fbpx
Wikipedia

Square Kilometre Array

The Square Kilometre Array (SKA) is an intergovernmental international radio telescope project being built in Australia (low-frequency) and South Africa (mid-frequency). The combining infrastructure, the Square Kilometre Array Observatory (SKAO), and headquarters, are located at the Jodrell Bank Observatory in the United Kingdom. The SKA cores are being built in the southern hemisphere, where the view of the Milky Way galaxy is the best and radio interference at its least.

Square Kilometre Array
Artist's impression
Alternative namesSKA
Location(s)Meerkat National Park, Murchison Radio-astronomy Observatory, South Africa
Coordinates30°43′16″S 21°24′40″E / 30.72113°S 21.4111278°E / -30.72113; 21.4111278Coordinates: 30°43′16″S 21°24′40″E / 30.72113°S 21.4111278°E / -30.72113; 21.4111278
Built2018–2024 (2018–2024)
First light2027 (projected)
Telescope stylephased array 
Collecting area1 km2 (11,000,000 sq ft)
Websitewww.skao.int
  Related media on Commons

Conceived in the 1990s, and further developed and designed by the late-2010s, when completed sometime in the 2020s it will have a total collecting area of approximately one square kilometre. It will operate over a wide range of frequencies and its size will make it 50 times more sensitive than any other radio instrument. If built as planned, it should be able to survey the sky more than ten thousand times faster than before. With receiving stations extending out to a distance of at least 3,000 km (1,900 mi) from a concentrated central core, it will exploit radio astronomy's ability to provide the highest-resolution images in all astronomy.

The SKAO consortium was founded in Rome in March 2019 by seven initial member countries, with several others subsequently joining; as of 2021 there were 14 members of the consortium. This international organisation is tasked with building and operating the facility. The project has two phases of construction: the current SKA1, commonly just called SKA, and a possible later significantly enlarged phase sometimes called SKA2. The construction phase of the project began on 5 December 2022 in both South Africa and Australia.

History

The Square Kilometre Array (SKA) was originally conceived in 1991 with an international working group set up in 1993. This led to the signing of the first Memorandum of Agreement in 2000.[1]

In the early days of planning, China vied to host the SKA, proposing to build several large dishes in the natural limestone depressions (karst) that dimple its southwestern provinces; China called their proposal Kilometer-square Area Radio Synthesis Telescope (KARST).[2][3]

Australia's first radio quiet zone was established by the Australian Communications and Media Authority (ACMA) on 11 April 2005 specifically to protect and maintain the current "radio-quietness" of the main Australian SKA site at the Murchison Radio-astronomy Observatory.[4]

The project has two phases of construction: the current SKA1, commonly just called SKA, and a possible later significantly enlarged phase sometimes called SKA2.[5] PrepSKA commenced in 2008, leading to a full SKA design in 2012. Construction of Phase 1 was scheduled to take place from 2018 to 2020,[needs update] providing an operational array, with Phase 2 completion in 2025.[citation needed]

 
The SKA headquarters at Jodrell Bank, with the Lovell Telescope in the background

In April 2011, Jodrell Bank Observatory of the University of Manchester, in Cheshire, England was announced as the location for the project headquarters.[6] In November 2011, the SKA Organisation was formed as an intergovernmental organisation[7] and the project moved from a collaboration to an independent, not for profit, company.[8]

In February 2012, a former Australian SKA Committee[clarification needed] chairman raised concerns with South African media about risks at the Australian candidate site, particularly in terms of cost, mining interference and land agreements. SKA Australia stated that all points had been addressed in the site bid.[9] In March 2012 it was reported that the SKA Site Advisory Committee had made a confidential report in February that the South African bid was stronger.[10] However a scientific working group was set up to explore possible implementation options of the two candidate host regions,[11] and on 25 May 2012 it was announced that it had been determined that the SKA would be split over the South African and African sites, and the Australia and New Zealand sites.[12] While New Zealand remained a member of the SKA Organisation in 2014, it appeared that no SKA infrastructure was likely to be located in New Zealand.[13]

In April 2015, the headquarters of the SKA project were chosen to be located at the Jodrell Bank Observatory in the UK,[14][15] officially opened in July 2019.[citation needed]

Initial construction contracts began in 2018. Scientific observations with the fully completed array are not expected any earlier than 2027.[16][17]

On 12 March 2019, the Square Kilometre Array Observatory (SKAO) was founded in Rome by seven initial member countries: Australia, China, Italy, the Netherlands, Portugal, South Africa and the United Kingdom. India and Sweden are expected to follow shortly, and eight other countries have expressed interest to join in the future. This international organisation was tasked with building and operating the facility, with the first construction contracts expected to be awarded in late 2020.[needs update][18]

By mid-2019, the start of scientific observations were expected to start no earlier than 2027.[16] In July 2019, New Zealand withdrew from the project.[16]

As of November 2020, four precursor facilities were already operating: MeerKAT and the Hydrogen Epoch of Reionization Array (HERA) in South Africa, and the Australian SKA Pathfinder (ASKAP) and Murchison Widefield Array (MWA) in Western Australia.[19]

The construction phase of the project began on 5 December 2022 in Australia and South Africa, with delegations from each of the eight countries leading the project attending ceremonies to celebrate the event.[20] The Australian part of the project comprises 100,000 antennas built across 74 km (46 mi), also in the Murchison region, in the traditional lands of the Wajarri Aboriginal people. Bulldozers were expected to start working on the site in early 2023, with the completion date estimated as 2028. The site has been named Inyarrimanha Ilgari Bundara, which means 'sharing sky and stars' in the Wajarri language.[21]

Description

 
Countries that participated in the preparatory phase of SKA[22]

The SKA will combine the signals received from thousands of small antennas spread over a distance of several thousand kilometres to simulate a single giant radio telescope capable of extremely high sensitivity and angular resolution, using a technique called aperture synthesis.[23] Some of the sub-arrays of the SKA will also have a very large field-of-view (FOV), making it possible to survey very large areas of sky at once.[24] One innovative development is the use of focal-plane arrays using phased-array technology to provide multiple FOVs.[25] This will greatly increase the survey speed of the SKA and enable several users to observe different pieces of the sky simultaneously, which is useful for (e.g.) monitoring multiple pulsars. The combination of a very large FOV with high sensitivity means that the SKA will be able to compile extremely large surveys of the sky considerably faster than any other telescope.[26]

The combined SKA will provide a wide range of coverage, with Australia's Murchison Widefield Array providing low-frequency converage and South Africa's MeerKAT providing mid-frequency coverage.[27][28][5] There will be continuous frequency coverage from 50 MHz to 14 GHz in the first two phases of its construction.

  • Phase 1: Providing ~10% of the total collecting area at low and mid frequencies by 2023 (SKA1).[29]
  • Phase 2: Completion of the full array (SKA2) at low and mid frequencies by 2030.[30]

The frequency range from 50 MHz to 14 GHz, spanning more than two decades, cannot be realised using one design of antenna and so the SKA will comprise separate sub-arrays of different types of antenna elements that will make up the SKA-low, SKA-mid and survey arrays:

 
Artist's impression of a Low-Band SKA Sparse Aperture Array Station
 
Artist's impression of a SKA Dense Aperture Array Station
  1. SKA-low array: a phased array of simple dipole antennas to cover the frequency range from 50 to 350 MHz. These will be grouped in 40 m diameter stations each containing 256 vertically oriented dual-polarisation dipole elements."Developing technologies for SKA-Low". Retrieved 22 October 2022. Stations will be arranged with 75% located within a 2 km diameter core and the remaining stations situated on three spiral arms, extending out to a radius of 50 km. "Low-Frequency Aperture Array". Retrieved 22 October 2022.
  2. SKA-mid array: an array of several thousand dish antennas (around 200 to be built in Phase 1) to cover the frequency range 350 MHz to 14 GHz. It is expected that the antenna design will follow that of the Allen Telescope Array using an offset Gregorian design having a height of 15 metres and a width of 12 metres.[29]
  3. SKA-survey array: a compact array of parabolic dishes of 12–15 meters diameter each for the medium-frequency range, each equipped with a multi-beam, phased array feed with a large field of view and several receiving systems covering about 350 MHz – 4 GHz. The survey sub-array was removed from the SKA1 specification following a "rebaselining" exercise in 2015.[31]

The area covered by the SKA – extending out to ~3000 km – will comprise three regions:[23][32]

  1. A central region containing about 5 km diameter cores of SKA-mid antennas (South Africa) and SKA-low dipoles (Western Australia). These central regions will contain approximately half of the total collecting area of the SKA arrays.
  2. A mid region extending out to 180 km. This will contain dishes and pairs of SKA-mid and SKA-low stations. In each case they will be randomly placed within the area with the density of dishes and stations falling off towards the outer part of the region.
  3. An outer region from 180 km to 3000 km. This will comprise five spiral arms, along which dishes of SKA-mid, grouped into stations of 20 dishes, will be located. The separation of the stations increases towards the outer ends of the spiral arms.

Costs

The SKA was estimated to cost €1.8 billion in 2014, including €650 million for Phase 1, which represented about 10% of the planned capability of the entire telescope array.[33][34] There have been numerous delays and rising costs over the nearly 30-year history of the intergovernmental project.[16]

As of December 2022, the whole project was reported to be worth around A$3 billion.[21]

Members

In February 2021, the members of the SKAO consortium were:[8][35]

As of December 2022, there were 16 countries involved in the project.[21]

SKA locations

 
An automatic wideband radio scanner system was used to survey the radio frequency noise levels at the various candidate sites in South Africa.

