fbpx
Wikipedia

Telemetry

Telemetry is the in situ collection of measurements or other data at remote points and their automatic transmission to receiving equipment (telecommunication) for monitoring.[1] The word is derived from the Greek roots tele, 'remote', and metron, 'measure'. Systems that need external instructions and data to operate require the counterpart of telemetry: telecommand.[2]

An expendable dropsonde used to capture weather data. The telemetry consists of sensors for pressure, temperature, and humidity and a wireless transmitter to return the captured data to an aircraft.
A saltwater crocodile with a GPS-based satellite transmitter attached to its head for tracking

Although the term commonly refers to wireless data transfer mechanisms (e.g., using radio, ultrasonic, or infrared systems), it also encompasses data transferred over other media such as a telephone or computer network, optical link or other wired communications like power line carriers. Many modern telemetry systems take advantage of the low cost and ubiquity of GSM networks by using SMS to receive and transmit telemetry data.

A telemeter is a physical device used in telemetry. It consists of a sensor, a transmission path, and a display, recording, or control device. Electronic devices are widely used in telemetry and can be wireless or hard-wired, analog or digital. Other technologies are also possible, such as mechanical, hydraulic and optical.[3]

Telemetry may be commutated to allow the transmission of multiple data streams in a fixed frame.

History edit

The beginning of industrial telemetry lies in the steam age, although the sensor was not called telemeter at that time.[4] Examples are James Watt's (1736-1819) additions to his steam engines for monitoring from a (near) distance such as the mercury pressure gauge and the fly-ball governor.[4]

Although the original telemeter referred to a ranging device (the rangefinding telemeter), by the late 19th century the same term had been in wide use by electrical engineers applying it refer to electrically operated devices measuring many other quantities besides distance (for instance, in the patent of an "Electric Telemeter Transmitter"[5]). General telemeters included such sensors as the thermocouple (from the work of Thomas Johann Seebeck), the resistance thermometer (by William Siemens based on the work of Humphry Davy), and the electrical strain gauge (based on Lord Kelvin's discovery that conductors under mechanical strain change their resistance) and output devices such as Samuel Morse's telegraph sounder and the relay. In 1889 this led an author in the Institution of Civil Engineers proceedings to suggest that the term for the rangefinder telemeter might be replaced with tacheometer.[6]

In the 1930s use of electrical telemeters grew rapidly. The electrical strain gauge was widely used in rocket and aviation research and the radiosonde was invented for meteorological measurements. The advent of World War II gave an impetus to industrial development and henceforth many of these telemeters became commercially viable.[7]

Carrying on from rocket research, radio telemetry was used routinely as space exploration got underway. Spacecraft are in a place where a physical connection is not possible, leaving radio or other electromagnetic waves (such as infrared lasers) as the only viable option for telemetry. During crewed space missions it is used to monitor not only parameters of the vehicle, but also the health and life support of the astronauts.[8] During the Cold War telemetry found uses in espionage. US intelligence found that they could monitor the telemetry from Soviet missile tests by building a telemeter of their own to intercept the radio signals and hence learn a great deal about Soviet capabilities.[9]

Types of telemeter edit

Telemeters are the physical devices used in telemetry. It consists of a sensor, a transmission path, and a display, recording, or control device. Electronic devices are widely used in telemetry and can be wireless or hard-wired, analog or digital. Other technologies are also possible, such as mechanical, hydraulic and optical.[10]

Telemetering information over wire had its origins in the 19th century. One of the first data-transmission circuits was developed in 1845 between the Russian Tsar's Winter Palace and army headquarters. In 1874, French engineers built a system of weather and snow-depth sensors on Mont Blanc that transmitted real-time information to Paris. In 1901 the American inventor C. Michalke patented the selsyn, a circuit for sending synchronized rotation information over a distance. In 1906 a set of seismic stations were built with telemetering to the Pulkovo Observatory in Russia. In 1912, Commonwealth Edison developed a system of telemetry to monitor electrical loads on its power grid. The Panama Canal (completed 1913–1914) used extensive telemetry systems to monitor locks and water levels.[11]

Wireless telemetry made early appearances in the radiosonde, developed concurrently in 1930 by Robert Bureau in France and Pavel Molchanov in Russia. Molchanov's system modulated temperature and pressure measurements by converting them to wireless Morse code. The German V-2 rocket used a system of primitive multiplexed radio signals called "Messina" to report four rocket parameters, but it was so unreliable that Wernher von Braun once claimed it was more useful to watch the rocket through binoculars.

In the US and the USSR, the Messina system was quickly replaced with better systems; in both cases, based on pulse-position modulation (PPM).[12] Early Soviet missile and space telemetry systems which were developed in the late 1940s used either PPM (e.g., the Tral telemetry system developed by OKB-MEI) or pulse-duration modulation (e.g., the RTS-5 system developed by NII-885). In the United States, early work employed similar systems, but were later replaced by pulse-code modulation (PCM) (for example, in the Mars probe Mariner 4). Later Soviet interplanetary probes used redundant radio systems, transmitting telemetry by PCM on a decimeter band and PPM on a centimeter band.[13]

Applications edit

Meteorology edit

Telemetry has been used by weather balloons for transmitting meteorological data since 1920.

Oil and gas industry edit

Telemetry is used to transmit drilling mechanics and formation evaluation information uphole, in real time, as a well is drilled. These services are known as Measurement while drilling and Logging while drilling. Information acquired thousands of feet below ground, while drilling, is sent through the drilling hole to the surface sensors and the demodulation software. The pressure wave (sana) is translated into useful information after DSP and noise filters. This information is used for Formation evaluation, Drilling Optimization, and Geosteering.

Motor racing edit

Telemetry is a key factor in modern motor racing, allowing race engineers to interpret data collected during a test or race and use it to properly tune the car for optimum performance. Systems used in series such as Formula One have become advanced to the point where the potential lap time of the car can be calculated, and this time is what the driver is expected to meet. Examples of measurements on a race car include accelerations (G forces) in three axes, temperature readings, wheel speed, and suspension displacement. In Formula One, driver input is also recorded so the team can assess driver performance and (in case of an accident) the FIA can determine or rule out driver error as a possible cause.

