fbpx
Wikipedia

Module (mathematics)

In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers.

Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication.

Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology.

Introduction and definition edit

Motivation edit

In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scalars need only be a ring, so the module concept represents a significant generalization. In commutative algebra, both ideals and quotient rings are modules, so that many arguments about ideals or quotient rings can be combined into a single argument about modules. In non-commutative algebra, the distinction between left ideals, ideals, and modules becomes more pronounced, though some ring-theoretic conditions can be expressed either about left ideals or left modules.

Much of the theory of modules consists of extending as many of the desirable properties of vector spaces as possible to the realm of modules over a "well-behaved" ring, such as a principal ideal domain. However, modules can be quite a bit more complicated than vector spaces; for instance, not all modules have a basis, and even for those that do (free modules) the number of elements in a basis need not be the same for all bases (that is to say that they may not have a unique rank) if the underlying ring does not satisfy the invariant basis number condition, unlike vector spaces, which always have a (possibly infinite) basis whose cardinality is then unique. (These last two assertions require the axiom of choice in general, but not in the case of finite-dimensional spaces, or certain well-behaved infinite-dimensional spaces such as Lp spaces.)

Formal definition edit

Suppose that R is a ring, and 1 is its multiplicative identity. A left R-module M consists of an abelian group (M, +) and an operation · : R × MM such that for all r, s in R and x, y in M, we have

  1.  
  2.  
  3.  
  4.  

The operation · is called scalar multiplication. Often the symbol · is omitted, but in this article we use it and reserve juxtaposition for multiplication in R. One may write RM to emphasize that M is a left R-module. A right R-module MR is defined similarly in terms of an operation · : M × RM.

Authors who do not require rings to be unital omit condition 4 in the definition above; they would call the structures defined above "unital left R-modules". In this article, consistent with the glossary of ring theory, all rings and modules are assumed to be unital.[1]

An (R,S)-bimodule is an abelian group together with both a left scalar multiplication · by elements of R and a right scalar multiplication ∗ by elements of S, making it simultaneously a left R-module and a right S-module, satisfying the additional condition (r · x) ∗ s = r ⋅ (xs) for all r in R, x in M, and s in S.

If R is commutative, then left R-modules are the same as right R-modules and are simply called R-modules.

Examples edit

  • If K is a field, then K-vector spaces (vector spaces over K) and K-modules are identical.
  • If K is a field, and K[x] a univariate polynomial ring, then a K[x]-module M is a K-module with an additional action of x on M that commutes with the action of K on M. In other words, a K[x]-module is a K-vector space M combined with a linear map from M to M. Applying the structure theorem for finitely generated modules over a principal ideal domain to this example shows the existence of the rational and Jordan canonical forms.
  • The concept of a Z-module agrees with the notion of an abelian group. That is, every abelian group is a module over the ring of integers Z in a unique way. For n > 0, let nx = x + x + ... + x (n summands), 0 ⋅ x = 0, and (−n) ⋅ x = −(nx). Such a module need not have a basis—groups containing torsion elements do not. (For example, in the group of integers modulo 3, one cannot find even one element which satisfies the definition of a linearly independent set since when an integer such as 3 or 6 multiplies an element, the result is 0. However, if a finite field is considered as a module over the same finite field taken as a ring, it is a vector space and does have a basis.)
  • The decimal fractions (including negative ones) form a module over the integers. Only singletons are linearly independent sets, but there is no singleton that can serve as a basis, so the module has no basis and no rank.
  • If R is any ring and n a natural number, then the cartesian product Rn is both a left and right R-module over R if we use the component-wise operations. Hence when n = 1, R is an R-module, where the scalar multiplication is just ring multiplication. The case n = 0 yields the trivial R-module {0} consisting only of its identity element. Modules of this type are called free and if R has invariant basis number (e.g. any commutative ring or field) the number n is then the rank of the free module.
  • If Mn(R) is the ring of n × n matrices over a ring R, M is an Mn(R)-module, and ei is the n × n matrix with 1 in the (i, i)-entry (and zeros elsewhere), then eiM is an R-module, since reim = eirmeiM. So M breaks up as the direct sum of R-modules, M = e1M ⊕ ... ⊕ enM. Conversely, given an R-module M0, then M0n is an Mn(R)-module. In fact, the category of R-modules and the category of Mn(R)-modules are equivalent. The special case is that the module M is just R as a module over itself, then Rn is an Mn(R)-module.
  • If S is a nonempty set, M is a left R-module, and MS is the collection of all functions f : SM, then with addition and scalar multiplication in MS defined pointwise by (f + g)(s) = f(s) + g(s) and (rf)(s) = rf(s), MS is a left R-module. The right R-module case is analogous. In particular, if R is commutative then the collection of R-module homomorphisms h : MN (see below) is an R-module (and in fact a submodule of NM).
  • If X is a smooth manifold, then the smooth functions from X to the real numbers form a ring C(X). The set of all smooth vector fields defined on X form a module over C(X), and so do the tensor fields and the differential forms on X. More generally, the sections of any vector bundle form a projective module over C(X), and by Swan's theorem, every projective module is isomorphic to the module of sections of some bundle; the category of C(X)-modules and the category of vector bundles over X are equivalent.
  • If R is any ring and I is any left ideal in R, then I is a left R-module, and analogously right ideals in R are right R-modules.
  • If R is a ring, we can define the opposite ring Rop which has the same underlying set and the same addition operation, but the opposite multiplication: if ab = c in R, then ba = c in Rop. Any left R-module M can then be seen to be a right module over Rop, and any right module over R can be considered a left module over Rop.
  • Modules over a Lie algebra are (associative algebra) modules over its universal enveloping algebra.
  • If R and S are rings with a ring homomorphism φ : RS, then every S-module M is an R-module by defining rm = φ(r)m. In particular, S itself is such an R-module.