The headquarters of the SKA are located at the University of Manchester's Jodrell Bank Observatory in Cheshire, England,[38] while the telescopes will be installed in Australia and South Africa.[39]

Suitable sites for the SKA telescope must be in unpopulated areas with guaranteed very low levels of man-made radio interference. Four sites were initially proposed in South Africa, Australia, Argentina and China.[40] After considerable site evaluation surveys, Argentina and China were dropped and the other two sites were shortlisted (with New Zealand joining the Australian bid, and 8 other African countries joining the South African bid):[citation needed]

Australia

The core site is located at the Murchison Radio-astronomy Observatory (MRO) at Mileura Station near Boolardy in the state of Western Australia, 315 km (196 mi) north-east of Geraldton[41][42]

South Africa

The core site is located at the Meerkat National Park, at an elevation of about 1000 metres, in the Karoo area of the arid Northern Cape Province. There are also distant stations in Botswana, Ghana, Kenya, Madagascar, Mauritius, Mozambique, Namibia and Zambia.[citation needed]

Precursors, pathfinders and design studies

Many groups are working globally to develop the technology and techniques required for the SKA. Their contributions to the international SKA project are classified as either: Precursors, Pathfinders or Design Studies.

  • Precursor facility: A telescope on one of the two SKA candidate sites, carrying out SKA-related activity.
  • Pathfinder: A telescope or programme carrying out SKA-related technology, science and operations activity.
  • Design Study: A study of one or more major sub-systems of the SKA design, including the construction of prototypes

Precursor facilities

 
CSIRO's ASKAP antennas at the MRO in Western Australia

Australian SKA Pathfinder (ASKAP)

The Australian SKA Pathfinder, or ASKAP, is an A$100 million project which built a telescope array of thirty-six twelve-metre dishes. It employs advanced, innovative technologies such as phased array feeds to give a wide field of view (30 square degrees). ASKAP was built by CSIRO at the Murchison Radio-astronomy Observatory site, located near Boolardy in the mid-west region of Western Australia. All 36 antennas and their technical systems were officially opened in October 2012.[43]

MeerKAT

MeerKAT is a South African project consisting of an array of sixty-four 13.5-metre diameter dishes as a world class science instrument, and was also built to help develop technology for the SKA. KAT-7, a seven-dish engineering and science testbed instrument for MeerKAT, near Carnarvon in the Northern Cape Province of South Africa was commissioned in 2012 and was up and running by May 2018 when all sixty-four 13.5-metre diameter (44.3 feet) dish antennae were completed, with verification tests then underway to ensure the instruments are functioning correctly.[44][needs update] The dishes are equipped with a number of high performance single pixel feeds to cover frequencies from 580 MHz up to 14 GHz.[45]

Murchison Widefield Array (MWA)

The Murchison Widefield Array[46] is a low-frequency radio array operating in the frequency range 80–300 MHz that began upgraded operation in 2018 at the Murchison Radio-astronomy Observatory site in Western Australia.

Hydrogen Epoch of Reionization Array (HERA)

The HERA array is located in the South African Karoo Radio Astronomy Reserve. It is designed to study highly redshifted atomic hydrogen emission emitted prior to, and during the epoch of reionization.

Pathfinders

Allen Telescope Array

The Allen Telescope Array in California uses innovative 6.1m offset Gregorian dishes equipped with wide band single feeds covering frequencies from 500 MHz to 11 GHz. The 42-element array in operation by 2017 is to be extended to 350 elements.[when?] The dish design has explored methods of low-cost manufacture.[57]

LOFAR

LOFAR —a €150 million Dutch-led project— a novel low-frequency phased aperture array spread over northern Europe. An all-electronic telescope covering low frequencies from 10 to 240 MHz, it came online from 2009 to 2011. LOFAR was in 2017 developing crucial processing techniques for the SKA.[58][needs update]

Design studies

Data challenges of SKA pathfinders
Challenge Specifications[59]
budgeted for ASKAP
Requirements for the SKA itself are about 100 times greater.
Large bandwidth from
telescope to processor
~10 Tbit/s from antennas to correlator (< 6 km)
40 Gbit/s from correlator to processor (~ 600 km)
Large processing power 750 Tflop/s expected/budgeted
1 Pflop desired
Power consumption
of processors
1 MW at site
10 MW for processor
Pipeline processing
essential
including data validation, source extraction,
cross-identification, etc.
Storage and duration
of data
70 PB/yr if all products are kept
5 PB/yr with current funding
8 h to write 12 h of data to disk at 10GB/s
Retrieval of data
by users
all data in public domain
accessed using VO tools & services
Data-intensive research data mining, stacking,
cross-correlation, etc.

Data challenges

The amount of sensory data collected poses a huge storage problem, and will require real-time signal processing to reduce the raw data to relevant derived information. In mid 2011 it was estimated the array could generate an exabyte a day of raw data, which could be compressed to around 10 petabytes.[65] China, a founding member of the project, has designed and constructed the first prototype of the regional data processing centre. An Tao, head of the SKA group of the Shanghai Astronomical Observatory, stated, "It will generate data streams far beyond the total Internet traffic worldwide." The Tianhe-2 supercomputer was used in 2016 to train the software. The processing of the project will be performed on Chinese designed and manufactured[66][67] Virtex-7 processors by Xilinx, integrated into platforms by the CSIRO.[68] China has pushed for a unified beam forming design that has led other major countries to drop out of the project.[69] Canada continues to use Altera Stratix-10 processors (by Intel).[70] It is illegal for any US company to export high end Intel FPGAs or any related CSP design details or firmware to China[71] amid the US-embargo[72][73][74][75] which will severely limit cooperation.[citation needed]

Technology Development Project (TDP)

The Technology Development Project, or TDP, is a US$12 million project to specifically develop dish and feed technology for the SKA. It is operated by a consortium of universities[clarification needed] led by Cornell University and was completed in 2012.[76]

Project risks and opposition

Potential risks for priority astronomical sites in South Africa are protected by the Astronomy Geographic Advantage Act of 2007. Put in place to specifically support the South African SKA bid, it outlaws all activities that could endanger scientific operation of core astronomical instruments. In 2010, concerns were raised over the will to enforce this law when Royal Dutch Shell applied to explore the Karoo for shale gas using hydraulic fracturing, an activity that would have the potential to increase radio interference at the site.[77]

An identified remote station location for the southern African array in Mozambique was subject to flooding and excluded from the project,[78] despite the SKA Site Selection Committee technical analysis reporting that all African remote stations could implement flood mitigation solutions.[79]

During 2014, South Africa experienced a month-long strike action by the National Union of Metalworkers (NUMSA), which added to the delays of the installation of dishes. The plan was to have six dishes operational by November, but only one MeerKAT dish stands[when?] on the Karoo site in the Northern Cape.[80]

The largest risk to the overall project is probably its budget, which up until 2014 had not been committed.[81]

There has been opposition to the project from farmers, businesses, and individuals in South Africa since the project's inception.[82] The advocacy group called Save the Karoo has stated that the radio quiet zone would create further unemployment in the South African region where unemployment is already above 32%.[83] Farmers had stated that the agriculture-based economy in the Karoo would collapse if they were forced to sell their land.[84][85]

Key projects

 
Artist's impression of the Offset Gregorian Antennas
 
Schematic of the SKA Central Region

The capabilities of the SKA will be designed to address a wide range of questions in astrophysics, fundamental physics, cosmology and particle astrophysics as well as extending the range of the observable universe. A number of key science projects that have been selected for implementation via the SKA are listed below.

Extreme tests of general relativity

For almost one hundred years, Albert Einstein's general theory of relativity has precisely predicted the outcome of every experiment made to test it. Most of these tests, including the most stringent ones, have been carried out using radio astronomical measurements. By using pulsars as cosmic gravitational wave detectors, or timing pulsars found orbiting black holes, astronomers will be able to examine the limits of general relativity such as the behaviour of spacetime in regions of extremely curved space. The goal is to reveal whether Einstein was correct in his description of space, time and gravity, or whether alternatives to general relativity are needed to account for these phenomena.

Galaxies, cosmology, dark matter and dark energy

The sensitivity of the SKA in the 21 cm hydrogen line will map a billion galaxies out to the edge of the observable Universe. The large-scale structure of the cosmos thus revealed will give constraints to determine the processes resulting in galaxy formation and evolution. Imaging hydrogen throughout the Universe will provide a three-dimensional picture of the first ripples of structure that formed individual galaxies and clusters. This may also allow the measurement of effects hypothetically caused by dark energy and causing the increasing rate of expansion of the universe.[86]

The cosmological measurements enabled by SKA galaxy surveys include testing models of dark energy,[87] gravity,[88] the primordial universe,[89] and fundamental cosmology,[90] and they are summarised in a series of papers available online.[91][92][93][94]

Epoch of re-ionization

The SKA is intended to provide observational data from the so-called Dark Ages (between 300,000 years after the Big Bang when the universe became cool enough for hydrogen to become neutral and decouple from radiation) and the time of First Light (a billion years later when young galaxies are seen to form for the first time and hydrogen becomes ionized again). By observing the primordial distribution of gas, the SKA should be able to see how the Universe gradually lit up as its stars and galaxies formed and then evolved. This period of the Dark Ages, culminating in First Light, is considered the first chapter in the cosmic story of creation, and the resolving power required to see this event is the reason for the Square Kilometre Array's design. To see back to First Light requires a telescope 100 times more powerful than the biggest radio telescopes currently in the world, taking up 1 million square metres of collecting area, or one square kilometre.[95]

Cosmic magnetism

It is still not possible to answer basic questions about the origin and evolution of cosmic magnetic fields, but it is clear that they are an important component of interstellar and intergalactic space. By mapping the effects of magnetism on the radiation from very distant galaxies, the SKA will investigate the form of cosmic magnetism and the role it has played in the evolving Universe.

