fbpx
Wikipedia

Newton's method

In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function. The most basic version starts with a real-valued function f, its derivative f, and an initial guess x0 for a root of f. If f satisfies certain assumptions and the initial guess is close, then

is a better approximation of the root than x0. Geometrically, (x1, 0) is the x-intercept of the tangent of the graph of f at (x0, f(x0)): that is, the improved guess, x1, is the unique root of the linear approximation of f at the initial guess, x0. The process is repeated as

until a sufficiently precise value is reached. The number of correct digits roughly doubles with each step. This algorithm is first in the class of Householder's methods, succeeded by Halley's method. The method can also be extended to complex functions and to systems of equations.

Description edit

The idea is to start with an initial guess, then to approximate the function by its tangent line, and finally to compute the x-intercept of this tangent line. This x-intercept will typically be a better approximation to the original function's root than the first guess, and the method can be iterated.

 
xn+1 is a better approximation than xn for the root x of the function f (blue curve)

If the tangent line to the curve f(x) at x = xn intercepts the x-axis at xn+1 then the slope is

 

Solving for xn+1 gives

 
 
Iteration typically improves the approximation

We start the process with some arbitrary initial value x0. (The closer to the zero, the better. But, in the absence of any intuition about where the zero might lie, a "guess and check" method might narrow the possibilities to a reasonably small interval by appealing to the intermediate value theorem.) The method will usually converge, provided this initial guess is close enough to the unknown zero, and that f(x0) ≠ 0. Furthermore, for a zero of multiplicity 1, the convergence is at least quadratic (see Rate of convergence) in a neighbourhood of the zero, which intuitively means that the number of correct digits roughly doubles in every step. More details can be found in § Analysis below.

Householder's methods are similar but have higher order for even faster convergence. However, the extra computations required for each step can slow down the overall performance relative to Newton's method, particularly if f or its derivatives are computationally expensive to evaluate.

History edit

The name "Newton's method" is derived from Isaac Newton's description of a special case of the method in De analysi per aequationes numero terminorum infinitas (written in 1669, published in 1711 by William Jones) and in De metodis fluxionum et serierum infinitarum (written in 1671, translated and published as Method of Fluxions in 1736 by John Colson). However, his method differs substantially from the modern method given above. Newton applied the method only to polynomials, starting with an initial root estimate and extracting a sequence of error corrections. He used each correction to rewrite the polynomial in terms of the remaining error, and then solved for a new correction by neglecting higher-degree terms. He did not explicitly connect the method with derivatives or present a general formula. Newton applied this method to both numerical and algebraic problems, producing Taylor series in the latter case.

Newton may have derived his method from a similar, less precise method by Vieta. The essence of Vieta's method can be found in the work of the Persian mathematician Sharaf al-Din al-Tusi, while his successor Jamshīd al-Kāshī used a form of Newton's method to solve xPN = 0 to find roots of N (Ypma 1995). A special case of Newton's method for calculating square roots was known since ancient times and is often called the Babylonian method.

Newton's method was used by 17th-century Japanese mathematician Seki Kōwa to solve single-variable equations, though the connection with calculus was missing.[1]

Newton's method was first published in 1685 in A Treatise of Algebra both Historical and Practical by John Wallis.[2] In 1690, Joseph Raphson published a simplified description in Analysis aequationum universalis.[3] Raphson also applied the method only to polynomials, but he avoided Newton's tedious rewriting process by extracting each successive correction from the original polynomial. This allowed him to derive a reusable iterative expression for each problem. Finally, in 1740, Thomas Simpson described Newton's method as an iterative method for solving general nonlinear equations using calculus, essentially giving the description above. In the same publication, Simpson also gives the generalization to systems of two equations and notes that Newton's method can be used for solving optimization problems by setting the gradient to zero.

Arthur Cayley in 1879 in The Newton–Fourier imaginary problem was the first to notice the difficulties in generalizing Newton's method to complex roots of polynomials with degree greater than 2 and complex initial values. This opened the way to the study of the theory of iterations of rational functions.

Practical considerations edit

Newton's method is a powerful technique—in general the convergence is quadratic: as the method converges on the root, the difference between the root and the approximation is squared (the number of accurate digits roughly doubles) at each step. However, there are some difficulties with the method.

Difficulty in calculating the derivative of a function edit

Newton's method requires that the derivative can be calculated directly. An analytical expression for the derivative may not be easily obtainable or could be expensive to evaluate. In these situations, it may be appropriate to approximate the derivative by using the slope of a line through two nearby points on the function. Using this approximation would result in something like the secant method whose convergence is slower than that of Newton's method.

Failure of the method to converge to the root edit

It is important to review the proof of quadratic convergence of Newton's method before implementing it. Specifically, one should review the assumptions made in the proof. For situations where the method fails to converge, it is because the assumptions made in this proof are not met.

Overshoot edit

If the first derivative is not well behaved in the neighborhood of a particular root, the method may overshoot, and diverge from that root. An example of a function with one root, for which the derivative is not well behaved in the neighborhood of the root, is

 

for which the root will be overshot and the sequence of x will diverge. For a = 1/2, the root will still be overshot, but the sequence will oscillate between two values. For 1/2 < a < 1, the root will still be overshot but the sequence will converge, and for a ≥ 1 the root will not be overshot at all.

In some cases, Newton's method can be stabilized by using successive over-relaxation, or the speed of convergence can be increased by using the same method.

Stationary point edit

If a stationary point of the function is encountered, the derivative is zero and the method will terminate due to division by zero.

Poor initial estimate edit

A large error in the initial estimate can contribute to non-convergence of the algorithm. To overcome this problem one can often linearize the function that is being optimized using calculus, logs, differentials, or even using evolutionary algorithms, such as the stochastic tunneling. Good initial estimates lie close to the final globally optimal parameter estimate. In nonlinear regression, the sum of squared errors (SSE) is only "close to" parabolic in the region of the final parameter estimates. Initial estimates found here will allow the Newton–Raphson method to quickly converge. It is only here that the Hessian matrix of the SSE is positive and the first derivative of the SSE is close to zero.

Mitigation of non-convergence edit

In a robust implementation of Newton's method, it is common to place limits on the number of iterations, bound the solution to an interval known to contain the root, and combine the method with a more robust root finding method.

Slow convergence for roots of multiplicity greater than 1 edit

If the root being sought has multiplicity greater than one, the convergence rate is merely linear (errors reduced by a constant factor at each step) unless special steps are taken. When there are two or more roots that are close together then it may take many iterations before the iterates get close enough to one of them for the quadratic convergence to be apparent. However, if the multiplicity m of the root is known, the following modified algorithm preserves the quadratic convergence rate:[4]

 

This is equivalent to using successive over-relaxation. On the other hand, if the multiplicity m of the root is not known, it is possible to estimate m after carrying out one or two iterations, and then use that value to increase the rate of convergence.

If the multiplicity m of the root is finite then g(x) = f(x)/f(x) will have a root at the same location with multiplicity 1. Applying Newton's method to find the root of g(x) recovers quadratic convergence in many cases although it generally involves the second derivative of f(x). In a particularly simple case, if f(x) = xm then g(x) = x/m and Newton's method finds the root in a single iteration with

 

Analysis edit

Suppose that the function f has a zero at α, i.e., f(α) = 0, and f is differentiable in a neighborhood of α.

If f is continuously differentiable and its derivative is nonzero at α, then there exists a neighborhood of α such that for all starting values x0 in that neighborhood, the sequence (xn) will converge to α.[5]

If f is continuously differentiable, its derivative is nonzero at α, and it has a second derivative at α, then the convergence is quadratic or faster. If the second derivative is not 0 at α then the convergence is merely quadratic. If the third derivative exists and is bounded in a neighborhood of α, then:

 

where

 

If the derivative is 0 at α, then the convergence is usually only linear. Specifically, if f is twice continuously differentiable, f(α) = 0 and f(α) ≠ 0, then there exists a neighborhood of α such that, for all starting values x0 in that neighborhood, the sequence of iterates converges linearly, with rate 1/2.[6] Alternatively, if f(α) = 0 and f(x) ≠ 0 for xα, x in a neighborhood U of α, α being a zero of multiplicity r, and if fCr(U), then there exists a neighborhood of α such that, for all starting values x0 in that neighborhood, the sequence of iterates converges linearly.

However, even linear convergence is not guaranteed in pathological situations.

In practice, these results are local, and the neighborhood of convergence is not known in advance. But there are also some results on global convergence: for instance, given a right neighborhood U+ of α, if f is twice differentiable in U+ and if f ≠ 0, f · f > 0 in U+, then, for each x0 in U+ the sequence xk is monotonically decreasing to α.