Later developments include two-way telemetry which allows engineers to update calibrations on the car in real time (even while it is out on the track). In Formula One, two-way telemetry surfaced in the early 1990s and consisted of a message display on the dashboard which the team could update. Its development continued until May 2001, when it was first allowed on the cars. By 2002, teams were able to change engine mapping and deactivate engine sensors from the pit while the car was on the track.[citation needed] For the 2003 season, the FIA banned two-way telemetry from Formula One;[14] however, the technology may be used in other types of racing or on road cars.

One way telemetry system has also been applied in R/C racing car to get information by car's sensors like: engine RPM, voltage, temperatures, throttle.

Transportation edit

In the transportation industry, telemetry provides meaningful information about a vehicle or driver's performance by collecting data from sensors within the vehicle. This is undertaken for various reasons ranging from staff compliance monitoring, insurance rating to predictive maintenance.

Telemetry is used to link traffic counter devices to data recorders to measure traffic flows and vehicle lengths and weights.[15]

Telemetry is used by the railway industry for measuring the health of trackage. This permits optimized and focused predictive and preventative maintenance. Typically this is done with specialized trains, such as the New Measurement Train used in the United Kingdom by Network Rail, which can check for track defects, such as problems with gauge, and deformations in the rail.[16] Japan uses similar, but quicker trains, nicknamed Doctor Yellow.[17] Such trains, besides checking the tracks, can also verify whether or not there are any problems with the overhead power supply (catenary), where it's installed. Dedicated rail inspection companies, such as Sperry Rail,[18] have their own customized rail cars and rail-wheel equipped trucks that use a variety of methods, including lasers, ultrasound, and induction (measuring resulting magnetic fields from running electricity into rails) to find any defects.[19]

Agriculture edit

Most activities related to healthy crops and good yields depend on timely availability of weather and soil data. Therefore, wireless weather stations play a major role in disease prevention and precision irrigation. These stations transmit parameters necessary for decision-making to a base station: air temperature and relative humidity, precipitation and leaf wetness (for disease prediction models), solar radiation and wind speed (to calculate evapotranspiration), water deficit stress (WDS) leaf sensors and soil moisture (crucial to irrigation decisions).

Because local micro-climates can vary significantly, such data needs to come from within the crop. Monitoring stations usually transmit data back by terrestrial radio, although occasionally satellite systems are used. Solar power is often employed to make the station independent of the power grid.

Water management edit

Telemetry is important in water management, including water quality and stream gauging functions. Major applications include AMR (automatic meter reading), groundwater monitoring, leak detection in distribution pipelines and equipment surveillance. Having data available in almost real time allows quick reactions to events in the field. Telemetry control allows engineers to intervene with assets such as pumps and by remotely switching pumps on or off depending on the circumstances. Watershed telemetry is an excellent strategy of how to implement a water management system. [20]

Defense, space and resource exploration edit

Telemetry is used in complex systems such as missiles, RPVs, spacecraft, oil rigs, and chemical plants since it allows the automatic monitoring, alerting, and record-keeping necessary for efficient and safe operation. Space agencies such as NASA, ISRO, the European Space Agency (ESA), and other agencies use telemetry and/or telecommand systems to collect data from spacecraft and satellites.

Telemetry is vital in the development of missiles, satellites and aircraft because the system might be destroyed during or after the test. Engineers need critical system parameters to analyze (and improve) the performance of the system. In the absence of telemetry, this data would often be unavailable.

Space science edit

Telemetry is used by crewed or uncrewed spacecraft for data transmission. Distances of more than 10 billion kilometres have been covered, e.g., by Voyager 1.

Rocketry edit

In rocketry, telemetry equipment forms an integral part of the rocket range assets used to monitor the position and health of a launch vehicle to determine range safety flight termination criteria (Range purpose is for public safety). Problems include the extreme environment (temperature, acceleration and vibration), the energy supply, antenna alignment and (at long distances, e.g., in spaceflight) signal travel time.

Flight testing edit

Today nearly every type of aircraft, missiles, or spacecraft carries a wireless telemetry system as it is tested.[21] Aeronautical mobile telemetry is used for the safety of the pilots and persons on the ground during flight tests. Telemetry from an on-board flight test instrumentation system is the primary source of real-time measurement and status information transmitted during the testing of crewed and uncrewed aircraft.[22]

Military intelligence edit

Intercepted telemetry was an important source of intelligence for the United States and UK when Soviet missiles were tested; for this purpose, the United States operated a listening post in Iran. Eventually, the Russians discovered the United States intelligence-gathering network and encrypted their missile-test telemetry signals. Telemetry was also a source for the Soviets, who operated listening ships in Cardigan Bay to eavesdrop on UK missile tests performed in the area.

Energy monitoring edit

In factories, buildings and houses, energy consumption of systems such as HVAC are monitored at multiple locations; related parameters (e.g., temperature) are sent via wireless telemetry to a central location. The information is collected and processed, enabling the most efficient use of energy. Such systems also facilitate predictive maintenance.

Resource distribution edit

Many resources need to be distributed over wide areas. Telemetry is useful in these cases, since it allows the logistics system to channel resources where they are needed, as well as provide security for those assets; principal examples of this are dry goods, fluids, and granular bulk solids.

Dry goods edit

Dry goods, such as packaged merchandise, may be tracked and remotely monitored, tracked and inventoried by RFID sensing systems, barcode reader, optical character recognition (OCR) reader, or other sensing devices—coupled to telemetry devices, to detect RFID tags, barcode labels or other identifying markers affixed to the item, its package, or (for large items and bulk shipments) affixed to its shipping container or vehicle. This facilitates knowledge of their location, and can record their status and disposition, as when merchandise with barcode labels is scanned through a checkout reader at point-of-sale systems in a retail store. Stationary or hand-held barcode RFID scanners or Optical reader with remote communications, can be used to expedite inventory tracking and counting in stores, warehouses, shipping terminals, transportation carriers and factories.[23][24][25]

Fluids edit

Fluids stored in tanks are a principal object of constant commercial telemetry. This typically includes monitoring of tank farms in gasoline refineries and chemical plants—and distributed or remote tanks, which must be replenished when empty (as with gas station storage tanks, home heating oil tanks, or ag-chemical tanks at farms), or emptied when full (as with production from oil wells, accumulated waste products, and newly produced fluids).[26] Telemetry is used to communicate the variable measurements of flow and tank level sensors detecting fluid movements and/or volumes by pneumatic, hydrostatic, or differential pressure; tank-confined ultrasonic, radar or Doppler effect echoes; or mechanical or magnetic sensors.[26][27][28]