Search for extraterrestrial life

This key science program, called "Cradle of Life", will focus on three objectives: observing protoplanetary discs in habitable zones, searching for prebiotic chemistry, and contributing to the search for extraterrestrial intelligence (SETI).[96]

See also

References

  1. ^ "SKA Timeline - SKA UK".
  2. ^ Nan, R.; et al. (16 June 2002). "Kilometer-square Area Radio Synthesis Telescope—KARST" (PDF). (PDF) from the original on 5 October 2016.
  3. ^ Su, Yan; et al. (February 2003). "An Optimal Design of Array Configuration of KARST for SKA" (PDF). Acta Astronomica Sinica. 44: 31. Bibcode:2003AcASn..44S..31S. (PDF) from the original on 3 March 2016.
  4. ^ . Archived from the original on 9 September 2007. Retrieved 3 June 2012.
  5. ^ a b "SKA Telescope specifications". SKAO. 28 June 2022. Retrieved 13 September 2022.
  6. ^ "Jodrell Bank chosen as base for largest radio telescope". BBC News. 2 April 2011. from the original on 3 April 2011. Retrieved 2 April 2011.
  7. ^ "First country has approved participation in constructing the largest telescope the world has ever known".
  8. ^ a b . SKA Organisation. Archived from the original on 4 September 2012. Retrieved 21 May 2012.
  9. ^ Carpenter, Avery (22 February 2012). "Oz telescope body under microscope after ex-chairman raises difficult questions". The Star. from the original on 29 March 2014. Retrieved 26 March 2012.
  10. ^ Flitton, Daniel (10 March 2012). "Australia on the outer for largest space telescope". The Age. Retrieved 9 March 2012.
  11. ^ "Further delays signalled in super-telescope plan". The Australian. AFP. 5 April 2012. from the original on 10 April 2012. Retrieved 10 April 2012.
  12. ^ Amos, Jonathan (25 May 2012). "Africa and Australasia to share Square Kilometre Array". BBC. from the original on 20 August 2018. Retrieved 20 June 2018.
  13. ^ "Australia - SKA Telescope". SKA. 2014. from the original on 15 June 2014. Retrieved 22 May 2014.
  14. ^ "The SKA Organisation". SKA Organisation. from the original on 23 February 2015. Retrieved 28 October 2014.
  15. ^ UK to be giant telescope's HQ 2 October 2018 at the Wayback Machine. Jonathan Amos, BBC News. 29 April 2015.
  16. ^ a b c d "New Zealand pulls out of the Square Kilometre Array after benefits questioned". Physics World. IOP Publishing. 4 July 2019. from the original on 4 July 2019. Retrieved 5 July 2019.
  17. ^ Technical information: the operational model (SKA, 2 August 2018)
  18. ^ "Founding Members Sign SKA Observatory Treaty" (Press release). Square Kilometre Array Organisation. 12 March 2019. from the original on 30 March 2019. Retrieved 14 March 2019.
  19. ^ "Precursors and Pathfinders". Square Kilometre Array. Retrieved 22 November 2020.
  20. ^ Amos, Jonathan (5 December 2022). "SKA: Construction to begin on world's biggest telescope". BBC News. Retrieved 5 December 2022.
  21. ^ a b c Clifford, Rachael (5 December 2022). "Square Kilometre Array Telescope construction begins in West Australian outback". ABC News. Australian Broadcasting Corporation. Retrieved 6 December 2022.
  22. ^ "Participating countries". SKA Organisation.
  23. ^ a b "The SKA Layout". SKA Telescope. from the original on 21 September 2015. Retrieved 5 October 2015.
  24. ^ "The World's Largest Radio Telescope Takes A Major Step Towards Construction". SKA Science. 9 March 2015. from the original on 8 January 2016. Retrieved 5 October 2015.
  25. ^ "SKA Aperture Arrays". SKA Telescope. from the original on 21 September 2015. Retrieved 5 October 2015.
  26. ^ "How will SKA1 be better than today's best radio telescopes? [image]". SKA Telescope. from the original on 4 March 2016. Retrieved 5 October 2015.
  27. ^ . SKA Organisation. Archived from the original on 28 July 2012. Retrieved 26 May 2012.
  28. ^ Spie (2014). "Philip Diamond plenary: The Square Kilometre Array: A Physics Machine for the 21st Century". SPIE Newsroom. doi:10.1117/2.3201407.12.
  29. ^ a b "SKA1". SKA Science. from the original on 8 January 2016. Retrieved 5 October 2015.
  30. ^ "SKA2". SKA Science. from the original on 8 January 2016. Retrieved 5 October 2015.
  31. ^ McPherson, A. "REPORT AND OPTIONS FOR RE-BASELINING OF SKA-1" (PDF). SKA Telescope. SKAO. (PDF) from the original on 6 October 2015. Retrieved 5 October 2015.
  32. ^ Dewdney, P. E. "SKA Baseline Design" (PDF). SKA Telescope. (PDF) from the original on 2 June 2016. Retrieved 5 October 2015.
  33. ^ . SKA Organisation. Archived from the original on 5 August 2012. Retrieved 28 October 2014.
  34. ^ . SKA Africa. Archived from the original on 26 June 2014. Retrieved 28 October 2014.
  35. ^ "Germany joins the SKA Organisation". 20 December 2012. Archived from the original on 6 January 2013.
  36. ^ "India's National Centre for Radio Astrophysics becomes the 11th full SKA Organisation member". SKA Organisation. 11 August 2014. from the original on 8 January 2016. Retrieved 11 August 2014.
  37. ^ "Spain joins the SKA Organisation - SKA Telescope". SKA Telescope. 19 June 2018. from the original on 19 June 2018. Retrieved 19 June 2018.
  38. ^ "Construction starts on SKA Organisation headquarters". SKA Organisation. 18 April 2012. from the original on 19 May 2012. Retrieved 26 May 2012.
  39. ^ Co-hosting the SKA 11 April 2018 at the Wayback Machine. SKA
  40. ^ Koenig, Robert (18 August 2006). "RADIO ASTRONOMY: Candidate Sites for World's Largest Telescope Face First Big Hurdle". Science. AAAS. 313 (5789): 910–912. doi:10.1126/science.313.5789.910. PMID 16917038. S2CID 42969567.
  41. ^ Amos, J. Nations vie for giant telescope 29 September 2006 at the Wayback Machine, BBC News, 28 September 2006.
  42. ^ Science Network WA, 16 February 2007 27 April 2014 at the Wayback Machine
  43. ^ Osborne, Darren (5 October 2012). "Outback observatory open for business - ABC News (Australian Broadcasting Corporation)". ABC News. Abc.net.au. from the original on 7 October 2012. Retrieved 7 October 2012.
  44. ^ Tshangela, Lebo (16 May 2018). "MeerKAT telescope is complete". SABC News. from the original on 19 May 2018. Retrieved 25 May 2018.
  45. ^ "SKA SA – Square Kilometre Array radio telescope (SKA) South Africa". from the original on 14 January 2017. Retrieved 1 February 2017.
  46. ^ "MWA - Home". www.mwatelescope.org. from the original on 31 January 2017. Retrieved 1 February 2017.
  47. ^ Tom Osterloo; Marc Verheijen & Wim van Cappellen (10–14 June 2010). The latest on Apertif (PDF). ISKAF2010 Science Meeting. arXiv:1007.5141. Bibcode:2010iska.meetE..43O. (PDF) from the original on 6 December 2014. Retrieved 15 April 2013.
  48. ^ Aerospace-Technology.com 15 June 2012 at the Wayback Machine
  49. ^ "Electronic Multi Beam Radio Astronomy ConcEpt". from the original on 12 May 2016. Retrieved 1 February 2017.
  50. ^ Beswick, Rob. "e-MERLIN / VLBI National Radio Astronomy Facility - e-MERLIN". from the original on 1 January 2017. Retrieved 1 February 2017.
  51. ^ "Expanded VLA". from the original on 22 October 2016. Retrieved 1 February 2017.
  52. ^ "Long Wavelength Array". from the original on 17 November 2016. Retrieved 1 February 2017.
  53. ^ Gaensler, Bryan. . Archived from the original on 18 February 2017. Retrieved 1 February 2017.
  54. ^ "NENUFAR website". from the original on 27 May 2016. Retrieved 1 February 2017.
  55. ^ "French NenuFAR telescope granted SKA Pathfinder status - SKA Telescope". 5 September 2014. from the original on 8 January 2016. Retrieved 1 February 2017.
  56. ^ "India's GMRT telescope granted SKA pathfinder status". SKA Telescope Public Website. 6 February 2015. Retrieved 3 January 2020.
  57. ^ "The Allen Telescope Array - SETI Institute". from the original on 4 July 2011. Retrieved 1 February 2017.
  58. ^ "LOFAR - LOFAR". from the original on 31 January 2017. Retrieved 1 February 2017.
  59. ^ Ray P. Norris (7 January 2011). 2010 Sixth IEEE International Conference on e-Science Workshops: Data Challenges for Next-generation Radio Telescopes. p. 21. arXiv:1101.1355. doi:10.1109/eScienceW.2010.13. ISBN 978-1-4244-8988-6. S2CID 34645164.
  60. ^ "The Square Kilometre Array - SKA-AAVP". from the original on 2 February 2017. Retrieved 1 February 2017.
  61. ^ "Home - SKA". from the original on 23 February 2017. Retrieved 1 February 2017.
  62. ^ "PrepSKA". from the original on 28 April 2016. Retrieved 1 February 2017.