Proof of quadratic convergence for Newton's iterative method edit

According to Taylor's theorem, any function f(x) which has a continuous second derivative can be represented by an expansion about a point that is close to a root of f(x). Suppose this root is α. Then the expansion of f(α) about xn is:

 

 

 

 

 

(1)

where the Lagrange form of the Taylor series expansion remainder is

 

where ξn is in between xn and α.

Since α is the root, (1) becomes:

 

 

 

 

 

(2)

Dividing equation (2) by f(xn) and rearranging gives

 

 

 

 

 

(3)

Remembering that xn + 1 is defined by

 

 

 

 

 

(4)

one finds that

 

That is,

 

 

 

 

 

(5)

Taking the absolute value of both sides gives

 

 

 

 

 

(6)

Equation (6) shows that the order of convergence is at least quadratic if the following conditions are satisfied:

  1. f(x) ≠ 0; for all xI, where I is the interval [α − |ε0|, α + |ε0|];
  2. f(x) is continuous, for all xI;
  3. M |ε0| < 1

where M is given by

 

If these conditions hold,

 

Basins of attraction edit

The disjoint subsets of the basins of attraction—the regions of the real number line such that within each region iteration from any point leads to one particular root—can be infinite in number and arbitrarily small. For example,[7] for the function f(x) = x3 − 2x2 − 11x + 12 = (x − 4)(x − 1)(x + 3), the following initial conditions are in successive basins of attraction:

2.35287527 converges to 4;
2.35284172 converges to −3;
2.35283735 converges to 4;
2.352836327 converges to −3;
2.352836323 converges to 1.

Failure analysis edit

Newton's method is only guaranteed to converge if certain conditions are satisfied. If the assumptions made in the proof of quadratic convergence are met, the method will converge. For the following subsections, failure of the method to converge indicates that the assumptions made in the proof were not met.

Bad starting points edit

In some cases the conditions on the function that are necessary for convergence are satisfied, but the point chosen as the initial point is not in the interval where the method converges. This can happen, for example, if the function whose root is sought approaches zero asymptotically as x goes to or −∞. In such cases a different method, such as bisection, should be used to obtain a better estimate for the zero to use as an initial point.

Iteration point is stationary edit

Consider the function:

 

It has a maximum at x = 0 and solutions of f(x) = 0 at x = ±1. If we start iterating from the stationary point x0 = 0 (where the derivative is zero), x1 will be undefined, since the tangent at (0, 1) is parallel to the x-axis:

 

The same issue occurs if, instead of the starting point, any iteration point is stationary. Even if the derivative is small but not zero, the next iteration will be a far worse approximation.

Starting point enters a cycle edit

 
The tangent lines of x3 − 2x + 2 at 0 and 1 intersect the x-axis at 1 and 0 respectively, illustrating why Newton's method oscillates between these values for some starting points.

For some functions, some starting points may enter an infinite cycle, preventing convergence. Let

 

and take 0 as the starting point. The first iteration produces 1 and the second iteration returns to 0 so the sequence will alternate between the two without converging to a root. In fact, this 2-cycle is stable: there are neighborhoods around 0 and around 1 from which all points iterate asymptotically to the 2-cycle (and hence not to the root of the function). In general, the behavior of the sequence can be very complex (see Newton fractal). The real solution of this equation is −1.76929235...

Derivative issues edit

If the function is not continuously differentiable in a neighborhood of the root then it is possible that Newton's method will always diverge and fail, unless the solution is guessed on the first try.

Derivative does not exist at root edit

A simple example of a function where Newton's method diverges is trying to find the cube root of zero. The cube root is continuous and infinitely differentiable, except for x = 0, where its derivative is undefined:

 

For any iteration point xn, the next iteration point will be:

 

The algorithm overshoots the solution and lands on the other side of the y-axis, farther away than it initially was; applying Newton's method actually doubles the distances from the solution at each iteration.

In fact, the iterations diverge to infinity for every f(x) = |x|α, where 0 < α < 1/2. In the limiting case of α = 1/2 (square root), the iterations will alternate indefinitely between points x0 and x0, so they do not converge in this case either.

Discontinuous derivative edit

If the derivative is not continuous at the root, then convergence may fail to occur in any neighborhood of the root. Consider the function

 

Its derivative is:

 

Within any neighborhood of the root, this derivative keeps changing sign as x approaches 0 from the right (or from the left) while f(x) ≥ xx2 > 0 for 0 < x < 1.

So f(x)/f(x) is unbounded near the root, and Newton's method will diverge almost everywhere in any neighborhood of it, even though:

  • the function is differentiable (and thus continuous) everywhere;
  • the derivative at the root is nonzero;
  • f is infinitely differentiable except at the root; and
  • the derivative is bounded in a neighborhood of the root (unlike f(x)/f(x)).

Non-quadratic convergence edit

In some cases the iterates converge but do not converge as quickly as promised. In these cases simpler methods converge just as quickly as Newton's method.

Zero derivative edit

If the first derivative is zero at the root, then convergence will not be quadratic. Let

 

then f(x) = 2x and consequently

 

So convergence is not quadratic, even though the function is infinitely differentiable everywhere.

Similar problems occur even when the root is only "nearly" double. For example, let

 

Then the first few iterations starting at x0 = 1 are

x0 = 1
x1 = 0.500250376...
x2 = 0.251062828...
x3 = 0.127507934...
x4 = 0.067671976...
x5 = 0.041224176..
x6 = 0.032741218...
x7 = 0.031642362...

it takes six iterations to reach a point where the convergence appears to be quadratic.

No second derivative edit

If there is no second derivative at the root, then convergence may fail to be quadratic. Let

 

Then

 

And

 

except when x = 0 where it is undefined. Given xn,

 

which has approximately 4/3 times as many bits of precision as xn has. This is less than the 2 times as many which would be required for quadratic convergence. So the convergence of Newton's method (in this case) is not quadratic, even though: the function is continuously differentiable everywhere; the derivative is not zero at the root; and f is infinitely differentiable except at the desired root.

Generalizations edit

Complex functions edit

 
Basins of attraction for x5 − 1 = 0; darker means more iterations to converge.

When dealing with complex functions, Newton's method can be directly applied to find their zeroes.[8] Each zero has a basin of attraction in the complex plane, the set of all starting values that cause the method to converge to that particular zero. These sets can be mapped as in the image shown. For many complex functions, the boundaries of the basins of attraction are fractals.

In some cases there are regions in the complex plane which are not in any of these basins of attraction, meaning the iterates do not converge. For example,[9] if one uses a real initial condition to seek a root of x2 + 1, all subsequent iterates will be real numbers and so the iterations cannot converge to either root, since both roots are non-real. In this case almost all real initial conditions lead to chaotic behavior, while some initial conditions iterate either to infinity or to repeating cycles of any finite length.

Curt McMullen has shown that for any possible purely iterative algorithm similar to Newton's method, the algorithm will diverge on some open regions of the complex plane when applied to some polynomial of degree 4 or higher. However, McMullen gave a generally convergent algorithm for polynomials of degree 3.[10] Also, for any polynomial, Hubbard, Schleicher, and Sutherland gave a method for selecting a set of initial points such that Newton's method will certainly converge at one of them at least.[11]

Chebyshev's third-order method edit

Nash–Moser iteration edit

Systems of equations edit

k variables, k functions edit

One may also use Newton's method to solve systems of k equations, which amounts to finding the (simultaneous) zeroes of k continuously differentiable functions   This is equivalent to finding the zeroes of a single vector-valued function   In the formulation given above, the scalars xn are replaced by vectors xn and instead of dividing the function f(xn) by its derivative f(xn) one instead has to left multiply the function F(xn) by the inverse of its k × k Jacobian matrix JF(xn). This results in the expression

 

Rather than actually computing the inverse of the Jacobian matrix, one may save time and increase numerical stability by solving the system of linear equations

 

for the unknown xn + 1xn.

k variables, m equations, with m > k edit

The k-dimensional variant of Newton's method can be used to solve systems of greater than k (nonlinear) equations as well if the algorithm uses the generalized inverse of the non-square Jacobian matrix J+ = (JTJ)−1JT instead of the inverse of J. If the nonlinear system has no solution, the method attempts to find a solution in the non-linear least squares sense. See Gauss–Newton algorithm for more information.

