkyl halides the combination of carbon chains and halogens which were known to be highly volatile a requirement for a refrigerant and also chemically inert They eventually settled on the concept of incorporating fluorine into a hydrocarbon They rejected the assumption that such compounds would be toxic believing that the stability of the carbon fluorine bond would be sufficient to prevent the release of hydrogen fluoride or other potential breakdown products 17 The team eventually synthesized dichlorodifluoromethane 18 the first chlorofluorocarbon CFC which they named Freon 17 19 This compound is more commonly referred to today as Freon 12 or R12 20 Freon and other CFCs soon largely replaced other refrigerants but also had other applications A notable example was their use as a propellant in aerosol products and asthma inhalers 21 The Society of Chemical Industry awarded Midgley the Perkin Medal in 1937 for this work 22 In 1941 the American Chemical Society gave Midgley its highest award the Priestley Medal 23 This was followed by the Willard Gibbs Award in 1942 He also held two honorary degrees and was elected to the United States National Academy of Sciences In 1944 he was elected president and chairman of the American Chemical Society 2 Death editIn 1940 at the age of 51 Midgley contracted polio and was left severely disabled He devised an elaborate system of ropes and pulleys to lift himself out of bed On November 2 1944 at the age of 55 he was found dead at his home in Worthington Ohio He had been killed by his own device after he became entangled in it and died of strangulation 24 25 26 27 He left behind a widow Carrie M Reynolds from Delaware Ohio whom he had married on August 3 1911 3 It was reported to the public that his death was an accident but it was privately declared a suicide 27 28 29 Legacy editMidgley s legacy is the negative environmental impact of leaded gasoline and freon 30 Environmental historian J R McNeill opined that Midgley had more adverse impact on the atmosphere than any other single organism in Earth s history 31 and Bill Bryson remarked that Midgley possessed an instinct for the regrettable that was almost uncanny 32 Fred Pearce writing for New Scientist described Midgley as a one man environmental disaster 28 Use of leaded gasoline which he invented released large quantities of lead into the atmosphere all over the world 30 High atmospheric lead levels have been linked with serious long term health problems from childhood including neurological impairment 33 34 35 and with increased levels of violence and criminality in America 36 37 38 39 and around the world 40 41 Time magazine included both leaded gasoline and CFCs on its list of The 50 Worst Inventions 42 Midgley died three decades before the ozone depleting and greenhouse gas effects of CFCs in the atmosphere became widely known 43 In 1987 the Montreal Protocol phased out the use of CFCs like Freon 44 The harm of leaded gasoline and chlorofluorocarbons have been framed as lessons in known unknowns and unknown unknowns respectively When leaded gasoline was invented it was known that lead had harmful effects on human health in large quantities and that leaded gasoline caused emissions of trace amounts of lead to the atmosphere but it was not known whether those trace amounts had adverse effects The existence of the ozone layer however and the potential for chlorofluorocarbons to harm it was not known at the time 45 References edit Franklin Laureate Database Edward Longstreth Medal 1925 Laureates Franklin Institute Archived from the original on October 15 2013 Retrieved November 18 2011 a b c d Thomas Midgley Jr invent org National Inventors Hall of Fame May 17 2023 a b Kettering Charles F Thomas Midgley Jr 1889 1944 PDF Biographical Memoirs National Academy of Sciences 24 359 380 Loeb A P Birth of the Kettering Doctrine Fordism Sloanism and Tetraethyl Lead Business and Economic History Vol 24 No 2 Fall 1995 Jacobson Mark Z 2002 Atmospheric pollution