  63. ^ "SKADS Technology". SKADS. from the original on 3 March 2016. Retrieved 23 May 2015.
  64. ^ . ASTRON. Archived from the original on 26 December 2017. Retrieved 21 May 2015.
  65. ^ "SKA telescope to generate more data than entire Internet in 2020". Computerworld. IDG Communications. 7 July 2011. from the original on 2 April 2015. Retrieved 2 April 2015.
  66. ^ "Taiwan's TSMC says chip shipments to Huawei not affected by U.S. ban". Reuters. 23 May 2019. China's Huawei Technologies Co Ltd are not affected by U.S. action aimed at curbing the telecom equipment maker's access to American technology.
  67. ^ "Xilinx Powers Huawei FPGA Accelerated Cloud Server". 6 September 2017. Huawei has chosen high performance Virtex® UltraScale+™ FPGAs to power their first FP1 instance as part of a new accelerated cloud service.
  68. ^ Kooistra, E.; Hampson, G. A.; Gunst, A. W.; Bunton, J. D.; Schoonderbeek, G. W.; Brown, A. (2017). "Gemini FPGA Hardware Platform for the SKA Low Correlator and Beamformer". 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). pp. 1–4. doi:10.23919/URSIGASS.2017.8104976. ISBN 978-90-825987-0-4. S2CID 35235341.
  69. ^ John Bunton (10 February 2017). "The SKA LOW correlator design challenge" (PDF). CSIRO. p. 30. (PDF) from the original on 22 January 2019. Retrieved 20 August 2019.
  70. ^ McNamara, Dan (15 May 2018). "Intel FPGAs: Accelerating the Future". Intel. Canada's NRC is helping to build the next-generation Square Kilometre Array (SKA) radio telescope...NRC's design embeds Intel® Stratix® 10 SX FPGAs
  71. ^ "Electronic Code of Federal Regulations: PART 121—THE UNITED STATES MUNITIONS LIST". 22 August 2019. 16) Hybrid (combined analogue/digital) computers specially designed for modeling, simulation, or design integration of systems enumerated in paragraphs (a)(1), (d)(1), (d)(2), (h)(1), (h)(2), (h)(4), (h)(8), and (h)(9) of USML Category IV or paragraphs (a)(5), (a)(6), or (a)(13) of USML Category VIII (MT if for rockets, SLVs, missiles, drones, or UAVs capable of delivering a payload of at least 500 kg to a range of at least 300 km or their subsystems. See note 2 to paragraph (a)(3)(xxix) of this category);""Analog-to-digital converters, usable in the system in Item 1, having either of the following characteristics: (1) Analog-to-digital converter "microcircuits", which are "radiation hardened" or have all of the following characteristics: (i) Having a resolution of 8 bits or more;" "Item 1—Category I Complete rocket systems (including ballistic missile systems, space launch vehicles, and sounding rockets (see §121.1, Cat. IV(a) and (b))) and unmanned air vehicle systems (including cruise missile systems, see §121.1, Cat. VIII (a), target drones and reconnaissance drones (see §121.1, Cat. VIII (a))) capable of delivering at least a 500 kg payload to a range of at least 300 km.
  72. ^ "Overview of Cryptography and the Defence Trade Controls Act 2012". Department of Defense(Australia). Retrieved 26 August 2019.
  73. ^ "Australian Export Controls and ICT". Department of Defense(Australia). Retrieved 26 August 2019.
  74. ^ "Politics, not security, behind Huawei, ZTE allegations, say analysts". 8 October 2012.
  75. ^ Kan, Michael (9 April 2015). "U.S. stops Intel from selling Xeon chips to Chinese supercomputer projects". Computerworld.
  76. ^ Chatterjee, Shami. "Welcome to the SKA TDP Website". from the original on 2 October 2016. Retrieved 1 February 2017.
  77. ^ Nordling, Linda (22 March 2011). "Mining plans pose threat to South African astronomy site". Nature. from the original on 5 November 2012. Retrieved 27 June 2011.
  78. ^ "Mozambique: Exact Location of SKA Telescope Sought". AllAfrica. 26 June 2012. from the original on 23 August 2012. Retrieved 12 July 2012.
  79. ^ "Report and Recommendation of the SKA Site Advisory Committee (SSAC)" (PDF). (PDF) from the original on 8 January 2016. Retrieved 12 July 2012.
  80. ^ Butoi, Mario (7 November 2014). "October 2014 - Strike delays SKA Dish Installations". Mail & Guardian. from the original on 1 November 2014. Retrieved 1 November 2014.
  81. ^ "SKA Project". SKA Organisation. from the original on 1 July 2014. Retrieved 28 October 2014.
  82. ^ "Astronomers and sheep farmers butt heads over the Square Kilometer Array". The Economist. 5 January 2017. from the original on 31 March 2017. Retrieved 30 March 2017.
  83. ^ "Save the Karoo". savethekaroo.com/. from the original on 31 March 2017. Retrieved 30 March 2017.
  84. ^ Sarah, Wild (22 June 2016). "In South Africa, Opposition Flares against Giant SKA Radio Telescope". Scientific American. from the original on 4 December 2017. Retrieved 19 September 2017.
  85. ^ Wild, Sarah (23 June 2016). "Giant SKA telescope rattles South African community". Nature. 534 (7608): 444–446. Bibcode:2016Natur.534..444W. doi:10.1038/534444a. PMID 27337317. S2CID 4451534.
  86. ^ "Galaxy Evolution, Cosmology And Dark Energy – Further Information". Skatelescope.org. 25 May 2012. Archived from the original on 9 September 2012.
  87. ^ Philip Bull; Stefano Camera; Alvise Raccanelli; Chris Blake; Pedro G. Ferreira; Mario G. Santos; Dominik J. Schwarz (2015). "Measuring baryon acoustic oscillations with future SKA surveys". PoS AASKA () 024. 14 (2015): 24. arXiv:1501.04088. Bibcode:2015aska.confE..24B. doi:10.22323/1.215.0024. S2CID 55195638.
  88. ^ Alvise Raccanelli; Philip Bull; Stefano Camera; David Bacon; Chris Blake; Olivier Dore; Pedro Ferreira; Roy Maartens; Mario Santos; Matteo Viel; Gong-bo Zhao (2015). "Measuring redshift-space distortions with future SKA surveys". Advancing Astrophysics with the Square Kilometre Array (Aaska14): 31. arXiv:1501.03821. Bibcode:2015aska.confE..31R. doi:10.22323/1.215.0031. hdl:2318/1790152. S2CID 54072202.
  89. ^ S. Camera; A. Raccanelli; P. Bull; D. Bertacca; X. Chen; P.G. Ferreira; M. Kunz; R. Maartens; Y. Mao; M.G. Santos; P.R. Shapiro; M. Viel; Y. Xu (2015). "Cosmology on the Largest Scales with the SKA". Proceedings of Advancing Astrophysics with the Square Kilometre Array — PoS(AASKA14). p. 025. arXiv:1501.03851. doi:10.22323/1.215.0025. S2CID 59136297.
  90. ^ Dominik J. Schwarz; David Bacon; Song Chen; Chris Clarkson; Dragan Huterer; Martin Kunz; Roy Maartens; Alvise Raccanelli; Matthias Rubart; Jean-Luc Starck (2015). "Testing foundations of modern cosmology with SKA all-sky surveys". Advancing Astrophysics with the Square Kilometre Array (Aaska14): 32. arXiv:1501.03820. Bibcode:2015aska.confE..32S. doi:10.22323/1.215.0032. S2CID 17895596.
  91. ^ Roy Maartens; Filipe B. Abdalla; Matt Jarvis; Mario G. Santos (2015). "Cosmology with the SKA -- overview". arXiv:1501.04076 [astro-ph.CO].
  92. ^ Mario G. Santos; Philip Bull; David Alonso; Stefano Camera; Pedro G. Ferreira; Gianni Bernardi; Roy Maartens; Matteo Viel; Francisco Villaescusa-Navarro; Filipe B. Abdalla; Matt Jarvis; R. Benton Metcalf; A. Pourtsidou; Laura Wolz (2015). "Cosmology with a SKA HI intensity mapping survey". PoS AASKA () 019. 14 (2015): 19. arXiv:1501.03989. Bibcode:2015aska.confE..19S. doi:10.22323/1.215.0019. S2CID 55246221.
  93. ^ Filipe B. Abdalla; Philip Bull; Stefano Camera; Aurélien Benoit-Lévy; Benjamin Joachimi; Donnacha Kirk; Hans-Rainer Klöckner; Roy Maartens; Alvise Raccanelli; Mario G. Santos; Gong-Bo Zhao (2015). "Cosmology from HI galaxy surveys with the SKA". Advancing Astrophysics with the Square Kilometre Array (Aaska14): 17. arXiv:1501.04035. Bibcode:2015aska.confE..17A. doi:10.22323/1.215.0017. S2CID 29623186.
  94. ^ Matt J. Jarvis; David Bacon; Chris Blake; Michael L. Brown; Sam N. Lindsay; Alvise Raccanelli; Mario Santos; Dominik Schwarz (2015). "Cosmology with SKA Radio Continuum Surveys". Advancing Astrophysics with the Square Kilometre Array (Aaska14): 18. arXiv:1501.03825. Bibcode:2015aska.confE..18J. doi:10.22323/1.215.0018. S2CID 55630081.
  95. ^ RiAus 2011, Radio Astronomy: Something Kinda Awesome, (SKA), viewed 1st October 2014, http://vimeo.com/23460933/ 11 December 2014 at the Wayback Machine
  96. ^ The Square Kilometre Array Project Description for Astro 2010 24 July 2018 at the Wayback Machine -Response to Program Prioritization Panels. James Cordes. 1 April 2009.
  97. ^ a b c d e SKA - Cradle Of Life 15 March 2015 at the Wayback Machine. T.J.W. Lazio, J.C. Tarter, D.J. Wilner. 2004.
  98. ^ Curtin Institute of Radio Astronomy 26 February 2015 at the Wayback Machine - Cradle of Life. April 2015.