Bulk solids edit

Telemetry of bulk solids is common for tracking and reporting the volume status and condition of grain and livestock feed bins, powdered or granular food, powders and pellets for manufacturing, sand and gravel, and other granular bulk solids. While technology associated with fluid tank monitoring also applies, in part, to granular bulk solids, reporting of overall container weight, or other gross characteristics and conditions, are sometimes required, owing to bulk solids' more complex and variable physical characteristics.[29][30]

Medicine/healthcare edit

Telemetry is used for patients (biotelemetry) who are at risk of abnormal heart activity, generally in a coronary care unit. Telemetry specialists are sometimes used to monitor many patients within a hospital.[31] Such patients are outfitted with measuring, recording and transmitting devices. A data log can be useful in diagnosis of the patient's condition by doctors. An alerting function can alert nurses if the patient is suffering from an acute (or dangerous) condition.

Systems are available in medical-surgical nursing for monitoring to rule out a heart condition, or to monitor a response to antiarrhythmic medications such as amiodarone.

A new and emerging application for telemetry is in the field of neurophysiology, or neurotelemetry. Neurophysiology is the study of the central and peripheral nervous systems through the recording of bioelectrical activity, whether spontaneous or stimulated. In neurotelemetry (NT) the electroencephalogram (EEG) of a patient is monitored remotely by a registered EEG technologist using advanced communication software. The goal of neurotelemetry is to recognize a decline in a patient's condition before physical signs and symptoms are present.

Neurotelemetry is synonymous with real-time continuous video EEG monitoring and has application in the epilepsy monitoring unit, neuro ICU, pediatric ICU and newborn ICU. Due to the labor-intensive nature of continuous EEG monitoring NT is typically done in the larger academic teaching hospitals using in-house programs that include R.EEG Technologists, IT support staff, neurologist and neurophysiologist and monitoring support personnel.

Modern microprocessor speeds, software algorithms and video data compression allow hospitals to centrally record and monitor continuous digital EEGs of multiple critically ill patients simultaneously.

Neurotelemetry and continuous EEG monitoring provides dynamic information about brain function that permits early detection of changes in neurologic status, which is especially useful when the clinical examination is limited.

Fishery and wildlife research and management edit

 
A bumblebee worker with a transponder attached to its back, visiting an oilseed rape flower

Telemetry is used to study wildlife,[32] and has been useful for monitoring threatened species at the individual level. Animals under study can be outfitted with instrumentation tags, which include sensors that measure temperature, diving depth and duration (for marine animals), speed and location (using GPS or Argos packages). Telemetry tags can give researchers information about animal behavior, functions, and their environment. This information is then either stored (with archival tags) or the tags can send (or transmit) their information to a satellite or handheld receiving device.[33] Capturing and marking wild animals can put them at some risk, so it is important to minimize these impacts.[34]

Retail edit

At a 2005 workshop in Las Vegas, a seminar noted the introduction of telemetry equipment which would allow vending machines to communicate sales and inventory data to a route truck or to a headquarters.[citation needed] This data could be used for a variety of purposes, such as eliminating the need for drivers to make a first trip to see which items needed to be restocked before delivering the inventory.

Retailers also use RFID tags to track inventory and prevent shoplifting. Most of these tags passively respond to RFID readers (e.g., at the cashier), but active RFID tags are available which periodically transmit location information to a base station.

Law enforcement edit

Telemetry hardware is useful for tracking persons and property in law enforcement. An ankle collar worn by convicts on probation can warn authorities if a person violates the terms of his or her parole, such as by straying from authorized boundaries or visiting an unauthorized location. Telemetry has also enabled bait cars, where law enforcement can rig a car with cameras and tracking equipment and leave it somewhere they expect it to be stolen. When stolen the telemetry equipment reports the location of the vehicle, enabling law enforcement to deactivate the engine and lock the doors when it is stopped by responding officers.

Energy providers edit

In some countries, telemetry is used to measure the amount of electrical energy consumed. The electricity meter communicates with a concentrator, and the latter sends the information through GPRS or GSM to the energy provider's server. Telemetry is also used for the remote monitoring of substations and their equipment. For data transmission, phase line carrier systems operating on frequencies between 30 and 400 kHz are sometimes used.

Falconry edit

In falconry, "telemetry" means a small radio transmitter carried by a bird of prey that will allow the bird's owner to track it when it is out of sight.

Testing edit

Telemetry is used in testing hostile environments which are dangerous to humans. Examples include munitions storage facilities, radioactive sites, volcanoes, deep sea, and outer space.

Communications edit

Telemetry is used in many battery operated wireless systems to inform monitoring personnel when the battery power is reaching a low point and the end item needs fresh batteries.

Mining edit

In the mining industry, telemetry serves two main purposes: the measurement of key parameters from mining equipment and the monitoring of safety practices.[35] The information provided by the collection and analysis of key parameters allows for root-cause identification of inefficient operations, unsafe practices and incorrect equipment usage for maximizing productivity and safety.[36] Further applications of the technology allow for sharing knowledge and best practices across the organization.[36]

Software edit

In software, telemetry is used to gather data on the use and performance of applications and application components, e.g. how often certain features are used, measurements of start-up time and processing time, hardware, application crashes, and general usage statistics and/or user behavior. In some cases, very detailed data is reported like individual window metrics, counts of used features, and individual function timings.

This kind of telemetry can be essential to software developers to receive data from a wide variety of endpoints that can't possibly all be tested in-house, as well as getting data on the popularity of certain features and whether they should be given priority or be considered for removal. Due to concerns about privacy since software telemetry can easily be used to profile users, telemetry in user software is often user choice, commonly presented as an opt-out feature (requiring explicit user action to disable it) or user choice during the software installation process.

International standards edit

As in other telecommunications fields, international standards exist for telemetry equipment and software. International standards producing bodies include Consultative Committee for Space Data Systems (CCSDS) for space agencies, Inter-Range Instrumentation Group (IRIG) for missile ranges, and Telemetering Standards Coordination Committee (TSCC), an organisation of the International Foundation for Telemetering.