In a Banach space edit

Another generalization is Newton's method to find a root of a functional F defined in a Banach space. In this case the formulation is

 

where F(Xn) is the Fréchet derivative computed at Xn. One needs the Fréchet derivative to be boundedly invertible at each Xn in order for the method to be applicable. A condition for existence of and convergence to a root is given by the Newton–Kantorovich theorem.[12]

Over p-adic numbers edit

In p-adic analysis, the standard method to show a polynomial equation in one variable has a p-adic root is Hensel's lemma, which uses the recursion from Newton's method on the p-adic numbers. Because of the more stable behavior of addition and multiplication in the p-adic numbers compared to the real numbers (specifically, the unit ball in the p-adics is a ring), convergence in Hensel's lemma can be guaranteed under much simpler hypotheses than in the classical Newton's method on the real line.

Newton–Fourier method edit

The Newton–Fourier method is Joseph Fourier's extension of Newton's method to provide bounds on the absolute error of the root approximation, while still providing quadratic convergence.

Assume that f(x) is twice continuously differentiable on [a, b] and that f contains a root in this interval. Assume that f(x), f(x) ≠ 0 on this interval (this is the case for instance if f(a) < 0, f(b) > 0, and f(x) > 0, and f(x) > 0 on this interval). This guarantees that there is a unique root on this interval; call it α. If it is concave down instead of concave up then replace f(x) by f(x) since they have the same roots.

Let x0 = b be the right endpoint of the interval and let z0 = a be the left endpoint of the interval. Given xn, define

 

which is just Newton's method as before. Then define

 

where the denominator is f(xn) and not f(zn). The iterations xn will be strictly decreasing to the root while the iterations zn will be strictly increasing to the root. Also,

 

so that distance between xn and zn decreases quadratically.

Quasi-Newton methods edit

When the Jacobian is unavailable or too expensive to compute at every iteration, a quasi-Newton method can be used.

q-analog edit

Newton's method can be generalized with the q-analog of the usual derivative.[13]

Modified Newton methods edit

Maehly's procedure edit

A nonlinear equation has multiple solutions in general. But if the initial value is not appropriate, Newton's method may not converge to the desired solution or may converge to the same solution found earlier. When we have already found N solutions of  , then the next root can be found by applying Newton's method to the next equation:[14][15]

 

This method is applied to obtain zeros of the Bessel function of the second kind.[16]

Hirano's modified Newton method edit

Hirano's modified Newton method is a modification conserving the convergence of Newton method and avoiding unstableness.[17] It is developed to solve complex polynomials.

Interval Newton's method edit

Combining Newton's method with interval arithmetic is very useful in some contexts. This provides a stopping criterion that is more reliable than the usual ones (which are a small value of the function or a small variation of the variable between consecutive iterations). Also, this may detect cases where Newton's method converges theoretically but diverges numerically because of an insufficient floating-point precision (this is typically the case for polynomials of large degree, where a very small change of the variable may change dramatically the value of the function; see Wilkinson's polynomial).[18][19]

Consider fC1(X), where X is a real interval, and suppose that we have an interval extension F of f, meaning that F takes as input an interval YX and outputs an interval F(Y) such that:

 

We also assume that 0 ∉ F(X), so in particular f has at most one root in X. We then define the interval Newton operator by:

 

where mY. Note that the hypothesis on F implies that N(Y) is well defined and is an interval (see interval arithmetic for further details on interval operations). This naturally leads to the following sequence:

 

The mean value theorem ensures that if there is a root of f in Xk, then it is also in Xk + 1. Moreover, the hypothesis on F′ ensures that Xk + 1 is at most half the size of Xk when m is the midpoint of Y, so this sequence converges towards [x*, x*], where x* is the root of f in X.

If F(X) strictly contains 0, the use of extended interval division produces a union of two intervals for N(X); multiple roots are therefore automatically separated and bounded.

Applications edit

Minimization and maximization problems edit

Newton's method can be used to find a minimum or maximum of a function f(x). The derivative is zero at a minimum or maximum, so local minima and maxima can be found by applying Newton's method to the derivative. The iteration becomes:

 

Multiplicative inverses of numbers and power series edit

An important application is Newton–Raphson division, which can be used to quickly find the reciprocal of a number a, using only multiplication and subtraction, that is to say the number x such that 1/x = a. We can rephrase that as finding the zero of f(x) = 1/xa. We have f(x) = −1/x2.

Newton's iteration is

 

Therefore, Newton's iteration needs only two multiplications and one subtraction.

This method is also very efficient to compute the multiplicative inverse of a power series.

Solving transcendental equations edit

Many transcendental equations can be solved up to an arbitrary precision by using Newton's method.

When Newton's method can be applied to a transcendental equation, and converges to a solution of the equation, this implies that the solution is a computable number that is exactly represented by the pair formed by an initial approximation and an algorithm for increasing the accuracy of any approximation.

Obtaining zeros of special functions edit

Newton's method is applied to the ratio of Bessel functions in order to obtain its root.[20]

Numerical verification for solutions of nonlinear equations edit

A numerical verification for solutions of nonlinear equations has been established by using Newton's method multiple times and forming a set of solution candidates.[21][22]

Examples edit

Square root edit

Consider the problem of finding the square root of a number a, that is to say the positive number x such that x2 = a. Newton's method is one of many methods of computing square roots. We can rephrase that as finding the zero of f(x) = x2a. We have f(x) = 2x.

For example, for finding the square root of 612 with an initial guess x0 = 10, the sequence given by Newton's method is:

 

where the correct digits are underlined. With only a few iterations one can obtain a solution accurate to many decimal places.

Rearranging the formula as follows yields the Babylonian method of finding square roots:

 

i.e. the arithmetic mean of the guess, xn and a/xn.

Solution of cos(x) = x3 edit

Consider the problem of finding the positive number x with cos x = x3. We can rephrase that as finding the zero of f(x) = cos(x) − x3. We have f(x) = −sin(x) − 3x2. Since cos(x) ≤ 1 for all x and x3 > 1 for x > 1, we know that our solution lies between 0 and 1.

For example, with an initial guess x0 = 0.5, the sequence given by Newton's method is (note that a starting value of 0 will lead to an undefined result, showing the importance of using a starting point that is close to the solution):

 

The correct digits are underlined in the above example. In particular, x6 is correct to 12 decimal places. We see that the number of correct digits after the decimal point increases from 2 (for x3) to 5 and 10, illustrating the quadratic convergence.

Code edit

The following is an implementation example of the Newton's method in the Python (version 3.x) programming language for finding a root of a function f which has derivative f_prime.

The initial guess will be x0 = 1 and the function will be f(x) = x2 − 2 so that f(x) = 2x.

Each new iteration of Newton's method will be denoted by x1. We will check during the computation whether the denominator (yprime) becomes too small (smaller than epsilon), which would be the case if f(xn) ≈ 0, since otherwise a large amount of error could be introduced.

def f(x):  return x**2 - 2 # f(x) = x^2 - 2  def f_prime(x):  return 2*x # f'(x) = 2x  def newtons_method(x0, f, f_prime, tolerance, epsilon, max_iterations):  """Newton's method   Args:  x0: The initial guess  f: The function whose root we are trying to find  f_prime: The derivative of the function  tolerance: Stop when iterations change by less than this  epsilon: Do not divide by a number smaller than this  max_iterations: The maximum number of iterations to compute  """  for i in range(max_iterations):  y = f(x0)  yprime = f_prime(x0)   if abs(yprime) < epsilon: # Give up if the denominator is too small  break   x1 = x0 - y / yprime # Do Newton's computation   if abs(x1 - x0) <= tolerance: # Stop when the result is within the desired tolerance  return x1 # x1 is a solution within tolerance and maximum number of iterations   x0 = x1 # Update x0 to start the process again   return None # Newton's method did not converge 