External links

International

  • SKA website
  • SKA on Scholarpedia

Australia/NZ

  • SKA Australia web site
  • , Cosmos magazine online, January 2012
  • "The Square Kilometre Array Category", The Conversation, 2011/12
  • . CSIRO. 10 April 2007. Archived from the original (PDF) on 12 May 2012. Retrieved 19 March 2007.
  • Boolardy Station and the Murchison Radio-Astronomy Observatory (MRO) – University of Western Australia
  • A Trojan Affair - Novel about the SKA

Canada

    Europe

    South Africa

    • SKA South Africa web site

    Other

    • Merrifield, Michael; Crowther, Paul. "Where to Build The Square Kilometre Array?". Deep Space Videos. Brady Haran.
    •   Media related to Square Kilometre Array at Wikimedia Commons

    square, kilometre, array, intergovernmental, international, radio, telescope, project, being, built, australia, frequency, south, africa, frequency, combining, infrastructure, observatory, skao, headquarters, located, jodrell, bank, observatory, united, kingdo. The Square Kilometre Array SKA is an intergovernmental international radio telescope project being built in Australia low frequency and South Africa mid frequency The combining infrastructure the Square Kilometre Array Observatory SKAO and headquarters are located at the Jodrell Bank Observatory in the United Kingdom The SKA cores are being built in the southern hemisphere where the view of the Milky Way galaxy is the best and radio interference at its least Square Kilometre ArrayArtist s impressionAlternative namesSKALocation s Meerkat National Park Murchison Radio astronomy Observatory South AfricaCoordinates30 43 16 S 21 24 40 E 30 72113 S 21 4111278 E 30 72113 21 4111278 Coordinates 30 43 16 S 21 24 40 E 30 72113 S 21 4111278 E 30 72113 21 4111278Built2018 2024 2018 2024 First light2027 projected Telescope stylephased array Collecting area1 km2 11 000 000 sq ft Websitewww wbr skao wbr int Related media on Commons edit on Wikidata Conceived in the 1990s and further developed and designed by the late 2010s when completed sometime in the 2020s it will have a total collecting area of approximately one square kilometre It will operate over a wide range of frequencies and its size will make it 50 times more sensitive than any other radio instrument If built as planned it should be able to survey the sky more than ten thousand times faster than before With receiving stations extending out to a distance of at least 3 000 km 1 900 mi from a concentrated central core it will exploit radio astronomy s ability to provide the highest resolution images in all astronomy The SKAO consortium was founded in Rome in March 2019 by seven initial member countries with several others subsequently joining as of 2021 update there were 14 members of the consortium This international organisation is tasked with building and operating the facility The project has two phases of construction the current SKA1 commonly just called SKA and a possible later significantly enlarged phase sometimes called SKA2 The construction phase of the project began on 5 December 2022 in both South Africa and Australia Contents 1 History 2 Description 2 1 Costs 2 2 Members 3 SKA locations 3 1 Australia 3 2 South Africa 4 Precursors pathfinders and design studies 4 1 Precursor facilities 4 1 1 Australian SKA Pathfinder ASKAP 4 1 2 MeerKAT 4 1 3 Murchison Widefield Array MWA 4 1 4 Hydrogen Epoch of Reionization Array HERA 4 2 Pathfinders 4 2 1 Allen Telescope Array 4 2 2 LOFAR 4 3 Design studies 4 3 1 Data challenges 4 3 2 Technology Development Project TDP 5 Project risks and opposition 6 Key projects 6 1 Extreme tests of general relativity 6 2 Galaxies cosmology dark matter and dark energy 6 3 Epoch of re ionization 6 4 Cosmic magnetism 6 5 Search for extraterrestrial life 7 See also 8 References 9 External linksHistory EditThe Square Kilometre Array SKA was originally conceived in 1991 with an international working group set up in 1993 This led to the signing of the first Memorandum of Agreement in 2000 1 In the early days of planning China vied to host the SKA proposing to build several large dishes in the natural limestone depressions karst that dimple its southwestern provinces China called their proposal Kilometer square Area Radio Synthesis Telescope KARST 2 3 Australia s first radio quiet zone was established by the Australian Communications and Media Authority ACMA on 11 April 2005 specifically to protect and maintain the current radio quietness of the main Australian SKA site at the Murchison Radio astronomy Observatory 4 The project has two phases of construction the current SKA1 commonly just called SKA and a possible later significantly enlarged phase sometimes called SKA2 5 PrepSKA commenced in 2008 leading to a full SKA design in 2012 Construction of Phase 1 was scheduled to take place from 2018 to 2020 needs update providing an operational array with Phase 2 completion in 2025 citation needed The SKA headquarters at Jodrell Bank with the Lovell Telescope in the background In April 2011 Jodrell Bank Observatory of the University of Manchester in Cheshire England was announced as the location for the project headquarters 6 In November 2011 the SKA Organisation was formed as an intergovernmental organisation 7 and the project moved from a collaboration to an independent not for profit company 8 In February 2012 a former Australian SKA Committee clarification needed chairman raised concerns with South African media about risks at the Australian candidate site particularly in terms of cost mining interference and land agreements SKA Australia stated that all points had been addressed in the site bid 9 In March 2012 it was reported that the SKA Site Advisory Committee had made a confidential report in February that the South African bid was stronger 10 However a scientific working group was set up to explore possible implementation options of the two candidate host regions 11 and on 25 May 2012 it was announced that it had been determined that the SKA would be split over the South African and African sites and the Australia and New Zealand sites 12 While New Zealand remained a member of the SKA Organisation in 2014 it appeared that no SKA infrastructure was likely to be located in New Zealand 13 In April 2015 the headquarters of the SKA project were chosen to be located at the Jodrell Bank Observatory in the UK 14 15 officially opened in July 2019 citation needed Initial construction contracts began in 2018 Scientific observations with the fully completed array are not expected any earlier than 2027 16 17 On 12 March 2019 the Square Kilometre Array Observatory SKAO was founded in Rome by seven initial member countries Australia China Italy the Netherlands Portugal South Africa and the United Kingdom India and Sweden are expected to follow shortly and eight other countries have expressed interest to join in the future This international organisation was tasked with building and operating the facility with the first construction contracts expected to be awarded in late 2020 needs update 18 By mid 2019 the start of scientific observations were expected to start no earlier than 2027 16 In July 2019 New Zealand withdrew from the project 16 As of November 2020 update four precursor facilities were already operating MeerKAT and the Hydrogen Epoch of Reionization Array HERA in South Africa and the Australian SKA Pathfinder ASKAP and Murchison Widefield Array MWA in Western Australia 19 The construction phase of the project began on 5 December 2022 in Australia and South Africa with delegations from each of the eight countries leading the project attending ceremonies to celebrate the event 20 The Australian part of the project comprises 100 000 antennas built across 74 km 46 mi also in the Murchison region in the traditional lands of the Wajarri Aboriginal people Bulldozers were expected to start working on the site in early 2023 with the completion date estimated as 2028 The site has been named Inyarrimanha Ilgari Bundara which means sharing sky and stars in the Wajarri language 21 Description Edit Countries that participated in the preparatory phase of SKA 22 The SKA will combine the signals received from thousands of small antennas spread over a distance of several thousand kilometres to simulate a single giant radio telescope capable of extremely high sensitivity and angular resolution using a technique called aperture synthesis 23 Some of the sub arrays of the SKA will also have a very large field of view FOV making it possible to survey very large areas of sky at once 24 One innovative development is the use of focal plane arrays using phased array technology to provide multiple FOVs 25 This will greatly increase the survey speed of the SKA and enable several users to observe different pieces of the sky simultaneously which is useful for e g monitoring multiple pulsars The combination of a very large FOV with high sensitivity means that the SKA will be able to compile extremely large surveys of the sky considerably faster than any other telescope 26 The combined SKA will provide a wide range of coverage with Australia s Murchison Widefield Array providing low frequency converage and South Africa s MeerKAT providing mid frequency coverage 27 28 5 There will be continuous frequency coverage from 50 MHz to 14 GHz in the first two phases of its construction Phase 1 Providing 10 of the total collecting area at low and mid frequencies by 2023 SKA1 29 Phase 2 Completion of the full array SKA2 at low and mid frequencies by 2030 30 The frequency range from 50 MHz to 14 GHz spanning more than two decades cannot be realised using one design of antenna and so the SKA will comprise separate sub arrays of different types of antenna elements that will make up the SKA low SKA mid and survey arrays Artist s impression of a Low Band SKA Sparse Aperture Array Station Artist s impression of a SKA Dense Aperture Array Station SKA low array a phased array of simple dipole antennas to cover the frequency range from 50 to 350 MHz These will be grouped in 40 m diameter stations each containing 256 vertically oriented dual polarisation dipole elements Developing technologies for SKA Low Retrieved 22 October 2022 Stations will be arranged with 75 located within a 2 km diameter core and the remaining stations situated on three spiral arms extending out to a radius of 50 km Low Frequency Aperture Array Retrieved 22 October 2022 SKA mid array an array of several thousand dish antennas around 200 to be built in Phase 1 to cover the frequency range 350 MHz to 14 GHz It is expected that the antenna design will follow that of the Allen Telescope Array using an offset Gregorian design having a height of 15 metres and a width of 12 metres 29 SKA survey array a compact array of parabolic dishes of 12 15 meters diameter each for the medium frequency range each equipped with a multi beam phased array feed