See also edit

References edit

  1. ^ Telemetry: Summary of concept and rationale (Report). Bibcode:1987STIN...8913455.
  2. ^ Mary Bellis, "Telemetry"
  3. ^ Bakshi et al., pages 8.1–8.3
  4. ^ a b Brian Kopp, "Industrial telemetry", in Telemetry Systems Engineering, pages 493-524, Artech House, 2002 ISBN 1580532578.
  5. ^ US patent 490012, Fernando J. Dibble, "Electric Telemeter Transmitter.", issued 1893-01-17  2022-01-25 at the Wayback Machine
  6. ^ "The term telemeter, which was introduced by surveyors, has been appropriated to so great an extent by electricians, that it is likely to be abandoned by the former for the term tacheometer." (p.207), Gribble, T G (1889). "Preliminary Survey in New Countries, as Exemplified in the Survey of Windward Hawaii. (Includes Appendices)". Minutes of the Proceedings of the Institution of Civil Engineers. 95 (1889): 195–208. doi:10.1680/imotp.1889.20841. ISSN 1753-7843. from the original on 2022-01-25. Retrieved 2021-05-19.
  7. ^ Kopp, page 497
  8. ^ Sunny Tsiao, Read You Loud and Clear: The Story of NASA's Spaceflight Tracking and Data Network, Government Printing Office, 2008 ISBN 0160801915.
  9. ^ MacKenzie, *Donald MacKenzie, "The Soviet Union and strategic missile guidance", in Soviet Military Policy: An International Security Reader, MIT Press, 1989 ISBN 0262620669.
  10. ^ K.A.Bakshi A.V.Bakshi U.A.Bakshi, Electronic Measurements, Technical Publications, 2008 ISBN 8184313918.
  11. ^ Mayo-Wells, "The Origins of Space Telemetry", Technology and Culture, 1963
  12. ^ Joachim & Muehlner, "Trends in Missile and Space Radio Telemetry" declassified Lockheed report
  13. ^ Molotov, E. L., Nazemnye Radiotekhnicheskie Sistemy Upravleniya Kosmicheskiymi Apparatami
  14. ^ "FIA makes massive changes to F1; several technological enhancements banned". Autoweek. January 14, 2003. Retrieved December 29, 2022.
  15. ^ TRAFFIC MONITORING FOR STATE HIGHWAYS (PDF). May 2004. ISBN 978-0-478-10549-0. (PDF) from the original on 2019-01-31. Retrieved 2019-01-05. {{cite book}}: |website= ignored (help)
  16. ^ . www.networkrail.co.uk. Archived from the original on 19 February 2019. Retrieved 19 October 2022.
  17. ^ "Doctor Yellow Shinkansen: The Iconic Test Train". JapanRailPass. November 6, 2020. Retrieved December 29, 2022.
  18. ^ "Sperry Rail Service".
  19. ^ "Sperry Rail Service".
  20. ^ PAUL, DORSEY (8 May 2018). "WATERSHED SENSOR NETWORK NON-LINE-OF-SIGHT DATA TELEMETRY SYSTEM". ohiolink.edu. from the original on 4 March 2016. Retrieved 8 May 2018.
  21. ^ “Foster, Leroy." "Telemetry Systems", John Wiley & Sons”, New York, 1965.
  22. ^ ” ITU-R M.2286-0 Operational characteristics of aeronautical mobile telemetry systems”, International Telecommunication Union”', Geneva 2014.
  23. ^ "RFID Technology," 2019-04-23 at the Wayback Machine University of Arizona, retrieved April 8, 2019
  24. ^ Burke, Eric M., Maj. U.S. Army and Ewing, Danny L., Jr., Lt., U.S. Navy, MBA Professional Report: "Improving Warehouse Inventory Management Through RFID, Barcoding And Robotics Technologies," 2020-03-24 at the Wayback Machine December 2014, Graduate School of Business and Public Policy, Naval Postgraduate School, Monterey, CA, retrieved April 8, 2019
  25. ^ White, Gareth R.T.; Georgina Gardiner; Guru Prabhakar; and Azley Abd Razak University of the West of England, UK), "A Comparison of Barcoding and RFID Technologies in Practice," 2020-08-08 at the Wayback Machine Journal of Information, Information Technology, and Organizations, Volume 2 (2007), retrieved April 8, 2019
  26. ^ a b Rues, Gerald, MSEE, "Remote Tank Monitoring Can Save Time and Money," 2019-03-07 at the Wayback Machine March, 2019, Tank Transport 2019-03-07 at the Wayback Machine, magazine, retrieved March 6, 2019
  27. ^ Tank Sensors & Probes 2019-03-18 at the Wayback Machine, Electronic Sensors, Inc., retrieved August 8, 2018
  28. ^ Henry Hopper, "A Dozen Ways to Measure Fluid Level and How They Work," 2019-03-30 at the Wayback Machine December 1, 2018, Sensors Magazine, retrieved August 29, 2018
  29. ^ "Accurately Measuring Dry Bulk Solids 2018-03-16 at the Wayback Machine," January 4, 2016, Powder-Bulk Solids magazine, retrieved April 8, 2019
  30. ^ "Dynamic Measurement and Simulation of Bulk Solids...," 2020-08-08 at the Wayback Machine, Task Quarterly 7 No 4 (2003), 611–621, retrieved April 8, 2019
  31. ^ Segall, N; Hobbs, Gene; Granger, CB; Anderson, AE; Bonifacio, AS; Taekman, JM; Wright, MC (2015). "Patient load effects on response time to critical arrhythmias in cardiac telemetry: a randomized trial". Critical Care Medicine. 43 (5): 1036–42. doi:10.1097/CCM.0000000000000923. PMC 6226252. PMID 25746509.
  32. ^ "Marine Wildlife Telemetry". Pinniped Ecology Applied Research Laboratory. from the original on 15 February 2012. Retrieved 30 January 2012.
  33. ^ "What Is Telemetry?". Pinniped Ecology Applied Research Laboratory. from the original on 15 March 2012. Retrieved 25 July 2011.
  34. ^ Livezey, K.B. 1990. Toward the reduction of marking-induced abandonment of newborn ungulates. Wildlife Society Bulletin 18:193–203.
  35. ^ Telemetry in the Mining Industry. IETE Journal of Research. Volume 29, Issue 8, 1983. Retrieved August 20th 2015.
  36. ^ a b Operational Safety and Efficiency of Mobile Equipment through Operator Behavior Monitoring. Canadian Institute of Mining. 2015.