See also edit

Notes edit

  1. ^ "Chapter 2. Seki Takakazu". Japanese Mathematics in the Edo Period. National Diet Library. Retrieved 24 February 2019.
  2. ^ Wallis, John (1685). A Treatise of Algebra, both Historical and Practical. Oxford: Richard Davis. doi:10.3931/e-rara-8842.
  3. ^ Raphson, Joseph (1697). Analysis Æequationum Universalis (in Latin) (2nd ed.). London: Thomas Bradyll. doi:10.3931/e-rara-13516.
  4. ^ . Archived from the original on 24 May 2019. Retrieved 4 March 2016.
  5. ^ Ryaben'kii, Victor S.; Tsynkov, Semyon V. (2006), A Theoretical Introduction to Numerical Analysis, CRC Press, p. 243, ISBN 9781584886075.
  6. ^ Süli & Mayers 2003, Exercise 1.6
  7. ^ Dence, Thomas (November 1997). "Cubics, chaos and Newton's method". Mathematical Gazette. 81 (492): 403–408. doi:10.2307/3619617. JSTOR 3619617. S2CID 125196796.
  8. ^ Henrici, Peter (1974). "Applied and Computational Complex Analysis". 1. {{cite journal}}: Cite journal requires |journal= (help)
  9. ^ Strang, Gilbert (January 1991). "A chaotic search for i". The College Mathematics Journal. 22 (1): 3–12. doi:10.2307/2686733. JSTOR 2686733.
  10. ^ McMullen, Curt (1987). "Families of rational maps and iterative root-finding algorithms" (PDF). Annals of Mathematics. Second Series. 125 (3): 467–493. doi:10.2307/1971408. JSTOR 1971408.
  11. ^ Hubbard, John; Schleicher, Dierk; Sutherland, Scott (October 2001). "How to find all roots of complex polynomials by Newton's method". Inventiones Mathematicae. 146 (1): 1–33. Bibcode:2001InMat.146....1H. doi:10.1007/s002220100149. ISSN 0020-9910. S2CID 12603806.
  12. ^ Yamamoto, Tetsuro (2001). "Historical Developments in Convergence Analysis for Newton's and Newton-like Methods". In Brezinski, C.; Wuytack, L. (eds.). Numerical Analysis: Historical Developments in the 20th Century. North-Holland. pp. 241–263. ISBN 0-444-50617-9.
  13. ^ Rajkovic, Stankovic & Marinkovic 2002[incomplete short citation]
  14. ^ Press et al. 1992[incomplete short citation]
  15. ^ Stoer & Bulirsch 1980[incomplete short citation]
  16. ^ Zhang & Jin 1996[incomplete short citation]
  17. ^ Murota, Kazuo (1982). "Global Convergence of a Modified Newton Iteration for Algebraic Equations". SIAM Journal on Numerical Analysis. 19 (4): 793–799. Bibcode:1982SJNA...19..793M. doi:10.1137/0719055.
  18. ^ Moore, R. E. (1979). Methods and applications of interval analysis (Vol. 2). Siam.
  19. ^ Hansen, E. (1978). Interval forms of Newtons method. Computing, 20(2), 153–163.
  20. ^ Gil, Segura & Temme (2007)[incomplete short citation]
  21. ^ Kahan (1968)[incomplete short citation]
  22. ^ Krawczyk (1969)[incomplete short citation][incomplete short citation]

References edit

  • Gil, A.; Segura, J.; Temme, N. M. (2007). Numerical methods for special functions. Society for Industrial and Applied Mathematics. ISBN 978-0-89871-634-4.
  • Süli, Endre; Mayers, David (2003). An Introduction to Numerical Analysis. Cambridge University Press. ISBN 0-521-00794-1.

Further reading edit

  • Kendall E. Atkinson, An Introduction to Numerical Analysis, (1989) John Wiley & Sons, Inc, ISBN 0-471-62489-6
  • Tjalling J. Ypma, Historical development of the Newton–Raphson method, SIAM Review 37 (4), 531–551, 1995. doi:10.1137/1037125.
  • Bonnans, J. Frédéric; Gilbert, J. Charles; Lemaréchal, Claude; Sagastizábal, Claudia A. (2006). Numerical optimization: Theoretical and practical aspects. Universitext (Second revised ed. of translation of 1997 French ed.). Berlin: Springer-Verlag. pp. xiv+490. doi:10.1007/978-3-540-35447-5. ISBN 3-540-35445-X. MR 2265882.
  • P. Deuflhard, Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms. Springer Series in Computational Mathematics, Vol. 35. Springer, Berlin, 2004. ISBN 3-540-21099-7.
  • C. T. Kelley, Solving Nonlinear Equations with Newton's Method, no 1 in Fundamentals of Algorithms, SIAM, 2003. ISBN 0-89871-546-6.
  • J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables. Classics in Applied Mathematics, SIAM, 2000. ISBN 0-89871-461-3.
  • Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. (2007). "Chapter 9. Root Finding and Nonlinear Sets of Equations Importance Sampling". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.. See especially Sections 9.4, 9.6, and 9.7.
  • Avriel, Mordecai (1976). Nonlinear Programming: Analysis and Methods. Prentice Hall. pp. 216–221. ISBN 0-13-623603-0.