with a large field of view and several receiving systems covering about 350 MHz 4 GHz The survey sub array was removed from the SKA1 specification following a rebaselining exercise in 2015 31 The area covered by the SKA extending out to 3000 km will comprise three regions 23 32 A central region containing about 5 km diameter cores of SKA mid antennas South Africa and SKA low dipoles Western Australia These central regions will contain approximately half of the total collecting area of the SKA arrays A mid region extending out to 180 km This will contain dishes and pairs of SKA mid and SKA low stations In each case they will be randomly placed within the area with the density of dishes and stations falling off towards the outer part of the region An outer region from 180 km to 3000 km This will comprise five spiral arms along which dishes of SKA mid grouped into stations of 20 dishes will be located The separation of the stations increases towards the outer ends of the spiral arms Costs Edit The SKA was estimated to cost 1 8 billion in 2014 including 650 million for Phase 1 which represented about 10 of the planned capability of the entire telescope array 33 34 There have been numerous delays and rising costs over the nearly 30 year history of the intergovernmental project 16 As of December 2022 update the whole project was reported to be worth around A 3 billion 21 Members Edit In February 2021 the members of the SKAO consortium were 8 35 Australia Department of Industry and Science Canada National Research Council China National Astronomical Observatories of the Chinese Academy of Sciences France French National Centre for Scientific Research Germany Max Planck Gesellschaft India National Centre for Radio Astrophysics 36 Italy National Institute for Astrophysics Portugal Portugal Space South Africa National Research Foundation Spain Institute of Astrophysics of Andalusia 37 Sweden Onsala Space Observatory Switzerland Ecole Polytechnique Federale de Lausanne The Netherlands Netherlands Organisation for Scientific Research United Kingdom Science and Technology Facilities CouncilAs of December 2022 update there were 16 countries involved in the project 21 SKA locations Edit An automatic wideband radio scanner system was used to survey the radio frequency noise levels at the various candidate sites in South Africa The headquarters of the SKA are located at the University of Manchester s Jodrell Bank Observatory in Cheshire England 38 while the telescopes will be installed in Australia and South Africa 39 Suitable sites for the SKA telescope must be in unpopulated areas with guaranteed very low levels of man made radio interference Four sites were initially proposed in South Africa Australia Argentina and China 40 After considerable site evaluation surveys Argentina and China were dropped and the other two sites were shortlisted with New Zealand joining the Australian bid and 8 other African countries joining the South African bid citation needed Australia Edit The core site is located at the Murchison Radio astronomy Observatory MRO at Mileura Station near Boolardy in the state of Western Australia 315 km 196 mi north east of Geraldton 41 42 South Africa Edit The core site is located at the Meerkat National Park at an elevation of about 1000 metres in the Karoo area of the arid Northern Cape Province There are also distant stations in Botswana Ghana Kenya Madagascar Mauritius Mozambique Namibia and Zambia citation needed Precursors pathfinders and design studies EditMany groups are working globally to develop the technology and techniques required for the SKA Their contributions to the international SKA project are classified as either Precursors Pathfinders or Design Studies Precursor facility A telescope on one of the two SKA candidate sites carrying out SKA related activity Pathfinder A telescope or programme carrying out SKA related technology science and operations activity Design Study A study of one or more major sub systems of the SKA design including the construction of prototypesPrecursor facilities Edit CSIRO s ASKAP antennas at the MRO in Western Australia Australian SKA Pathfinder ASKAP Edit Main article Australian Square Kilometre Array Pathfinder The Australian SKA Pathfinder or ASKAP is an A 100 million project which built a telescope array of thirty six twelve metre dishes It employs advanced innovative technologies such as phased array feeds to give a wide field of view 30 square degrees ASKAP was built by CSIRO at the Murchison Radio astronomy Observatory site located near Boolardy in the mid west region of Western Australia All 36 antennas and their technical systems were officially opened in October 2012 43 MeerKAT Edit Main article MeerKAT MeerKAT is a South African project consisting of an array of sixty four 13 5 metre diameter dishes as a world class science instrument and was also built to help develop technology for the SKA KAT 7 a seven dish engineering and science testbed instrument for MeerKAT near Carnarvon in the Northern Cape Province of South Africa was commissioned in 2012 and was up and running by May 2018 when all sixty four 13 5 metre diameter 44 3 feet dish antennae were completed with verification tests then underway to ensure the instruments are functioning correctly 44 needs update The dishes are equipped with a number of high performance single pixel feeds to cover frequencies from 580 MHz up to 14 GHz 45 Murchison Widefield Array MWA Edit Main article Murchison Widefield Array The Murchison Widefield Array 46 is a low frequency radio array operating in the frequency range 80 300 MHz that began upgraded operation in 2018 at the Murchison Radio astronomy Observatory site in Western Australia Hydrogen Epoch of Reionization Array HERA Edit Main article Hydrogen Epoch of Reionization Array The HERA array is located in the South African Karoo Radio Astronomy Reserve It is designed to study highly redshifted atomic hydrogen emission emitted prior to and during the epoch of reionization Pathfinders Edit APERture Tile in Focus Apertif 47 Very Long Baseline Interferometry 48 unreliable source Electronic MultiBeam Radio Astronomy ConcEpt 49 e MERLIN 50 Expanded Very Large Array 51 Long Wavelength Array 52 SKA Molonglo Prototype SKAMP 53 NenuFAR 54 55 Giant Metrewave Radio Telescope 56 Allen Telescope Array Edit Main article Allen Telescope Array The Allen Telescope Array in California uses innovative 6 1m offset Gregorian dishes equipped with wide band single feeds covering frequencies from 500 MHz to 11 GHz The 42 element array in operation by 2017 is to be extended to 350 elements when The dish design has explored methods of low cost manufacture 57 LOFAR Edit Main article Low Frequency Array LOFAR LOFAR a 150 million Dutch led project a novel low frequency phased aperture array spread over northern Europe An all electronic telescope covering low frequencies from 10 to 240 MHz it came online from 2009 to 2011 LOFAR was in 2017 developing crucial processing techniques for the SKA 58 needs update Design studies Edit Data challenges of SKA pathfindersChallenge Specifications 59 budgeted for ASKAPRequirements for the SKA itself are about 100 times greater Large bandwidth fromtelescope to processor 10 Tbit s from antennas to correlator lt 6 km 40 Gbit s from correlator to processor 600 km Large processing power 750 Tflop s expected budgeted1 Pflop desiredPower consumptionof processors 1 MW at site10 MW for processorPipeline processingessential including data validation source extraction cross identification etc Storage and durationof data 70 PB yr if all products are kept5 PB yr with current funding8 h to write 12 h of data to disk at 10GB sRetrieval of databy users all data in public domainaccessed using VO tools amp servicesData intensive research data mining stacking cross correlation etc Aperture Array Verification Programme 60 Canadian SKA Program 61 Preparatory Study for the SKA 62 Square Kilometre Array Design Studies SKADS 63 Electronic MultiBeam Radio Astronomy ConcEpt EMBRACE 64 BESTData challenges Edit The amount of sensory data collected poses a huge storage problem and will require real time signal processing to reduce the raw data to relevant derived information In mid 2011 it was estimated the array could generate an exabyte a day of raw data which could be compressed to around 10 petabytes 65 China a founding member of the project has designed and constructed the first prototype of the regional data processing centre An Tao head of the SKA group of the Shanghai Astronomical Observatory stated It will generate data streams far beyond the total Internet traffic worldwide The Tianhe 2 supercomputer was used in 2016 to train the software The processing of the project will be performed on Chinese designed and manufactured 66 67 Virtex 7 processors by Xilinx integrated into platforms by the CSIRO 68 China has pushed for a unified beam forming design that has led other major countries to drop out of the project 69 Canada continues to use Altera Stratix 10 processors by Intel 70 It is illegal for any US company to export high end Intel FPGAs or any related CSP design details or firmware to China 71 amid the US embargo 72 73 74 75 which will severely limit cooperation citation needed Technology Development Project TDP Edit The Technology Development Project or TDP is a US 12 million project to specifically develop dish and feed technology for the SKA It is operated by a consortium of universities clarification needed led by Cornell University and was completed in 2012 76 Project risks and opposition EditPotential risks for priority astronomical sites in South Africa are protected by the Astronomy Geographic Advantage Act of 2007 Put in place to specifically support the South African SKA bid it outlaws all activities that could endanger scientific operation of core astronomical instruments In 2010 concerns were raised over the will to enforce this law when Royal Dutch Shell applied to explore the Karoo for shale gas using hydraulic fracturing an activity that would have the potential to increase radio interference at the site 77 An identified remote station location for the southern African array in Mozambique was subject to flooding and excluded from the project 78 despite the SKA Site Selection Committee technical analysis reporting that all African remote stations could implement flood mitigation solutions 79 During 2014 South Africa experienced a month long strike action by the National Union of Metalworkers NUMSA which added to the delays of the installation of dishes The plan was to have six dishes operational by November but only one MeerKAT dish stands when on the Karoo site in the Northern Cape 80 The largest risk to the overall project is probably its budget which up until 2014 had not been committed 81 There has been opposition to the project from farmers businesses and individuals