history science and regulation Cambridge University Press pp 75 80 ISBN 0521010446 a b Kovarik William 2005 Ethyl leaded gasoline How a classic occupational disease became an international public health disaster PDF International Journal of Occupational and Environmental Health 11 4 384 397 doi 10 1179 oeh 2005 11 4 384 PMID 16350473 S2CID 44633845 Archived from the original PDF on June 17 2018 Retrieved October 7 2018 a b c d Kitman Jamie Lincoln March 2 2000 The Secret History of Lead ISSN 0027 8378 Retrieved 2022 04 27 Nichols Medalists a b c Kovarik Bill Charles F Kettering and the 1921 Discovery of Tetraethyl Lead In the Context of Technological Alternatives presented to the Society of Automotive Engineers Fuels amp Lubricants Conference Baltimore Maryland 1994 revised in 1999 a b Dapul H Laraque D August 2014 Lead poisoning in children Advances in Pediatrics 61 1 313 33 doi 10 1016 j yapd 2014 04 004 PMID 25037135 Needleman H 2004 Lead poisoning Annual Review of Medicine 55 209 22 doi 10 1146 annurev med 55 091902 103653 PMID 14746518 Needleman Herbert L Gunnoe Charles Leviton Alan Reed Robert Peresie Henry Maher Cornelius Barrett Peter March 29 1979 Deficits in Psychologic and Classroom Performance of Children with Elevated Dentine Lead Levels New England Journal of Medicine 300 13 689 695 doi 10 1056 NEJM197903293001301 PMID 763299 Retrieved November 17 2020 Seyferth Dietmar December 1 2003 The Rise and Fall of Tetraethyllead 2 Organometallics 22 25 5154 5178 doi 10 1021 om030621b and Erratum doi 10 1021 om0343925 Midgley Thomas August 1 1925 Tetraethyl Lead Poison Hazards Industrial and Engineering Chemistry 17 8 827 828 doi 10 1021 ie50188a020 After mixing tetraethyl lead with gasoline no great precaution need be exercised the ratio being 1 part tetraethyl lead to 1300 of gasoline From this point on no health hazards actually exist unless the gasoline is used very abnormally for purposes for which it was not intended Markowitz Gerald and Rosner David Deceit and Denial The Deadly Politics of Industrial Pollution Berkeley California University of California Press 2002 The Poisoner s Handbook Archived December 27 2016 at the Wayback Machine American Experience at 51 48 January 2014 a b c Sneader Walter 2005 Chapter 8 Systematic medicine Drug discovery a history Chichester England John Wiley and Sons pp 74 87 ISBN 978 0 471 89980 8 Retrieved September 13 2010 Midgley Thomas Henne Albert L 1930 Organic Fluorides as Refrigerants1 Industrial amp Engineering Chemistry 22 5 542 doi 10 1021 ie50245a031 Thompson R J 1932 Freon a Refrigerant Industrial amp Engineering Chemistry 24 6 620 623 doi 10 1021 ie50270a008 Garrett Alfred B 1962 Freon Thomas Midgley and Albert L Henne Journal of Chemical Education 39 7 361 Bibcode 1962JChEd 39 361G doi 10 1021 ed039p361 Andersen Stephen O Halberstadt Marcel L Borgford Parnell Nathan 2013 Stratospheric ozone global warming and the principle of unintended consequences An ongoing science and policy success story Journal of the Air amp Waste Management Association 63 6 607 647 Bibcode 2013JAWMA 63 607A doi 10 1080 10962247 2013 791349 PMID 23858990 via Taylor amp Francis Online CFCs and HCFCs rapidly replaced other refrigerants in all but applications where companies accepted the increased risk of flammable and toxic refrigerant releases or in applications where the existing technologies were more energy efficient Will Award Perkin Medal Jan 8 to Thomas Midgley Jr Refrigerating Engineering 33 1 54 January 1937 via Google Books The Priestley Medalists 1923 2008 American Chemical Society Bryson Bill 2004 First published 2003 A Short History of Nearly Everything Black Swan paperback ed Transworld Publishers p 196 ISBN 0 552 99704 8 Bellows Alan December 8 2007 The Ethyl Poisoned Earth Milestones Nov 13 1944 Time November 13 1944 a b Giunta Carmen 2006 Thomas Midgley Jr and The Invention of Chlorofluorocarbon Refrigerants It Ain t Necessarily So PDF Bulletin for the History of Chemistry 31 2 66 74 Archived