External links edit

newton, method, this, article, about, finding, roots, finding, minima, optimization, numerical, analysis, also, known, newton, raphson, method, named, after, isaac, newton, joseph, raphson, root, finding, algorithm, which, produces, successively, better, appro. This article is about Newton s method for finding roots For Newton s method for finding minima see Newton s method in optimization In numerical analysis Newton s method also known as the Newton Raphson method named after Isaac Newton and Joseph Raphson is a root finding algorithm which produces successively better approximations to the roots or zeroes of a real valued function The most basic version starts with a real valued function f its derivative f and an initial guess x0 for a root of f If f satisfies certain assumptions and the initial guess is close thenx 1 x 0 f x 0 f x 0 displaystyle x 1 x 0 frac f x 0 f x 0 is a better approximation of the root than x0 Geometrically x1 0 is the x intercept of the tangent of the graph of f at x0 f x0 that is the improved guess x1 is the unique root of the linear approximation of f at the initial guess x0 The process is repeated asx n 1 x n f x n f x n displaystyle x n 1 x n frac f x n f x n until a sufficiently precise value is reached The number of correct digits roughly doubles with each step This algorithm is first in the class of Householder s methods succeeded by Halley s method The method can also be extended to complex functions and to systems of equations Contents 1 Description 2 History 3 Practical considerations 3 1 Difficulty in calculating the derivative of a function 3 2 Failure of the method to converge to the root 3 2 1 Overshoot 3 2 2 Stationary point 3 2 3 Poor initial estimate 3 2 4 Mitigation of non convergence 3 3 Slow convergence for roots of multiplicity greater than 1 4 Analysis 4 1 Proof of quadratic convergence for Newton s iterative method 4 2 Basins of attraction 5 Failure analysis 5 1 Bad starting points 5 1 1 Iteration point is stationary 5 1 2 Starting point enters a cycle 5 2 Derivative issues 5 2 1 Derivative does not exist at root 5 2 2 Discontinuous derivative 5 3 Non quadratic convergence 5 3 1 Zero derivative 5 3 2 No second derivative 6 Generalizations 6 1 Complex functions 6 1 1 Chebyshev s third order method 6 1 2 Nash Moser iteration 6 2 Systems of equations 6 2 1 k variables k functions 6 2 2 k variables m equations with m gt k 6 3 In a Banach space 6 4 Over p adic numbers 6 5 Newton Fourier method 6 6 Quasi Newton methods 6 7 q analog 6 8 Modified Newton methods 6 8 1 Maehly s procedure 6 8 2 Hirano s modified Newton method 6 8 3 Interval Newton s method 7 Applications 7 1 Minimization and maximization problems 7 2 Multiplicative inverses of numbers and power series 7 3 Solving transcendental equations 7 4 Obtaining zeros of special functions 7 5 Numerical verification for solutions of nonlinear equations 8 Examples 8 1 Square root 8 2 Solution of cos x x3 9 Code 10 See also 11 Notes 12 References 13 Further reading 14 External linksDescription editThe idea is to start with an initial guess then to approximate the function by its tangent line and finally to compute the x intercept of this tangent line This x intercept will typically be a better approximation to the original function s root than the first guess and the method can be iterated nbsp xn 1 is a better approximation than xn for the root x of the function f blue curve If the tangent line to the curve f x at x xn intercepts the x axis at xn 1 then the slope isf x n f x n 0 x n x n 1 displaystyle f x n dfrac f x n 0 x n x n 1 nbsp Solving for xn 1 givesx n 1 x n f x n f x n displaystyle x n 1 x n frac f x n f x n nbsp nbsp Iteration typically improves the approximationWe start the process with some arbitrary initial value x0 The closer to the zero the better But in the absence of any intuition about where the zero might lie a guess and check method might narrow the possibilities to a reasonably small interval by appealing to the intermediate value theorem The method will usually converge provided this initial guess is close enough to the unknown zero and that f x0 0 Furthermore for a zero of multiplicity 1 the convergence is at least quadratic see Rate of convergence in a neighbourhood of the zero which intuitively means that the number of correct digits roughly doubles in every step More details can be found in Analysis below Householder s methods are similar but have higher order for even faster convergence However the extra computations required for each step can slow down the overall performance relative to Newton s method particularly if f or its derivatives are computationally expensive to evaluate History editThe name Newton s method is derived from Isaac Newton s description of a special case of the method in De analysi per aequationes numero terminorum infinitas written in 1669 published in 1711 by William Jones and in De metodis fluxionum et serierum infinitarum written in 1671 translated and published as Method of Fluxions in 1736 by John Colson However his method differs substantially from the modern method given above Newton applied the method only to polynomials starting with an initial root estimate and extracting a sequence of error corrections He used each correction to rewrite the polynomial in terms of the remaining error and then solved for a new correction by neglecting higher degree terms He did not explicitly connect the method with derivatives or present a general formula Newton applied this method to both numerical and algebraic problems producing Taylor series in the latter case Newton may have derived his method from a similar less precise method by Vieta The essence of Vieta s method can be found in the work of the Persian mathematician Sharaf al Din al Tusi while his successor Jamshid al Kashi used a form of Newton s method to solve xP N 0 to find roots of N Ypma 1995 A special case of Newton s method for calculating square roots was known since ancient times and is often called the Babylonian method Newton s method was used by 17th century Japanese mathematician Seki Kōwa to solve single variable equations though the connection with calculus was missing 1 Newton s method was first published in 1685 in A Treatise of Algebra both Historical and Practical by John Wallis 2 In 1690 Joseph Raphson published a simplified description in Analysis aequationum universalis 3 Raphson also applied the method only to polynomials but he avoided Newton s tedious rewriting process by extracting each successive correction from the original polynomial This allowed him to derive a reusable iterative expression for each problem Finally in 1740 Thomas Simpson described Newton s method as an iterative method for solving general nonlinear equations using calculus essentially giving the description above In the same publication Simpson also gives the generalization to systems of two equations and notes that Newton s method can be used for solving optimization problems by setting the gradient to zero Arthur Cayley in 1879 in The Newton Fourier imaginary problem was the first to notice the difficulties in generalizing Newton s method to complex roots of polynomials with degree greater than 2 and complex initial values This opened the way to the study of the theory of iterations of rational functions Practical considerations editNewton s method is a powerful technique in general the convergence is quadratic as the method converges on the root the difference between the root and the approximation is squared the number of accurate digits roughly doubles at each step However there are some difficulties with the method Difficulty in calculating the derivative of a function edit Newton s method requires that the derivative can be calculated directly An analytical expression for the derivative may not be easily obtainable or could be expensive to evaluate In these situations it may be appropriate to approximate the derivative by using the slope of a line through two nearby points on the function Using this approximation would result in something like the secant method whose convergence is slower than that of Newton s method Failure of the method to converge to the root edit It is important to review the proof of quadratic convergence of Newton s method before implementing it Specifically one should review the assumptions made in the proof For situations where the method fails to converge it is because the assumptions made in this proof are not met Overshoot edit If the first derivative is not well behaved in the neighborhood of a particular root the method may overshoot and diverge from that root An example of a function with one root for which the derivative is not well behaved in the neighborhood of the root isf x x a 0 lt a lt 1 2 displaystyle f x x a quad 0 lt a lt tfrac 1 2 nbsp for which the root will be overshot and the sequence of x will diverge For a 1 2 the root will still be overshot but the sequence will oscillate between two values For 1 2 lt a lt 1 the root will still be overshot but the sequence will converge and for a 1 the root will not be overshot at all In some cases Newton s method can be stabilized by using successive over relaxation or the speed of convergence can be increased by using the same method Stationary point edit If a stationary point of the function is encountered the derivative is zero and the method will terminate due to division by zero Poor initial estimate edit A large error in the initial estimate can contribute to non convergence of the algorithm To overcome this problem one can often linearize the function that is being optimized using calculus logs differentials or even using evolutionary algorithms such as the stochastic tunneling Good initial estimates lie close to the final globally optimal parameter estimate In nonlinear regression the sum of squared errors SSE is only close to parabolic in the region of the final parameter estimates Initial estimates found here will allow the Newton Raphson method to quickly converge It is only here that the Hessian matrix of the SSE is positive and the first derivative of the SSE is close to zero Mitigation of non convergence edit In a robust implementation of Newton s method it is common to place limits on the number of iterations bound the solution to an interval known to contain the root and combine the method with a more robust root finding method Slow convergence for roots of multiplicity greater than 1 edit If the root being sought has multiplicity greater than one the convergence rate is merely linear