in South Africa since the project s inception 82 The advocacy group called Save the Karoo has stated that the radio quiet zone would create further unemployment in the South African region where unemployment is already above 32 83 Farmers had stated that the agriculture based economy in the Karoo would collapse if they were forced to sell their land 84 85 Key projects EditThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed May 2012 Learn how and when to remove this template message Artist s impression of the Offset Gregorian Antennas Schematic of the SKA Central Region The capabilities of the SKA will be designed to address a wide range of questions in astrophysics fundamental physics cosmology and particle astrophysics as well as extending the range of the observable universe A number of key science projects that have been selected for implementation via the SKA are listed below Extreme tests of general relativity Edit Main article Tests of general relativity For almost one hundred years Albert Einstein s general theory of relativity has precisely predicted the outcome of every experiment made to test it Most of these tests including the most stringent ones have been carried out using radio astronomical measurements By using pulsars as cosmic gravitational wave detectors or timing pulsars found orbiting black holes astronomers will be able to examine the limits of general relativity such as the behaviour of spacetime in regions of extremely curved space The goal is to reveal whether Einstein was correct in his description of space time and gravity or whether alternatives to general relativity are needed to account for these phenomena Galaxies cosmology dark matter and dark energy Edit Main articles Galaxy formation and evolution and Dark matter The sensitivity of the SKA in the 21 cm hydrogen line will map a billion galaxies out to the edge of the observable Universe The large scale structure of the cosmos thus revealed will give constraints to determine the processes resulting in galaxy formation and evolution Imaging hydrogen throughout the Universe will provide a three dimensional picture of the first ripples of structure that formed individual galaxies and clusters This may also allow the measurement of effects hypothetically caused by dark energy and causing the increasing rate of expansion of the universe 86 The cosmological measurements enabled by SKA galaxy surveys include testing models of dark energy 87 gravity 88 the primordial universe 89 and fundamental cosmology 90 and they are summarised in a series of papers available online 91 92 93 94 Epoch of re ionization Edit The SKA is intended to provide observational data from the so called Dark Ages between 300 000 years after the Big Bang when the universe became cool enough for hydrogen to become neutral and decouple from radiation and the time of First Light a billion years later when young galaxies are seen to form for the first time and hydrogen becomes ionized again By observing the primordial distribution of gas the SKA should be able to see how the Universe gradually lit up as its stars and galaxies formed and then evolved This period of the Dark Ages culminating in First Light is considered the first chapter in the cosmic story of creation and the resolving power required to see this event is the reason for the Square Kilometre Array s design To see back to First Light requires a telescope 100 times more powerful than the biggest radio telescopes currently in the world taking up 1 million square metres of collecting area or one square kilometre 95 Cosmic magnetism Edit It is still not possible to answer basic questions about the origin and evolution of cosmic magnetic fields but it is clear that they are an important component of interstellar and intergalactic space By mapping the effects of magnetism on the radiation from very distant galaxies the SKA will investigate the form of cosmic magnetism and the role it has played in the evolving Universe Search for extraterrestrial life Edit This key science program called Cradle of Life will focus on three objectives observing protoplanetary discs in habitable zones searching for prebiotic chemistry and contributing to the search for extraterrestrial intelligence SETI 96 The SKA will be able to probe the habitable zone of Sun like protostars where Earth like planets or moons are most likely to have environments favourable for the development of life 97 The signatures of forming Earth like planets imprinted on circumstellar dust may be the most conspicuous evidence of their presence and evolution 97 and may even detect planets capable of supporting life 97 98 Astrobiologists will also use the SKA to search for complex organic compounds carbon containing chemicals in outer space including amino acids by identifying spectral lines at specific frequencies 97 The SKA will be capable of detecting extremely weak radio emission leakage from nearby extraterrestrial civilizations if they exist 97 See also EditFive hundred meter Aperture Spherical Telescope KARST a 1990s Chinese proposal to host the SKA List of radio telescopes LOFAR Mills Cross Telescope related to the SKA development Simon Ratcliffe Project CyclopsReferences Edit SKA Timeline SKA UK Nan R et al 16 June 2002 Kilometer square Area Radio Synthesis Telescope KARST PDF Archived PDF from the original on 5 October 2016 Su Yan et al February 2003 An Optimal Design of Array Configuration of KARST for SKA PDF Acta Astronomica Sinica 44 31 Bibcode 2003AcASn 44S 31S Archived PDF from the original on 3 March 2016 Planning for the radio astronomy service Archived from the original on 9 September 2007 Retrieved 3 June 2012 a b SKA Telescope specifications SKAO 28 June 2022 Retrieved 13 September 2022 Jodrell Bank chosen as base for largest radio telescope BBC News 2 April 2011 Archived from the original on 3 April 2011 Retrieved 2 April 2011 First country has approved participation in constructing the largest telescope the world has ever known a b The organisation SKA Organisation Archived from the original on 4 September 2012 Retrieved 21 May 2012 Carpenter Avery 22 February 2012 Oz telescope body under microscope after ex chairman raises difficult questions The Star Archived from the original on 29 March 2014 Retrieved 26 March 2012 Flitton Daniel 10 March 2012 Australia on the outer for largest space telescope The Age Retrieved 9 March 2012 Further delays signalled in super telescope plan The Australian AFP 5 April 2012 Archived from the original on 10 April 2012 Retrieved 10 April 2012 Amos Jonathan 25 May 2012 Africa and Australasia to share Square Kilometre Array BBC Archived from the original on 20 August 2018 Retrieved 20 June 2018 Australia SKA Telescope SKA 2014 Archived from the original on 15 June 2014 Retrieved 22 May 2014 The SKA Organisation SKA Organisation Archived from the original on 23 February 2015 Retrieved 28 October 2014 UK to be giant telescope s HQ Archived 2 October 2018 at the Wayback Machine Jonathan Amos BBC News 29 April 2015 a b c d New Zealand pulls out of the Square Kilometre Array after benefits questioned Physics World IOP Publishing 4 July 2019 Archived from the original on 4 July 2019 Retrieved 5 July 2019 Technical information the operational model SKA 2 August 2018 Founding Members Sign SKA Observatory Treaty Press release Square Kilometre Array Organisation 12 March 2019 Archived from the original on 30 March 2019 Retrieved 14 March 2019 Precursors and Pathfinders Square Kilometre Array Retrieved 22 November 2020 Amos Jonathan 5 December 2022 SKA Construction to begin on world s biggest telescope BBC News Retrieved 5 December 2022 a b c Clifford Rachael 5 December 2022 Square Kilometre Array Telescope construction begins in West Australian outback ABC News Australian Broadcasting Corporation Retrieved 6 December 2022 Participating countries SKA Organisation a b The SKA Layout SKA Telescope Archived from the original on 21 September 2015 Retrieved 5 October 2015 The World s Largest Radio Telescope Takes A Major Step Towards Construction SKA Science 9 March 2015 Archived from the original on 8 January 2016 Retrieved 5 October 2015 SKA Aperture Arrays SKA Telescope Archived from the original on 21 September 2015 Retrieved 5 October 2015 How will SKA1 be better than today s best radio telescopes image SKA Telescope Archived from the original on 4 March 2016 Retrieved 5 October 2015 Facts and figures SKA Organisation Archived from the original on 28 July 2012 Retrieved 26 May 2012 Spie 2014 Philip Diamond plenary The Square Kilometre Array A Physics Machine for the 21st Century SPIE Newsroom doi 10 1117 2 3201407 12 a b SKA1 SKA Science Archived from the original on 8 January 2016 Retrieved 5 October 2015 SKA2 SKA Science Archived from the original on 8 January 2016 Retrieved 5 October 2015 McPherson A REPORT AND OPTIONS FOR RE BASELINING OF SKA 1 PDF SKA Telescope SKAO Archived PDF from the original on 6 October 2015 Retrieved 5 October 2015 Dewdney P E SKA Baseline Design PDF SKA Telescope Archived PDF from the original on 2 June 2016 Retrieved 5 October 2015 The project timeline SKA Organisation Archived from the original on 5 August 2012 Retrieved 28 October 2014 SKA site bid outcome SKA Africa Archived from the original on 26 June 2014 Retrieved 28 October 2014 Germany joins the SKA Organisation 20 December 2012 Archived from the original on 6 January 2013 India s National Centre for Radio Astrophysics becomes the 11th full SKA Organisation member SKA Organisation 11 August 2014 Archived from the original on 8 January 2016 Retrieved 11 August 2014 Spain joins the SKA Organisation SKA Telescope SKA Telescope 19 June 2018 Archived from the original on 19 June 2018 Retrieved 19 June 2018 Construction starts on SKA Organisation headquarters SKA Organisation 18 April 2012 Archived from the original on 19 May 2012 Retrieved 26 May 2012 Co hosting the SKA Archived 11 April 2018 at the Wayback Machine SKA Koenig Robert 18 August 2006 RADIO ASTRONOMY Candidate Sites for World s Largest Telescope Face First Big Hurdle Science AAAS 313 5789 910 912 doi 10 1126 science 313 5789 910 PMID 16917038 S2CID 42969567 Amos J Nations vie for giant telescope Archived 29 September 2006 at the Wayback Machine BBC News 28 September 2006 Science Network WA 16 February 2007 Archived 27 April 2014 at the Wayback Machine Osborne Darren 5 October 2012 Outback observatory open for business ABC News Australian Broadcasting Corporation ABC News Abc net au Archived from the original on 7 October 2012 Retrieved 7 October 2012 Tshangela Lebo 16 May 2018 MeerKAT telescope is complete SABC News Archived from the original on 19 May 2018 Retrieved 25 May 2018 SKA SA Square Kilometre Array radio telescope SKA South Africa Archived from the original on 14 January 2017 Retrieved 1 February 2017 MWA Home www mwatelescope org Archived from the original on 31 January 