External links edit

  • International Foundation for Telemetering
  • IRIG 106 — Digital telemetry standard
  • The European Society of Telemetering

telemetry, confused, with, company, software, telemeter, redirects, here, device, that, measures, distances, rangefinding, telemeter, former, service, telemeter, television, situ, collection, measurements, other, data, remote, points, their, automatic, transmi. Not to be confused with Telemetry company or Telemetry software Telemeter redirects here For the device that measures distances see Rangefinding telemeter For the former pay TV service see Telemeter pay television Telemetry is the in situ collection of measurements or other data at remote points and their automatic transmission to receiving equipment telecommunication for monitoring 1 The word is derived from the Greek roots tele remote and metron measure Systems that need external instructions and data to operate require the counterpart of telemetry telecommand 2 An expendable dropsonde used to capture weather data The telemetry consists of sensors for pressure temperature and humidity and a wireless transmitter to return the captured data to an aircraft A saltwater crocodile with a GPS based satellite transmitter attached to its head for tracking Although the term commonly refers to wireless data transfer mechanisms e g using radio ultrasonic or infrared systems it also encompasses data transferred over other media such as a telephone or computer network optical link or other wired communications like power line carriers Many modern telemetry systems take advantage of the low cost and ubiquity of GSM networks by using SMS to receive and transmit telemetry data A telemeter is a physical device used in telemetry It consists of a sensor a transmission path and a display recording or control device Electronic devices are widely used in telemetry and can be wireless or hard wired analog or digital Other technologies are also possible such as mechanical hydraulic and optical 3 Telemetry may be commutated to allow the transmission of multiple data streams in a fixed frame Contents 1 History 1 1 Types of telemeter 2 Applications 2 1 Meteorology 2 2 Oil and gas industry 2 3 Motor racing 2 4 Transportation 2 5 Agriculture 2 6 Water management 2 7 Defense space and resource exploration 2 7 1 Space science 2 7 2 Rocketry 2 7 3 Flight testing 2 7 4 Military intelligence 2 8 Energy monitoring 2 9 Resource distribution 2 9 1 Dry goods 2 9 2 Fluids 2 9 3 Bulk solids 2 10 Medicine healthcare 2 11 Fishery and wildlife research and management 2 12 Retail 2 13 Law enforcement 2 14 Energy providers 2 15 Falconry 2 16 Testing 2 17 Communications 2 18 Mining 2 19 Software 3 International standards 4 See also 5 References 6 External linksHistory editThe beginning of industrial telemetry lies in the steam age although the sensor was not called telemeter at that time 4 Examples are James Watt s 1736 1819 additions to his steam engines for monitoring from a near distance such as the mercury pressure gauge and the fly ball governor 4 Although the original telemeter referred to a ranging device the rangefinding telemeter by the late 19th century the same term had been in wide use by electrical engineers applying it refer to electrically operated devices measuring many other quantities besides distance for instance in the patent of an Electric Telemeter Transmitter 5 General telemeters included such sensors as the thermocouple from the work of Thomas Johann Seebeck the resistance thermometer by William Siemens based on the work of Humphry Davy and the electrical strain gauge based on Lord Kelvin s discovery that conductors under mechanical strain change their resistance and output devices such as Samuel Morse s telegraph sounder and the relay In 1889 this led an author in the Institution of Civil Engineers proceedings to suggest that the term for the rangefinder telemeter might be replaced with tacheometer 6 In the 1930s use of electrical telemeters grew rapidly The electrical strain gauge was widely used in rocket and aviation research and the radiosonde was invented for meteorological measurements The advent of World War II gave an impetus to industrial development and henceforth many of these telemeters became commercially viable 7 Carrying on from rocket research radio telemetry was used routinely as space exploration got underway Spacecraft are in a place where a physical connection is not possible leaving radio or other electromagnetic waves such as infrared lasers as the only viable option for telemetry During crewed space missions it is used to monitor not only parameters of the vehicle but also the health and life support of the astronauts 8 During the Cold War telemetry found uses in espionage US intelligence found that they could monitor the telemetry from Soviet missile tests by building a telemeter of their own to intercept the radio signals and hence learn a great deal about Soviet capabilities 9 Types of telemeter edit Telemeters are the physical devices used in telemetry It consists of a sensor a transmission path and a display recording or control device Electronic devices are widely used in telemetry and can be wireless or hard wired analog or digital Other technologies are also possible such as mechanical hydraulic and optical 10 Telemetering information over wire had its origins in the 19th century One of the first data transmission circuits was developed in 1845 between the Russian Tsar s Winter Palace and army headquarters In 1874 French engineers built a system of weather and snow depth sensors on Mont Blanc that transmitted real time information to Paris In 1901 the American inventor C Michalke patented the selsyn a circuit for sending synchronized rotation information over a distance In 1906 a set of seismic stations were built with telemetering to the Pulkovo Observatory in Russia In 1912 Commonwealth Edison developed a system of telemetry to monitor electrical loads on its power grid The Panama Canal completed 1913 1914 used extensive telemetry systems to monitor locks and water levels 11 Wireless telemetry made early appearances in the radiosonde developed concurrently in 1930 by Robert Bureau in France and Pavel Molchanov in Russia Molchanov s system modulated temperature and pressure measurements by converting them to wireless Morse code The German V 2 rocket used a system of primitive multiplexed radio signals called Messina to report four rocket parameters but it was so unreliable that Wernher von Braun once claimed it was more useful to watch the rocket through binoculars In the US and the USSR the Messina system was quickly replaced with better systems in both cases based on pulse position modulation PPM 12 Early Soviet missile and space telemetry systems which were developed in the late 1940s used either PPM e g the Tral telemetry system developed by OKB MEI or pulse duration modulation e g the RTS 5 system developed by NII 885 In the United States early work employed similar systems but were later replaced by pulse code modulation PCM for example in the Mars probe Mariner 4 Later Soviet interplanetary probes used redundant radio systems transmitting telemetry by PCM on a decimeter band and PPM on a centimeter band 13 Applications editThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources in this section Unsourced material may be challenged and removed Find sources Telemetry news newspapers books scholar JSTOR January 2020 Learn how and when to remove this template message Meteorology edit Telemetry has been used by weather balloons for transmitting meteorological