errors reduced by a constant factor at each step unless special steps are taken When there are two or more roots that are close together then it may take many iterations before the iterates get close enough to one of them for the quadratic convergence to be apparent However if the multiplicity m of the root is known the following modified algorithm preserves the quadratic convergence rate 4 x n 1 x n m f x n f x n displaystyle x n 1 x n m frac f x n f x n nbsp This is equivalent to using successive over relaxation On the other hand if the multiplicity m of the root is not known it is possible to estimate m after carrying out one or two iterations and then use that value to increase the rate of convergence If the multiplicity m of the root is finite then g x f x f x will have a root at the same location with multiplicity 1 Applying Newton s method to find the root of g x recovers quadratic convergence in many cases although it generally involves the second derivative of f x In a particularly simple case if f x xm then g x x m and Newton s method finds the root in a single iteration withx n 1 x n g x n g x n x n x n m 1 m 0 displaystyle x n 1 x n frac g x n g x n x n frac frac x n m frac 1 m 0 nbsp Analysis editSuppose that the function f has a zero at a i e f a 0 and f is differentiable in a neighborhood of a If f is continuously differentiable and its derivative is nonzero at a then there exists a neighborhood of a such that for all starting values x0 in that neighborhood the sequence xn will converge to a 5 If f is continuously differentiable its derivative is nonzero at a and it has a second derivative at a then the convergence is quadratic or faster If the second derivative is not 0 at a then the convergence is merely quadratic If the third derivative exists and is bounded in a neighborhood of a then D x i 1 f a 2 f a D x i 2 O D x i 3 displaystyle Delta x i 1 frac f alpha 2f alpha left Delta x i right 2 O left Delta x i right 3 nbsp whereD x i x i a displaystyle Delta x i triangleq x i alpha nbsp If the derivative is 0 at a then the convergence is usually only linear Specifically if f is twice continuously differentiable f a 0 and f a 0 then there exists a neighborhood of a such that for all starting values x0 in that neighborhood the sequence of iterates converges linearly with rate 1 2 6 Alternatively if f a 0 and f x 0 for x a x in a neighborhood U of a a being a zero of multiplicity r and if f Cr U then there exists a neighborhood of a such that for all starting values x0 in that neighborhood the sequence of iterates converges linearly However even linear convergence is not guaranteed in pathological situations In practice these results are local and the neighborhood of convergence is not known in advance But there are also some results on global convergence for instance given a right neighborhood U of a if f is twice differentiable in U and if f 0 f f gt 0 in U then for each x0 in U the sequence xk is monotonically decreasing to a Proof of quadratic convergence for Newton s iterative method edit According to Taylor s theorem any function f x which has a continuous second derivative can be represented by an expansion about a point that is close to a root of f x Suppose this root is a Then the expansion of f a about xn is f a f x n f x n a x n R 1 displaystyle f alpha f x n f x n alpha x n R 1 nbsp 1 where the Lagrange form of the Taylor series expansion remainder isR 1 1 2 f 3 n a x n 2 displaystyle R 1 frac 1 2 f xi n left alpha x n right 2 nbsp where 3n is in between xn and a Since a is the root 1 becomes 0 f a f x n f x n a x n 1 2 f 3 n a x n 2 displaystyle 0 f alpha f x n f x n alpha x n tfrac 1 2 f xi n left alpha x n right 2 nbsp 2 Dividing equation 2 by f xn and rearranging gives f x n f x n a x n f 3 n 2 f x n a x n 2 displaystyle frac f x n f x n left alpha x n right frac f xi n 2f x n left alpha x n right 2 nbsp 3 Remembering that xn 1 is defined by x n 1 x n f x n f x n displaystyle x n 1 x n frac f x n f x n nbsp 4 one finds thata x n 1 e n 1 f 3 n 2 f x n a x n e n 2 displaystyle underbrace alpha x n 1 varepsilon n 1 frac f xi n 2f x n underbrace alpha x n varepsilon n 2 nbsp That is e n 1 f 3 n 2 f x n e n 2 displaystyle varepsilon n 1 frac f xi n 2f x n cdot varepsilon n 2 nbsp 5 Taking the absolute value of both sides gives e n 1 f 3 n 2 f x n e n 2 displaystyle left varepsilon n 1 right frac left f xi n right 2 left f x n right cdot varepsilon n 2 nbsp 6 Equation 6 shows that the order of convergence is at least quadratic if the following conditions are satisfied f x 0 for all x I where I is the interval a e0 a e0 f x is continuous for all x I M e0 lt 1where M is given byM 1 2 sup x I f x sup x I 1 f x displaystyle M frac 1 2 left sup x in I vert f x vert right left sup x in I frac 1 vert f x vert right nbsp If these conditions hold e n 1 M e n 2 displaystyle vert varepsilon n 1 vert leq M cdot varepsilon n 2 nbsp Basins of attraction edit The disjoint subsets of the basins of attraction the regions of the real number line such that within each region iteration from any point leads to one particular root can be infinite in number and arbitrarily small For example 7 for the function f x x3 2x2 11x 12 x 4 x 1 x 3 the following initial conditions are in successive basins of attraction 2 352875 27 converges to 4 2 352841 72 converges to 3 2 352837 35 converges to 4 2 352836 327 converges to 3 2 352836 323 converges to 1 Failure analysis editNewton s method is only guaranteed to converge if certain conditions are satisfied If the assumptions made in the proof of quadratic convergence are met the method will converge For the following subsections failure of the method to converge indicates that the assumptions made in the proof were not met Bad starting points edit In some cases the conditions on the function that are necessary for convergence are satisfied but the point chosen as the initial point is not in the interval where the method converges This can happen for example if the function whose root is sought approaches zero asymptotically as x goes to or In such cases a different method such as bisection should be used to obtain a better estimate for the zero to use as an initial point Iteration point is stationary edit Consider the function f x 1 x 2 displaystyle f x 1 x 2 nbsp It has a maximum at x 0 and solutions of f x 0 at x 1 If we start iterating from the stationary point x0 0 where the derivative is zero x1 will be undefined since the tangent at 0 1 is parallel to the x axis x 1 x 0 f x 0 f x 0 0 1 0 displaystyle x 1 x 0 frac f x 0 f x 0 0 frac 1 0 nbsp The same issue occurs if instead of the starting point any iteration point is stationary Even if the derivative is small but not zero the next iteration will be a far worse approximation Starting point enters a cycle edit nbsp The tangent lines of x3 2x 2 at 0 and 1 intersect the x axis at 1 and 0 respectively illustrating why Newton s method oscillates between these values for some starting points For some functions some starting points may enter an infinite cycle preventing convergence Letf x x 3 2 x 2 displaystyle f x x 3 2x 2 nbsp and take 0 as the starting point The first iteration produces 1 and the second iteration returns to 0 so the sequence will alternate between the two without converging to a root In fact this 2 cycle is stable there are neighborhoods around 0 and around 1 from which all points iterate asymptotically to the 2 cycle and hence not to the root of the function In general the behavior of the sequence can be very complex see Newton fractal The real solution of this equation is 1 769292 35 Derivative issues edit If the function is not continuously differentiable in a neighborhood of the root then it is possible that Newton s method will always diverge and fail unless the solution is guessed on the first try Derivative does not exist at root edit A simple example of a function where Newton s method diverges is trying to find the cube root of zero The cube root is continuous and infinitely differentiable except for x 0 where its derivative is undefined f x x 3 displaystyle f x sqrt 3 x nbsp For any iteration point xn the next iteration point will be x n 1 x n f x n f x n x n x n 1 3 1 3 x n 2 3 x n 3 x n 2 x n displaystyle x n 1 x n frac f x n f x n x n frac x n frac 1 3 frac 1 3 x n frac 2 3 x n 3x n 2x n nbsp The algorithm overshoots the solution and lands on the other side of the y axis farther away than it initially was applying Newton s method actually doubles the distances from the solution at each iteration In fact the iterations diverge to infinity for every f x x a where 0 lt a lt 1 2 In the limiting case of a 1 2 square root the iterations will alternate indefinitely between points x0 and x0 so they do not converge in this case either Discontinuous derivative edit If the derivative is not continuous at the root then convergence may fail to occur in any neighborhood of the root Consider the functionf x 0 if x 0 x x 2 sin 2 x if x 0 displaystyle f x begin cases 0 amp text if x 0 x x 2 sin frac 2 x amp text if x neq 0 end cases nbsp Its derivative is f x 1 if x 0 1 2 x sin 2 x 2 cos 2 x if x 0 displaystyle f x begin cases 1 amp text if x 0 1 2x sin frac 2 x 2 cos frac 2 x amp text if x neq 0 end cases nbsp Within any neighborhood of the root this derivative keeps changing sign as x approaches 0 from the right or from the left while f x x x2 gt 0 for 0 lt x lt 1 So f x f x is unbounded near the root and Newton s method will diverge almost everywhere in any neighborhood of it even though the function is differentiable and thus continuous everywhere the derivative at the root is nonzero f is infinitely differentiable except at the root and the derivative is bounded in a neighborhood of the root unlike f x f x Non quadratic convergence edit In some cases the iterates converge but do not converge as quickly as promised In these cases simpler methods converge just as quickly as Newton s method Zero derivative edit If the first derivative is zero at the root then convergence will not be quadratic Letf x x 2 displaystyle f x x 2 nbsp then f x 2x and consequentlyx f x f x x 2 displaystyle x frac f x f x frac x 2 nbsp So convergence is not quadratic even though the function is infinitely differentiable everywhere Similar problems occur even when the root is only nearly double For example letf x x 2 x 1000 1 displaystyle f x x 2 x 1000 1 nbsp Then the first few iterations starting at x0 1 are x0 1 x1 0 500250 376 x2 0 251062 828 x3 0 127507 934 x4 0 067671 976 x5 0 041224 176 x6 0 032741 218 x7 0 031642 