PDF from the original on April 13 2019 Retrieved January 28 2023 a b Pearce Fred June 7 2017 Inventor hero was a one man environmental disaster New Scientist doi 10 1016 S0262 4079 17 31121 1 Retrieved April 25 2022 Eschner Kat May 18 2017 One Man Invented Two of the Deadliest Substances of the 20th Century Smithsonian Retrieved September 21 2021 a b Laurence Knight October 12 2014 The fatal attraction of lead BBC News Retrieved August 23 2016 McNeill J R Something New Under the Sun An Environmental History of the Twentieth Century World 2001 New York Norton xxvi 421 pp as reviewed in the Journal of Political Ecology Archived from the original on March 28 2004 Retrieved October 10 2009 Bryson Bill 2004 First published 2003 A Short History of Nearly Everything Black Swan paperback ed Transworld Publishers p 195 ISBN 0 552 99704 8 ToxFAQs CABS Chemical Agent Briefing Sheet Lead PDF Agency for Toxic Substances and Disease Registry Division of Toxicology and Environmental Medicine 2006 Archived from the original PDF on October 9 2009 Golub Mari S ed 2005 Summary Metals fertility and reproductive toxicity Boca Raton Florida Taylor and Francis p 153 ISBN 978 0 415 70040 5 Hu Howard 1991 Knowledge of diagnosis and reproductive history among survivors of childhood plumbism American Journal of Public Health 81 8 1070 1072 doi 10 2105 AJPH 81 8 1070 PMC 1405695 PMID 1854006 Mielke Howard W Zahran Sammy August 2012 The urban rise and fall of air lead Pb and the latent surge and retreat of societal violence Environment International 43 48 55 doi 10 1016 j envint 2012 03 005 PMID 22484219 Retrieved April 22 2022 Brody Jane E February 7 1996 Aggressiveness and delinquency in boys is linked to lead in bones The New York Times Archived from the original on November 25 2010 Retrieved March 22 2023 Hoffman Jascha October 21 2007 Clean Air Act Criminal Element The New York Times Archived from the original on September 19 2012 Drum Kevin February 2013 Lead America s Real Criminal Element Mother Jones Nevin Rick July 2007 Understanding international crime trends The legacy of preschool lead exposure Environmental Research 104 3 315 336 Bibcode 2007ER 104 315N doi 10 1016 j envres 2007 02 008 PMID 17451672 Retrieved April 22 2022 Taylor Mark Patrick Forbes Miriam K Opeskin Brian Parr Nick Lanphear Bruce P February 16 2016 The relationship between atmospheric lead emissions and aggressive crime an ecological study Environmental Health 15 23 doi 10 1186 s12940 016 0122 3 PMC 4756504 PMID 26884052 Gentilviso Chris May 27 2010 The 50 Worst Inventions Leaded Gasoline Time Retrieved February 1 2018 Laurence Knight June 6 2015 How 1970s deodorant is still doing harm BBC News Retrieved August 23 2016 Climate change Monumental deal to cut HFCs fastest growing greenhouse gases Johnson Steven March 15 2023 The Brilliant Inventor Who Made Two of History s Biggest Mistakes The New York Times ISSN 0362 4331 Retrieved January 21 2024 Further reading editTim Harford November 11 2022 Cautionary Tales The inventor who almost ended the world Podcast The Brilliant Inventor Who Made Two of History s Biggest Mistakes Stephen Johnson New York Times Magazine March 15 2023 Midgley Man of Marvels page 1 of 2 page 2 of 2 Charles F Kettering The American Weekly Hearst Corporation March 25 1945 External links editMidgley T 1942 A Critical Examination of Some Concepts in Rubber Chemistry Science 96 2485 143 6 Bibcode 1942Sci 96 143M doi 10 1126 science 96 2485 143 PMID 17833986 Biographical Memoir by Charles F Kettering at the Wayback Machine archived October 15 2012 Giunta Carmen J 2006 Thomas Midgley Jr and the Invention of Chlorofluorocarbon Refrigerants PDF Bulletin for the History of Chemistry 31 2 66 74 The Man Who Accidentally Killed The Most People In History video by YouTube producer Derek Muller on Thomas Midgley Jr April 2022 Retrieved from https en wikipedia org w index php title Thomas Midgley Jr amp oldid 1201419125, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.