data since 1920 Oil and gas industry edit Telemetry is used to transmit drilling mechanics and formation evaluation information uphole in real time as a well is drilled These services are known as Measurement while drilling and Logging while drilling Information acquired thousands of feet below ground while drilling is sent through the drilling hole to the surface sensors and the demodulation software The pressure wave sana is translated into useful information after DSP and noise filters This information is used for Formation evaluation Drilling Optimization and Geosteering Motor racing edit Telemetry is a key factor in modern motor racing allowing race engineers to interpret data collected during a test or race and use it to properly tune the car for optimum performance Systems used in series such as Formula One have become advanced to the point where the potential lap time of the car can be calculated and this time is what the driver is expected to meet Examples of measurements on a race car include accelerations G forces in three axes temperature readings wheel speed and suspension displacement In Formula One driver input is also recorded so the team can assess driver performance and in case of an accident the FIA can determine or rule out driver error as a possible cause Later developments include two way telemetry which allows engineers to update calibrations on the car in real time even while it is out on the track In Formula One two way telemetry surfaced in the early 1990s and consisted of a message display on the dashboard which the team could update Its development continued until May 2001 when it was first allowed on the cars By 2002 teams were able to change engine mapping and deactivate engine sensors from the pit while the car was on the track citation needed For the 2003 season the FIA banned two way telemetry from Formula One 14 however the technology may be used in other types of racing or on road cars One way telemetry system has also been applied in R C racing car to get information by car s sensors like engine RPM voltage temperatures throttle Transportation edit In the transportation industry telemetry provides meaningful information about a vehicle or driver s performance by collecting data from sensors within the vehicle This is undertaken for various reasons ranging from staff compliance monitoring insurance rating to predictive maintenance Telemetry is used to link traffic counter devices to data recorders to measure traffic flows and vehicle lengths and weights 15 Telemetry is used by the railway industry for measuring the health of trackage This permits optimized and focused predictive and preventative maintenance Typically this is done with specialized trains such as the New Measurement Train used in the United Kingdom by Network Rail which can check for track defects such as problems with gauge and deformations in the rail 16 Japan uses similar but quicker trains nicknamed Doctor Yellow 17 Such trains besides checking the tracks can also verify whether or not there are any problems with the overhead power supply catenary where it s installed Dedicated rail inspection companies such as Sperry Rail 18 have their own customized rail cars and rail wheel equipped trucks that use a variety of methods including lasers ultrasound and induction measuring resulting magnetic fields from running electricity into rails to find any defects 19 Agriculture edit Most activities related to healthy crops and good yields depend on timely availability of weather and soil data Therefore wireless weather stations play a major role in disease prevention and precision irrigation These stations transmit parameters necessary for decision making to a base station air temperature and relative humidity precipitation and leaf wetness for disease prediction models solar radiation and wind speed to calculate evapotranspiration water deficit stress WDS leaf sensors and soil moisture crucial to irrigation decisions Because local micro climates can vary significantly such data needs to come from within the crop Monitoring stations usually transmit data back by terrestrial radio although occasionally satellite systems are used Solar power is often employed to make the station independent of the power grid Water management edit Telemetry is important in water management including water quality and stream gauging functions Major applications include AMR automatic meter reading groundwater monitoring leak detection in distribution pipelines and equipment surveillance Having data available in almost real time allows quick reactions to events in the field Telemetry control allows engineers to intervene with assets such as pumps and by remotely switching pumps on or off depending on the circumstances Watershed telemetry is an excellent strategy of how to implement a water management system 20 Defense space and resource exploration edit Telemetry is used in complex systems such as missiles RPVs spacecraft oil rigs and chemical plants since it allows the automatic monitoring alerting and record keeping necessary for efficient and safe operation Space agencies such as NASA ISRO the European Space Agency ESA and other agencies use telemetry and or telecommand systems to collect data from spacecraft and satellites Telemetry is vital in the development of missiles satellites and aircraft because the system might be destroyed during or after the test Engineers need critical system parameters to analyze and improve the performance of the system In the absence of telemetry this data would often be unavailable Space science edit Telemetry is used by crewed or uncrewed spacecraft for data transmission Distances of more than 10 billion kilometres have been covered e g by Voyager 1 Rocketry edit In rocketry telemetry equipment forms an integral part of the rocket range assets used to monitor the position and health of a launch vehicle to determine range safety flight termination criteria Range purpose is for public safety Problems include the extreme environment temperature acceleration and vibration the energy supply antenna alignment and at long distances e g in spaceflight signal travel time Flight testing edit Today nearly every type of aircraft missiles or spacecraft carries a wireless telemetry system as it is tested 21 Aeronautical mobile telemetry is used for the safety of the pilots and persons on the ground during flight tests Telemetry from an on board flight test instrumentation system is the primary source of real time measurement and status information transmitted during the testing of crewed and uncrewed aircraft 22 Military intelligence edit Intercepted telemetry was an important source of intelligence for the United States and UK when Soviet missiles were tested for this purpose the United States operated a listening post in Iran Eventually the Russians discovered the United States intelligence gathering network and encrypted their missile test telemetry signals Telemetry was also a source for the Soviets who operated listening ships in Cardigan Bay to eavesdrop on UK missile tests performed in the area Energy monitoring edit In factories buildings and houses energy consumption of systems such as HVAC are monitored at multiple locations related parameters e g temperature are sent via wireless telemetry to a central location The information is collected and processed enabling the most efficient use of energy Such systems also facilitate predictive maintenance Resource distribution edit Many resources need to be distributed over wide areas Telemetry is useful in these cases since it allows