2017 Retrieved 1 February 2017 Tom Osterloo Marc Verheijen amp Wim van Cappellen 10 14 June 2010 The latest on Apertif PDF ISKAF2010 Science Meeting arXiv 1007 5141 Bibcode 2010iska meetE 43O Archived PDF from the original on 6 December 2014 Retrieved 15 April 2013 Aerospace Technology com Archived 15 June 2012 at the Wayback Machine Electronic Multi Beam Radio Astronomy ConcEpt Archived from the original on 12 May 2016 Retrieved 1 February 2017 Beswick Rob e MERLIN VLBI National Radio Astronomy Facility e MERLIN Archived from the original on 1 January 2017 Retrieved 1 February 2017 Expanded VLA Archived from the original on 22 October 2016 Retrieved 1 February 2017 Long Wavelength Array Archived from the original on 17 November 2016 Retrieved 1 February 2017 Gaensler Bryan Sydney Institute for Astronomy The University of Sydney Archived from the original on 18 February 2017 Retrieved 1 February 2017 NENUFAR website Archived from the original on 27 May 2016 Retrieved 1 February 2017 French NenuFAR telescope granted SKA Pathfinder status SKA Telescope 5 September 2014 Archived from the original on 8 January 2016 Retrieved 1 February 2017 India s GMRT telescope granted SKA pathfinder status SKA Telescope Public Website 6 February 2015 Retrieved 3 January 2020 The Allen Telescope Array SETI Institute Archived from the original on 4 July 2011 Retrieved 1 February 2017 LOFAR LOFAR Archived from the original on 31 January 2017 Retrieved 1 February 2017 Ray P Norris 7 January 2011 2010 Sixth IEEE International Conference on e Science Workshops Data Challenges for Next generation Radio Telescopes p 21 arXiv 1101 1355 doi 10 1109 eScienceW 2010 13 ISBN 978 1 4244 8988 6 S2CID 34645164 The Square Kilometre Array SKA AAVP Archived from the original on 2 February 2017 Retrieved 1 February 2017 Home SKA Archived from the original on 23 February 2017 Retrieved 1 February 2017 PrepSKA Archived from the original on 28 April 2016 Retrieved 1 February 2017 SKADS Technology SKADS Archived from the original on 3 March 2016 Retrieved 23 May 2015 EMBRACE ASTRON Archived from the original on 26 December 2017 Retrieved 21 May 2015 SKA telescope to generate more data than entire Internet in 2020 Computerworld IDG Communications 7 July 2011 Archived from the original on 2 April 2015 Retrieved 2 April 2015 Taiwan s TSMC says chip shipments to Huawei not affected by U S ban Reuters 23 May 2019 China s Huawei Technologies Co Ltd are not affected by U S action aimed at curbing the telecom equipment maker s access to American technology Xilinx Powers Huawei FPGA Accelerated Cloud Server 6 September 2017 Huawei has chosen high performance Virtex UltraScale FPGAs to power their first FP1 instance as part of a new accelerated cloud service Kooistra E Hampson G A Gunst A W Bunton J D Schoonderbeek G W Brown A 2017 Gemini FPGA Hardware Platform for the SKA Low Correlator and Beamformer 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science URSI GASS pp 1 4 doi 10 23919 URSIGASS 2017 8104976 ISBN 978 90 825987 0 4 S2CID 35235341 John Bunton 10 February 2017 The SKA LOW correlator design challenge PDF CSIRO p 30 Archived PDF from the original on 22 January 2019 Retrieved 20 August 2019 McNamara Dan 15 May 2018 Intel FPGAs Accelerating the Future Intel Canada s NRC is helping to build the next generation Square Kilometre Array SKA radio telescope NRC s design embeds Intel Stratix 10 SX FPGAs Electronic Code of Federal Regulations PART 121 THE UNITED STATES MUNITIONS LIST 22 August 2019 16 Hybrid combined analogue digital computers specially designed for modeling simulation or design integration of systems enumerated in paragraphs a 1 d 1 d 2 h 1 h 2 h 4 h 8 and h 9 of USML Category IV or paragraphs a 5 a 6 or a 13 of USML Category VIII MT if for rockets SLVs missiles drones or UAVs capable of delivering a payload of at least 500 kg to a range of at least 300 km or their subsystems See note 2 to paragraph a 3 xxix of this category Analog to digital converters usable in the system in Item 1 having either of the following characteristics 1 Analog to digital converter microcircuits which are radiation hardened or have all of the following characteristics i Having a resolution of 8 bits or more Item 1 Category I Complete rocket systems including ballistic missile systems space launch vehicles and sounding rockets see 121 1 Cat IV a and b and unmanned air vehicle systems including cruise missile systems see 121 1 Cat VIII a target drones and reconnaissance drones see 121 1 Cat VIII a capable of delivering at least a 500 kg payload to a range of at least 300 km Overview of Cryptography and the Defence Trade Controls Act 2012 Department of Defense Australia Retrieved 26 August 2019 Australian Export Controls and ICT Department of Defense Australia Retrieved 26 August 2019 Politics not security behind Huawei ZTE allegations say analysts 8 October 2012 Kan Michael 9 April 2015 U S stops Intel from selling Xeon chips to Chinese supercomputer projects Computerworld Chatterjee Shami Welcome to the SKA TDP Website Archived from the original on 2 October 2016 Retrieved 1 February 2017 Nordling Linda 22 March 2011 Mining plans pose threat to South African astronomy site Nature Archived from the original on 5 November 2012 Retrieved 27 June 2011 Mozambique Exact Location of SKA Telescope Sought AllAfrica 26 June 2012 Archived from the original on 23 August 2012 Retrieved 12 July 2012 Report and Recommendation of the SKA Site Advisory Committee SSAC PDF Archived PDF from the original on 8 January 2016 Retrieved 12 July 2012 Butoi Mario 7 November 2014 October 2014 Strike delays SKA Dish Installations Mail amp Guardian Archived from the original on 1 November 2014 Retrieved 1 November 2014 SKA Project SKA Organisation Archived from the original on 1 July 2014 Retrieved 28 October 2014 Astronomers and sheep farmers butt heads over the Square Kilometer Array The Economist 5 January 2017 Archived from the original on 31 March 2017 Retrieved 30 March 2017 Save the Karoo savethekaroo com Archived from the original on 31 March 2017 Retrieved 30 March 2017 Sarah Wild 22 June 2016 In South Africa Opposition Flares against Giant SKA Radio Telescope Scientific American Archived from the original on 4 December 2017 Retrieved 19 September 2017 Wild Sarah 23 June 2016 Giant SKA telescope rattles South African community Nature 534 7608 444 446 Bibcode 2016Natur 534 444W doi 10 1038 534444a PMID 27337317 S2CID 4451534 Galaxy Evolution Cosmology And Dark Energy Further Information Skatelescope org 25 May 2012 Archived from the original on 9 September 2012 Philip Bull Stefano Camera Alvise Raccanelli Chris Blake Pedro G Ferreira Mario G Santos Dominik J Schwarz 2015 Measuring baryon acoustic oscillations with future SKA surveys PoS AASKA 024 14 2015 24 arXiv 1501 04088 Bibcode 2015aska confE 24B doi 10 22323 1 215 0024 S2CID 55195638 Alvise Raccanelli Philip Bull Stefano Camera David Bacon Chris Blake Olivier Dore Pedro Ferreira Roy Maartens Mario Santos Matteo Viel Gong bo Zhao 2015 Measuring redshift space distortions with future SKA surveys Advancing Astrophysics with the Square Kilometre Array Aaska14 31 arXiv 1501 03821 Bibcode 2015aska confE 31R doi 10 22323 1 215 0031 hdl 2318 1790152 S2CID 54072202 S Camera A Raccanelli P Bull D Bertacca X Chen P G Ferreira M Kunz R Maartens Y Mao M G Santos P R Shapiro M Viel Y Xu 2015 Cosmology on the Largest Scales with the SKA Proceedings of Advancing Astrophysics with the Square Kilometre Array PoS AASKA14 p 025 arXiv 1501 03851 doi 10 22323 1 215 0025 S2CID 59136297 Dominik J Schwarz David Bacon Song Chen Chris Clarkson Dragan Huterer Martin Kunz Roy Maartens Alvise Raccanelli Matthias Rubart Jean Luc Starck 2015 Testing foundations of modern cosmology with SKA all sky surveys Advancing Astrophysics with the Square Kilometre Array Aaska14 32 arXiv 1501 03820 Bibcode 2015aska confE 32S doi 10 22323 1 215 0032 S2CID 17895596 Roy Maartens Filipe B Abdalla Matt Jarvis Mario G Santos 2015 Cosmology with the SKA overview arXiv 1501 04076 astro ph CO Mario G Santos Philip Bull David Alonso Stefano Camera Pedro G Ferreira Gianni Bernardi Roy Maartens Matteo Viel Francisco Villaescusa Navarro Filipe B Abdalla Matt Jarvis R Benton Metcalf A Pourtsidou Laura Wolz 2015 Cosmology with a SKA HI intensity mapping survey PoS AASKA 019 14 2015 19 arXiv 1501 03989 Bibcode 2015aska confE 19S doi 10 22323 1 215 0019 S2CID 55246221 Filipe B Abdalla Philip Bull Stefano Camera Aurelien Benoit Levy Benjamin Joachimi Donnacha Kirk Hans Rainer Klockner Roy Maartens Alvise Raccanelli Mario G Santos Gong Bo Zhao 2015 Cosmology from HI galaxy surveys with the SKA Advancing Astrophysics with the Square Kilometre Array Aaska14 17 arXiv 1501 04035 Bibcode 2015aska confE 17A doi 10 22323 1 215 0017 S2CID 29623186 Matt J Jarvis David Bacon Chris Blake Michael L Brown Sam N Lindsay Alvise Raccanelli Mario Santos Dominik Schwarz 2015 Cosmology with SKA Radio Continuum Surveys Advancing Astrophysics with the Square Kilometre Array Aaska14 18 arXiv 1501 03825 Bibcode 2015aska confE 18J doi 10 22323 1 215 0018 S2CID 55630081 RiAus 2011 Radio Astronomy Something Kinda Awesome SKA viewed 1st October 2014 http vimeo com 23460933 Archived 11 December 2014 at the Wayback Machine The Square Kilometre Array Project Description for Astro 2010 Archived 24 July 2018 at the Wayback Machine Response to Program Prioritization Panels James Cordes 1 April 2009 a b c d e SKA Cradle Of Life Archived 15 March 2015 at the Wayback Machine T J W Lazio J C Tarter D J Wilner 2004 Curtin Institute of Radio Astronomy Archived 26 February 2015 at the Wayback Machine Cradle of Life April 2015 External links Edit Wikimedia Commons has media related to Square Kilometre Array International SKA website SKA on ScholarpediaAustralia NZ SKA Australia web site Inside the Square Kilometre Array Cosmos magazine online January 2012 The Square Kilometre Array Category The Conversation 2011 12 Australian SKA Planning Office Newsletter CSIRO 10 April 2007 Archived from the original PDF on 12 May 2012 Retrieved 19 March 2007 Boolardy Station and the Murchison Radio Astronomy Observatory MRO University of Western Australia Photographs from the Boolardy site June 2010 A Trojan Affair Novel about the SKACanada Canadian SKA Consortium web siteEurope SKA Design Studies web site Archived 30 December 2011 at the Wayback MachineSouth Africa SKA South Africa web siteOther Merrifield Michael Crowther Paul Where to Build The Square Kilometre Array Deep Space Videos Brady Haran Media related to Square Kilometre Array at Wikimedia Commons Portals Radio Physics Astronomy Stars Spaceflight Outer space Solar System Science Retrieved from https en wikipedia org w index php title Square Kilometre Array amp oldid 1129782521, wikipedia, wiki, book, books, library,

    article

    , read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.