362 it takes six iterations to reach a point where the convergence appears to be quadratic No second derivative edit If there is no second derivative at the root then convergence may fail to be quadratic Letf x x x 4 3 displaystyle f x x x frac 4 3 nbsp Thenf x 1 4 3 x 1 3 displaystyle f x 1 tfrac 4 3 x frac 1 3 nbsp Andf x 4 9 x 2 3 displaystyle f x tfrac 4 9 x frac 2 3 nbsp except when x 0 where it is undefined Given xn x n 1 x n f x n f x n 1 3 x n 4 3 1 4 3 x n 1 3 displaystyle x n 1 x n frac f x n f x n frac frac 1 3 x n frac 4 3 1 tfrac 4 3 x n frac 1 3 nbsp which has approximately 4 3 times as many bits of precision as xn has This is less than the 2 times as many which would be required for quadratic convergence So the convergence of Newton s method in this case is not quadratic even though the function is continuously differentiable everywhere the derivative is not zero at the root and f is infinitely differentiable except at the desired root Generalizations editComplex functions edit Main article Newton fractal nbsp Basins of attraction for x5 1 0 darker means more iterations to converge When dealing with complex functions Newton s method can be directly applied to find their zeroes 8 Each zero has a basin of attraction in the complex plane the set of all starting values that cause the method to converge to that particular zero These sets can be mapped as in the image shown For many complex functions the boundaries of the basins of attraction are fractals In some cases there are regions in the complex plane which are not in any of these basins of attraction meaning the iterates do not converge For example 9 if one uses a real initial condition to seek a root of x2 1 all subsequent iterates will be real numbers and so the iterations cannot converge to either root since both roots are non real In this case almost all real initial conditions lead to chaotic behavior while some initial conditions iterate either to infinity or to repeating cycles of any finite length Curt McMullen has shown that for any possible purely iterative algorithm similar to Newton s method the algorithm will diverge on some open regions of the complex plane when applied to some polynomial of degree 4 or higher However McMullen gave a generally convergent algorithm for polynomials of degree 3 10 Also for any polynomial Hubbard Schleicher and Sutherland gave a method for selecting a set of initial points such that Newton s method will certainly converge at one of them at least 11 Chebyshev s third order method edit This section is empty You can help by adding to it February 2019 Nash Moser iteration edit This section is empty You can help by adding to it February 2019 Systems of equations edit This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Newton s method news newspapers books scholar JSTOR January 2023 Learn how and when to remove this template message k variables k functions edit One may also use Newton s method to solve systems of k equations which amounts to finding the simultaneous zeroes of k continuously differentiable functions f R k R displaystyle f mathbb R k to mathbb R nbsp This is equivalent to finding the zeroes of a single vector valued function F R k R k displaystyle F mathbb R k to mathbb R k nbsp In the formulation given above the scalars xn are replaced by vectors xn and instead of dividing the function f xn by its derivative f xn one instead has to left multiply the function F xn by the inverse of its k k Jacobian matrix JF xn This results in the expressionx n 1 x n J F x n 1 F x n displaystyle mathbf x n 1 mathbf x n J F mathbf x n 1 F mathbf x n nbsp Rather than actually computing the inverse of the Jacobian matrix one may save time and increase numerical stability by solving the system of linear equationsJ F x n x n 1 x n F x n displaystyle J F mathbf x n mathbf x n 1 mathbf x n F mathbf x n nbsp for the unknown xn 1 xn k variables m equations with m gt k edit The k dimensional variant of Newton s method can be used to solve systems of greater than k nonlinear equations as well if the algorithm uses the generalized inverse of the non square Jacobian matrix J JT J 1JT instead of the inverse of J If the nonlinear system has no solution the method attempts to find a solution in the non linear least squares sense See Gauss Newton algorithm for more information In a Banach space edit Another generalization is Newton s method to find a root of a functional F defined in a Banach space In this case the formulation isX n 1 X n F X n 1 F X n displaystyle X n 1 X n bigl F X n bigr 1 F X n nbsp where F Xn is the Frechet derivative computed at Xn One needs the Frechet derivative to be boundedly invertible at each Xn in order for the method to be applicable A condition for existence of and convergence to a root is given by the Newton Kantorovich theorem 12 Over p adic numbers edit In p adic analysis the standard method to show a polynomial equation in one variable has a p adic root is Hensel s lemma which uses the recursion from Newton s method on the p adic numbers Because of the more stable behavior of addition and multiplication in the p adic numbers compared to the real numbers specifically the unit ball in the p adics is a ring convergence in Hensel s lemma can be guaranteed under much simpler hypotheses than in the classical Newton s method on the real line Newton Fourier method edit The Newton Fourier method is Joseph Fourier s extension of Newton s method to provide bounds on the absolute error of the root approximation while still providing quadratic convergence Assume that f x is twice continuously differentiable on a b and that f contains a root in this interval Assume that f x f x 0 on this interval this is the case for instance if f a lt 0 f b gt 0 and f x gt 0 and f x gt 0 on this interval This guarantees that there is a unique root on this interval call it a If it is concave down instead of concave up then replace f x by f x since they have the same roots Let x0 b be the right endpoint of the interval and let z0 a be the left endpoint of the interval Given xn definex n 1 x n f x n f x n displaystyle x n 1 x n frac f x n f x n nbsp which is just Newton s method as before Then definez n 1 z n f z n f x n displaystyle z n 1 z n frac f z n f x n nbsp where the denominator is f xn and not f zn The iterations xn will be strictly decreasing to the root while the iterations zn will be strictly increasing to the root Also lim n x n 1 z n 1 x n z n 2 f a 2 f a displaystyle lim n to infty frac x n 1 z n 1 x n z n 2 frac f alpha 2f alpha nbsp so that distance between xn and zn decreases quadratically Quasi Newton methods edit When the Jacobian is unavailable or too expensive to compute at every iteration a quasi Newton method can be used q analog edit Newton s method can be generalized with the q analog of the usual derivative 13 Modified Newton methods edit Maehly s procedure edit A nonlinear equation has multiple solutions in general But if the initial value is not appropriate Newton s method may not converge to the desired solution or may converge to the same solution found earlier When we have already found N solutions of f x 0 displaystyle f x 0 nbsp then the next root can be found by applying Newton s method to the next equation 14 15 F x f x i 1 N x x i 0 displaystyle F x frac f x prod i 1 N x x i 0 nbsp This method is applied to obtain zeros of the Bessel function of the second kind 16 Hirano s modified Newton method edit Hirano s modified Newton method is a modification conserving the convergence of Newton method and avoiding unstableness 17 It is developed to solve complex polynomials Interval Newton s method edit This section may contain citations that do not verify the text Please check for citation inaccuracies February 2019 Learn how and when to remove this template message Combining Newton s method with interval arithmetic is very useful in some contexts This provides a stopping criterion that is more reliable than the usual ones which are a small value of the function or a small variation of the variable between consecutive iterations Also this may detect cases where Newton s method converges theoretically but diverges numerically because of an insufficient floating point precision this is typically the case for polynomials of large degree where a very small change of the variable may change dramatically the value of the function see Wilkinson s polynomial 18 19 Consider f C 1 X where X is a real interval and suppose that we have an interval extension F of f meaning that F takes as input an interval Y X and outputs an interval F Y such that F y y f y F Y f y y Y displaystyle begin aligned F y y amp f y 5pt F Y amp supseteq f y mid y in Y end aligned nbsp We also assume that 0 F X so in particular f has at most one root in X We then define the interval Newton operator by N Y m f m F Y m f m z z F Y displaystyle N Y m frac f m F Y left left m frac f m z right z in F Y right nbsp where m Y Note that the hypothesis on F implies that N Y is well defined and is an interval see interval arithmetic for further details on interval operations This naturally leads to the following sequence X 0 X X k 1 N X k X k displaystyle begin aligned X 0 amp X X k 1 amp N X k cap X k end aligned nbsp The mean value theorem ensures that if there is a root of f in Xk then it is also in Xk 1 Moreover the hypothesis on F ensures that Xk 1 is at most half the size of Xk when m is the midpoint of Y so this sequence converges towards x x where x is the root of f in X If F X strictly contains 0 the use of extended interval division produces a union of two intervals for N X multiple roots are therefore automatically separated and bounded Applications editMinimization and maximization problems edit Main article Newton s method in optimization Newton s method can be used to find a minimum or maximum of a function f x The derivative is zero at a minimum or maximum so local minima and maxima can be found by applying Newton s method to the derivative The iteration becomes x n 1 x n f x n f x n displaystyle x n 1 x n frac f x n f x n nbsp Multiplicative inverses of numbers and power series edit An important application is Newton Raphson division which can be used to quickly find the reciprocal of a number a using only multiplication and subtraction that is to say the number x such that 1 x a We can rephrase that as finding the zero of f x 1 x a We have f x 1 x2 Newton s iteration isx n 1 x n f x n f x n x n 1 x n a 1 x n 2 x n 2 a x n displaystyle x n 1 x n frac f x n f x n x n frac frac 1 x n a frac 1 x n 2 x n 2 ax n