the logistics system to channel resources where they are needed as well as provide security for those assets principal examples of this are dry goods fluids and granular bulk solids Dry goods edit Dry goods such as packaged merchandise may be tracked and remotely monitored tracked and inventoried by RFID sensing systems barcode reader optical character recognition OCR reader or other sensing devices coupled to telemetry devices to detect RFID tags barcode labels or other identifying markers affixed to the item its package or for large items and bulk shipments affixed to its shipping container or vehicle This facilitates knowledge of their location and can record their status and disposition as when merchandise with barcode labels is scanned through a checkout reader at point of sale systems in a retail store Stationary or hand held barcode RFID scanners or Optical reader with remote communications can be used to expedite inventory tracking and counting in stores warehouses shipping terminals transportation carriers and factories 23 24 25 Fluids edit Fluids stored in tanks are a principal object of constant commercial telemetry This typically includes monitoring of tank farms in gasoline refineries and chemical plants and distributed or remote tanks which must be replenished when empty as with gas station storage tanks home heating oil tanks or ag chemical tanks at farms or emptied when full as with production from oil wells accumulated waste products and newly produced fluids 26 Telemetry is used to communicate the variable measurements of flow and tank level sensors detecting fluid movements and or volumes by pneumatic hydrostatic or differential pressure tank confined ultrasonic radar or Doppler effect echoes or mechanical or magnetic sensors 26 27 28 See also level sensor Bulk solids edit Telemetry of bulk solids is common for tracking and reporting the volume status and condition of grain and livestock feed bins powdered or granular food powders and pellets for manufacturing sand and gravel and other granular bulk solids While technology associated with fluid tank monitoring also applies in part to granular bulk solids reporting of overall container weight or other gross characteristics and conditions are sometimes required owing to bulk solids more complex and variable physical characteristics 29 30 Medicine healthcare edit Telemetry is used for patients biotelemetry who are at risk of abnormal heart activity generally in a coronary care unit Telemetry specialists are sometimes used to monitor many patients within a hospital 31 Such patients are outfitted with measuring recording and transmitting devices A data log can be useful in diagnosis of the patient s condition by doctors An alerting function can alert nurses if the patient is suffering from an acute or dangerous condition Systems are available in medical surgical nursing for monitoring to rule out a heart condition or to monitor a response to antiarrhythmic medications such as amiodarone A new and emerging application for telemetry is in the field of neurophysiology or neurotelemetry Neurophysiology is the study of the central and peripheral nervous systems through the recording of bioelectrical activity whether spontaneous or stimulated In neurotelemetry NT the electroencephalogram EEG of a patient is monitored remotely by a registered EEG technologist using advanced communication software The goal of neurotelemetry is to recognize a decline in a patient s condition before physical signs and symptoms are present Neurotelemetry is synonymous with real time continuous video EEG monitoring and has application in the epilepsy monitoring unit neuro ICU pediatric ICU and newborn ICU Due to the labor intensive nature of continuous EEG monitoring NT is typically done in the larger academic teaching hospitals using in house programs that include R EEG Technologists IT support staff neurologist and neurophysiologist and monitoring support personnel Modern microprocessor speeds software algorithms and video data compression allow hospitals to centrally record and monitor continuous digital EEGs of multiple critically ill patients simultaneously Neurotelemetry and continuous EEG monitoring provides dynamic information about brain function that permits early detection of changes in neurologic status which is especially useful when the clinical examination is limited Fishery and wildlife research and management edit Main article Wildlife radio telemetry nbsp A bumblebee worker with a transponder attached to its back visiting an oilseed rape flower Telemetry is used to study wildlife 32 and has been useful for monitoring threatened species at the individual level Animals under study can be outfitted with instrumentation tags which include sensors that measure temperature diving depth and duration for marine animals speed and location using GPS or Argos packages Telemetry tags can give researchers information about animal behavior functions and their environment This information is then either stored with archival tags or the tags can send or transmit their information to a satellite or handheld receiving device 33 Capturing and marking wild animals can put them at some risk so it is important to minimize these impacts 34 Retail edit At a 2005 workshop in Las Vegas a seminar noted the introduction of telemetry equipment which would allow vending machines to communicate sales and inventory data to a route truck or to a headquarters citation needed This data could be used for a variety of purposes such as eliminating the need for drivers to make a first trip to see which items needed to be restocked before delivering the inventory Retailers also use RFID tags to track inventory and prevent shoplifting Most of these tags passively respond to RFID readers e g at the cashier but active RFID tags are available which periodically transmit location information to a base station Law enforcement edit Telemetry hardware is useful for tracking persons and property in law enforcement An ankle collar worn by convicts on probation can warn authorities if a person violates the terms of his or her parole such as by straying from authorized boundaries or visiting an unauthorized location Telemetry has also enabled bait cars where law enforcement can rig a car with cameras and tracking equipment and leave it somewhere they expect it to be stolen When stolen the telemetry equipment reports the location of the vehicle enabling law enforcement to deactivate the engine and lock the doors when it is stopped by responding officers Energy providers edit In some countries telemetry is used to measure the amount of electrical energy consumed The electricity meter communicates with a concentrator and the latter sends the information through GPRS or GSM to the energy provider s server Telemetry is also used for the remote monitoring of substations and their equipment For data transmission phase line carrier systems operating on frequencies between 30 and 400 kHz are sometimes used Falconry edit In falconry telemetry means a small radio transmitter carried by a bird of prey that will allow the bird s owner to track it when it is out of sight Testing edit Telemetry is used in testing hostile environments which are dangerous to humans Examples include munitions storage facilities radioactive sites volcanoes deep sea and outer space Communications edit Telemetry is used in many battery operated wireless systems to inform monitoring personnel when the battery power is reaching a low point and the end item needs fresh batteries Mining edit In the mining industry