nbsp Therefore Newton s iteration needs only two multiplications and one subtraction This method is also very efficient to compute the multiplicative inverse of a power series Solving transcendental equations edit Many transcendental equations can be solved up to an arbitrary precision by using Newton s method When Newton s method can be applied to a transcendental equation and converges to a solution of the equation this implies that the solution is a computable number that is exactly represented by the pair formed by an initial approximation and an algorithm for increasing the accuracy of any approximation Obtaining zeros of special functions edit Newton s method is applied to the ratio of Bessel functions in order to obtain its root 20 Numerical verification for solutions of nonlinear equations edit A numerical verification for solutions of nonlinear equations has been established by using Newton s method multiple times and forming a set of solution candidates 21 22 Examples editSquare root edit Consider the problem of finding the square root of a number a that is to say the positive number x such that x2 a Newton s method is one of many methods of computing square roots We can rephrase that as finding the zero of f x x2 a We have f x 2x For example for finding the square root of 612 with an initial guess x0 10 the sequence given by Newton s method is x 1 x 0 f x 0 f x 0 10 10 2 612 2 10 35 6 x 2 x 1 f x 1 f x 1 35 6 35 6 2 612 2 35 6 2 6 395 505 617 978 x 3 24 7 90 635 492 455 x 4 24 738 6 88 294 075 x 5 24 738 633 753 7 67 displaystyle begin matrix x 1 amp amp x 0 dfrac f x 0 f x 0 amp amp 10 dfrac 10 2 612 2 times 10 amp amp 35 6 qquad qquad qquad quad x 2 amp amp x 1 dfrac f x 1 f x 1 amp amp 35 6 dfrac 35 6 2 612 2 times 35 6 amp amp underline 2 6 395 505 617 978 dots x 3 amp amp vdots amp amp vdots amp amp underline 24 7 90 635 492 455 dots x 4 amp amp vdots amp amp vdots amp amp underline 24 738 6 88 294 075 dots x 5 amp amp vdots amp amp vdots amp amp underline 24 738 633 753 7 67 dots end matrix nbsp where the correct digits are underlined With only a few iterations one can obtain a solution accurate to many decimal places Rearranging the formula as follows yields the Babylonian method of finding square roots x n 1 x n f x n f x n x n x n 2 a 2 x n 1 2 2 x n x n a x n 1 2 x n a x n displaystyle x n 1 x n frac f x n f x n x n frac x n 2 a 2x n frac 1 2 biggl 2x n Bigl x n frac a x n Bigr biggr frac 1 2 Bigl x n frac a x n Bigr nbsp i e the arithmetic mean of the guess xn and a xn Solution of cos x x3 edit Consider the problem of finding the positive number x with cos x x3 We can rephrase that as finding the zero of f x cos x x3 We have f x sin x 3x2 Since cos x 1 for all x and x3 gt 1 for x gt 1 we know that our solution lies between 0 and 1 For example with an initial guess x0 0 5 the sequence given by Newton s method is note that a starting value of 0 will lead to an undefined result showing the importance of using a starting point that is close to the solution x 1 x 0 f x 0 f x 0 0 5 cos 0 5 0 5 3 sin 0 5 3 0 5 2 1 112 141 637 097 x 2 x 1 f x 1 f x 1 0 909 672 693 736 x 3 0 86 7 263 818 209 x 4 0 865 47 7 135 298 x 5 0 865 474 033 1 11 x 6 0 865 474 033 102 displaystyle begin matrix x 1 amp amp x 0 dfrac f x 0 f x 0 amp amp 0 5 dfrac cos 0 5 0 5 3 sin 0 5 3 times 0 5 2 amp amp 1 112 141 637 097 dots x 2 amp amp x 1 dfrac f x 1 f x 1 amp amp vdots amp amp underline 0 909 672 693 736 dots x 3 amp amp vdots amp amp vdots amp amp underline 0 86 7 263 818 209 dots x 4 amp amp vdots amp amp vdots amp amp underline 0 865 47 7 135 298 dots x 5 amp amp vdots amp amp vdots amp amp underline 0 865 474 033 1 11 dots x 6 amp amp vdots amp amp vdots amp amp underline 0 865 474 033 102 dots end matrix nbsp The correct digits are underlined in the above example In particular x6 is correct to 12 decimal places We see that the number of correct digits after the decimal point increases from 2 for x3 to 5 and 10 illustrating the quadratic convergence Code editThe following is an implementation example of the Newton s method in the Python version 3 x programming language for finding a root of a function f which has derivative f prime The initial guess will be x0 1 and the function will be f x x2 2 so that f x 2x Each new iteration of Newton s method will be denoted by x1 We will check during the computation whether the denominator yprime becomes too small smaller than epsilon which would be the case if f xn 0 since otherwise a large amount of error could be introduced def f x return x 2 2 f x x 2 2 def f prime x return 2 x f x 2x def newtons method x0 f f prime tolerance epsilon max iterations Newton s method Args x0 The initial guess f The function whose root we are trying to find f prime The derivative of the function tolerance Stop when iterations change by less than this epsilon Do not divide by a number smaller than this max iterations The maximum number of iterations to compute for i in range max iterations y f x0 yprime f prime x0 if abs yprime lt epsilon Give up if the denominator is too small break x1 x0 y yprime Do Newton s computation if abs x1 x0 lt tolerance Stop when the result is within the desired tolerance return x1 x1 is a solution within tolerance and maximum number of iterations x0 x1 Update x0 to start the process again return None Newton s method did not convergeSee also editAitken s delta squared process Bisection method Euler method Fast inverse square root Fisher scoring Gradient descent Integer square root Kantorovich theorem Laguerre s method Methods of computing square roots Newton s method in optimization Richardson extrapolation Root finding algorithm Secant method Steffensen s method Subgradient methodNotes edit Chapter 2 Seki Takakazu Japanese Mathematics in the Edo Period National Diet Library Retrieved 24 February 2019 Wallis John 1685 A Treatise of Algebra both Historical and Practical Oxford Richard Davis doi 10 3931 e rara 8842 Raphson Joseph 1697 Analysis AEequationum Universalis in Latin 2nd ed London Thomas Bradyll doi 10 3931 e rara 13516 Accelerated and Modified Newton Methods Archived from the original on 24 May 2019 Retrieved 4 March 2016 Ryaben kii Victor S Tsynkov Semyon V 2006 A Theoretical Introduction to Numerical Analysis CRC Press p 243 ISBN 9781584886075 Suli amp Mayers 2003 Exercise 1 6 Dence Thomas November 1997 Cubics chaos and Newton s method Mathematical Gazette 81 492 403 408 doi 10 2307 3619617 JSTOR 3619617 S2CID 125196796 Henrici Peter 1974 Applied and Computational Complex Analysis 1 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Strang Gilbert January 1991 A chaotic search for i The College Mathematics Journal 22 1 3 12 doi 10 2307 2686733 JSTOR 2686733 McMullen Curt 1987 Families of rational maps and iterative root finding algorithms PDF Annals of Mathematics Second Series 125 3 467 493 doi 10 2307 1971408 JSTOR 1971408 Hubbard John Schleicher Dierk Sutherland Scott October 2001 How to find all roots of complex polynomials by Newton s method Inventiones Mathematicae 146 1 1 33 Bibcode 2001InMat 146 1H doi 10 1007 s002220100149 ISSN 0020 9910 S2CID 12603806 Yamamoto Tetsuro 2001 Historical Developments in Convergence Analysis for Newton s and Newton like Methods In Brezinski C Wuytack L eds Numerical Analysis Historical Developments in the 20th Century North Holland pp 241 263 ISBN 0 444 50617 9 Rajkovic Stankovic amp Marinkovic 2002harvnb error no target CITEREFRajkovicStankovicMarinkovic2002 help incomplete short citation Press et al 1992harvnb error no target CITEREFPressTeukolskyVetterlingFlannery1992 help incomplete short citation Stoer amp Bulirsch 1980harvnb error no target CITEREFStoerBulirsch1980 help incomplete short citation Zhang amp Jin 1996harvnb error no target CITEREFZhangJin1996 help incomplete short citation Murota Kazuo 1982 Global Convergence of a Modified Newton Iteration for Algebraic Equations SIAM Journal on Numerical Analysis 19 4 793 799 Bibcode 1982SJNA 19 793M doi 10 1137 0719055 Moore R E 1979 Methods and applications of interval analysis Vol 2 Siam Hansen E 1978 Interval forms of Newtons method Computing 20 2 153 163 Gil Segura amp Temme 2007 incomplete short citation Kahan 1968 incomplete short citation Krawczyk 1969 harvtxt error no target CITEREFKrawczyk1969 help incomplete short citation incomplete short citation References editGil A Segura J Temme N M 2007 Numerical methods for special functions Society for Industrial and Applied Mathematics ISBN 978 0 89871 634 4 Suli Endre Mayers David 2003 An Introduction to Numerical Analysis Cambridge University Press ISBN 0 521 00794 1 Further reading editKendall E Atkinson An Introduction to Numerical Analysis 1989 John Wiley amp Sons Inc ISBN 0 471 62489 6 Tjalling J Ypma Historical development of the Newton Raphson method SIAM Review 37 4 531 551 1995 doi 10 1137 1037125 Bonnans J Frederic Gilbert J Charles Lemarechal Claude Sagastizabal Claudia A 2006 Numerical optimization Theoretical and practical aspects Universitext Second revised ed of translation of 1997 French ed Berlin Springer Verlag pp xiv 490 doi 10 1007 978 3 540 35447 5 ISBN 3 540 35445 X MR 2265882 P Deuflhard Newton Methods for Nonlinear Problems Affine Invariance and Adaptive Algorithms Springer Series in Computational Mathematics Vol 35 Springer Berlin 2004 ISBN 3 540 21099 7 C T Kelley Solving Nonlinear Equations with Newton s Method no 1 in Fundamentals of Algorithms SIAM 2003 ISBN 0 89871 546 6 J M Ortega W C Rheinboldt Iterative Solution of Nonlinear Equations in Several Variables Classics in Applied Mathematics SIAM 2000 ISBN 0 89871 461 3 Press W H Teukolsky S A Vetterling W T Flannery B P 2007 Chapter 9 Root Finding and Nonlinear Sets of Equations Importance Sampling Numerical Recipes The Art of Scientific Computing 3rd ed New York Cambridge University Press ISBN 978 0 521 88068 8 See especially Sections 9 4 9 6 and 9 7 Avriel Mordecai 1976 Nonlinear Programming Analysis and Methods Prentice Hall pp 216 221 ISBN 0 13 623603 0 External links edit nbsp Wikimedia Commons has media related to Newton Method nbsp For a list of words relating to Newton s method see the Newton s method category of article in Wikibooks Newton method Encyclopedia of Mathematics EMS Press 2001 1994 Weisstein Eric W Newton s Method MathWorld Newton s method Citizendium Mathews J The Accelerated and Modified Newton Methods Course notes Wu X Roots of Equations Course notes Retrieved from https en wikipedia org w index php title Newton 27s method amp oldid 1193028612, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.