telemetry serves two main purposes the measurement of key parameters from mining equipment and the monitoring of safety practices 35 The information provided by the collection and analysis of key parameters allows for root cause identification of inefficient operations unsafe practices and incorrect equipment usage for maximizing productivity and safety 36 Further applications of the technology allow for sharing knowledge and best practices across the organization 36 Software edit See also Phoning home In software telemetry is used to gather data on the use and performance of applications and application components e g how often certain features are used measurements of start up time and processing time hardware application crashes and general usage statistics and or user behavior In some cases very detailed data is reported like individual window metrics counts of used features and individual function timings This kind of telemetry can be essential to software developers to receive data from a wide variety of endpoints that can t possibly all be tested in house as well as getting data on the popularity of certain features and whether they should be given priority or be considered for removal Due to concerns about privacy since software telemetry can easily be used to profile users telemetry in user software is often user choice commonly presented as an opt out feature requiring explicit user action to disable it or user choice during the software installation process International standards editAs in other telecommunications fields international standards exist for telemetry equipment and software International standards producing bodies include Consultative Committee for Space Data Systems CCSDS for space agencies Inter Range Instrumentation Group IRIG for missile ranges and Telemetering Standards Coordination Committee TSCC an organisation of the International Foundation for Telemetering See also editData collection satellite Instrumentation Machine to Machine M2M MQ Telemetry Transport MQTT Portable telemetry Reconnaissance satellite tapping of communications routing or switching centers e g Echelon Remote monitoring and control Remote sensing Remote Terminal Unit RTU SBMV Protocol SCADA Telecommand Telematics Wireless sensor networkReferences edit Telemetry Summary of concept and rationale Report Bibcode 1987STIN 8913455 Mary Bellis Telemetry Bakshi et al pages 8 1 8 3 a b Brian Kopp Industrial telemetry in Telemetry Systems Engineering pages 493 524 Artech House 2002 ISBN 1580532578 US patent 490012 Fernando J Dibble Electric Telemeter Transmitter issued 1893 01 17 Archived 2022 01 25 at the Wayback Machine The term telemeter which was introduced by surveyors has been appropriated to so great an extent by electricians that it is likely to be abandoned by the former for the term tacheometer p 207 Gribble T G 1889 Preliminary Survey in New Countries as Exemplified in the Survey of Windward Hawaii Includes Appendices Minutes of the Proceedings of the Institution of Civil Engineers 95 1889 195 208 doi 10 1680 imotp 1889 20841 ISSN 1753 7843 Archived from the original on 2022 01 25 Retrieved 2021 05 19 Kopp page 497 Sunny Tsiao Read You Loud and Clear The Story of NASA s Spaceflight Tracking and Data Network Government Printing Office 2008 ISBN 0160801915 MacKenzie Donald MacKenzie The Soviet Union and strategic missile guidance in Soviet Military Policy An International Security Reader MIT Press 1989 ISBN 0262620669 K A Bakshi A V Bakshi U A Bakshi Electronic Measurements Technical Publications 2008 ISBN 8184313918 Mayo Wells The Origins of Space Telemetry Technology and Culture 1963 Joachim amp Muehlner Trends in Missile and Space Radio Telemetry declassified Lockheed report Molotov E L Nazemnye Radiotekhnicheskie Sistemy Upravleniya Kosmicheskiymi Apparatami FIA makes massive changes to F1 several technological enhancements banned Autoweek January 14 2003 Retrieved December 29 2022 TRAFFIC MONITORING FOR STATE HIGHWAYS PDF May 2004 ISBN 978 0 478 10549 0 Archived PDF from the original on 2019 01 31 Retrieved 2019 01 05 a href Template Cite book html title Template Cite book cite book a website ignored help New Measurement Train NMT Network Rail www networkrail co uk Archived from the original on 19 February 2019 Retrieved 19 October 2022 Doctor Yellow Shinkansen The Iconic Test Train JapanRailPass November 6 2020 Retrieved December 29 2022 Sperry Rail Service Sperry Rail Service PAUL DORSEY 8 May 2018 WATERSHED SENSOR NETWORK NON LINE OF SIGHT DATA TELEMETRY SYSTEM ohiolink edu Archived from the original on 4 March 2016 Retrieved 8 May 2018 Foster Leroy Telemetry Systems John Wiley amp Sons New York 1965 ITU R M 2286 0 Operational characteristics of aeronautical mobile telemetry systems International Telecommunication Union Geneva 2014 RFID Technology Archived 2019 04 23 at the Wayback Machine University of Arizona retrieved April 8 2019 Burke Eric M Maj U S Army and Ewing Danny L Jr Lt U S Navy MBA Professional Report Improving Warehouse Inventory Management Through RFID Barcoding And Robotics Technologies Archived 2020 03 24 at the Wayback Machine December 2014 Graduate School of Business and Public Policy Naval Postgraduate School Monterey CA retrieved April 8 2019 White Gareth R T Georgina Gardiner Guru Prabhakar and Azley Abd Razak University of the West of England UK A Comparison of Barcoding and RFID Technologies in Practice Archived 2020 08 08 at the Wayback Machine Journal of Information Information Technology and Organizations Volume 2 2007 retrieved April 8 2019 a b Rues Gerald MSEE Remote Tank Monitoring Can Save Time and Money Archived 2019 03 07 at the Wayback Machine March 2019 Tank Transport Archived 2019 03 07 at the Wayback Machine magazine retrieved March 6 2019 Tank Sensors amp Probes Archived 2019 03 18 at the Wayback Machine Electronic Sensors Inc retrieved August 8 2018 Henry Hopper A Dozen Ways to Measure Fluid Level and How They Work Archived 2019 03 30 at the Wayback Machine December 1 2018 Sensors Magazine retrieved August 29 2018 Accurately Measuring Dry Bulk Solids Archived 2018 03 16 at the Wayback Machine January 4 2016 Powder Bulk Solids magazine retrieved April 8 2019 Dynamic Measurement and Simulation of Bulk Solids Archived 2020 08 08 at the Wayback Machine Task Quarterly 7 No 4 2003 611 621 retrieved April 8 2019 Segall N Hobbs Gene Granger CB Anderson AE Bonifacio AS Taekman JM Wright MC 2015 Patient load effects on response time to critical arrhythmias in cardiac telemetry a randomized trial Critical Care Medicine 43 5 1036 42 doi 10 1097 CCM 0000000000000923 PMC 6226252 PMID 25746509 Marine Wildlife Telemetry Pinniped Ecology Applied Research Laboratory Archived from the original on 15 February 2012 Retrieved 30 January 2012 What Is Telemetry Pinniped Ecology Applied Research Laboratory Archived from the original on 15 March 2012 Retrieved 25 July 2011 Livezey K B 1990 Toward the reduction of marking induced abandonment of newborn ungulates Wildlife Society Bulletin 18 193 203 Telemetry in the Mining Industry IETE Journal of Research Volume 29 Issue 8 1983 Retrieved August 20th 2015 a b Operational Safety and Efficiency of Mobile Equipment through Operator Behavior Monitoring Canadian Institute of Mining 2015 External links edit nbsp Wikimedia Commons has media related to Radio telemetry International Foundation for Telemetering IRIG 106 Digital telemetry standard The European Society of Telemetering Retrieved from https en wikipedia org w index php title Telemetry amp oldid 1217944537, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.