Submodules and homomorphisms edit

Suppose M is a left R-module and N is a subgroup of M. Then N is a submodule (or more explicitly an R-submodule) if for any n in N and any r in R, the product rn (or nr for a right R-module) is in N.

If X is any subset of an R-module M, then the submodule spanned by X is defined to be   where N runs over the submodules of M which contain X, or explicitly  , which is important in the definition of tensor products.[2]

The set of submodules of a given module M, together with the two binary operations + and ∩, forms a lattice which satisfies the modular law: Given submodules U, N1, N2 of M such that N1N2, then the following two submodules are equal: (N1 + U) ∩ N2 = N1 + (UN2).

If M and N are left R-modules, then a map f : MN is a homomorphism of R-modules if for any m, n in M and r, s in R,

 .

This, like any homomorphism of mathematical objects, is just a mapping which preserves the structure of the objects. Another name for a homomorphism of R-modules is an R-linear map.

A bijective module homomorphism f : MN is called a module isomorphism, and the two modules M and N are called isomorphic. Two isomorphic modules are identical for all practical purposes, differing solely in the notation for their elements.

The kernel of a module homomorphism f : MN is the submodule of M consisting of all elements that are sent to zero by f, and the image of f is the submodule of N consisting of values f(m) for all elements m of M.[3] The isomorphism theorems familiar from groups and vector spaces are also valid for R-modules.

Given a ring R, the set of all left R-modules together with their module homomorphisms forms an abelian category, denoted by R-Mod (see category of modules).

Types of modules edit

Finitely generated
An R-module M is finitely generated if there exist finitely many elements x1, ..., xn in M such that every element of M is a linear combination of those elements with coefficients from the ring R.
Cyclic
A module is called a cyclic module if it is generated by one element.
Free
A free R-module is a module that has a basis, or equivalently, one that is isomorphic to a direct sum of copies of the ring R. These are the modules that behave very much like vector spaces.
Projective
Projective modules are direct summands of free modules and share many of their desirable properties.
Injective
Injective modules are defined dually to projective modules.
Flat
A module is called flat if taking the tensor product of it with any exact sequence of R-modules preserves exactness.
Torsionless
A module is called torsionless if it embeds into its algebraic dual.
Simple
A simple module S is a module that is not {0} and whose only submodules are {0} and S. Simple modules are sometimes called irreducible.[4]
Semisimple
A semisimple module is a direct sum (finite or not) of simple modules. Historically these modules are also called completely reducible.
Indecomposable
An indecomposable module is a non-zero module that cannot be written as a direct sum of two non-zero submodules. Every simple module is indecomposable, but there are indecomposable modules which are not simple (e.g. uniform modules).
Faithful
A faithful module M is one where the action of each r ≠ 0 in R on M is nontrivial (i.e. rx ≠ 0 for some x in M). Equivalently, the annihilator of M is the zero ideal.
Torsion-free
A torsion-free module is a module over a ring such that 0 is the only element annihilated by a regular element (non zero-divisor) of the ring, equivalently rm = 0 implies r = 0 or m = 0.
Noetherian
A Noetherian module is a module which satisfies the ascending chain condition on submodules, that is, every increasing chain of submodules becomes stationary after finitely many steps. Equivalently, every submodule is finitely generated.
Artinian
An Artinian module is a module which satisfies the descending chain condition on submodules, that is, every decreasing chain of submodules becomes stationary after finitely many steps.
Graded
A graded module is a module with a decomposition as a direct sum M = x Mx over a graded ring R = x Rx such that RxMyMx+y for all x and y.
Uniform
A uniform module is a module in which all pairs of nonzero submodules have nonzero intersection.

Further notions edit

Relation to representation theory edit

A representation of a group G over a field k is a module over the group ring k[G].

If M is a left R-module, then the action of an element r in R is defined to be the map MM that sends each x to rx (or xr in the case of a right module), and is necessarily a group endomorphism of the abelian group (M, +). The set of all group endomorphisms of M is denoted EndZ(M) and forms a ring under addition and composition, and sending a ring element r of R to its action actually defines a ring homomorphism from R to EndZ(M).

Such a ring homomorphism R → EndZ(M) is called a representation of R over the abelian group M; an alternative and equivalent way of defining left R-modules is to say that a left R-module is an abelian group M together with a representation of R over it. Such a representation R → EndZ(M) may also be called a ring action of R on M.

A representation is called faithful if and only if the map R → EndZ(M) is injective. In terms of modules, this means that if r is an element of R such that rx = 0 for all x in M, then r = 0. Every abelian group is a faithful module over the integers or over some ring of integers modulo n, Z/nZ.

Generalizations edit

A ring R corresponds to a preadditive category R with a single object. With this understanding, a left R-module is just a covariant additive functor from R to the category Ab of abelian groups, and right R-modules are contravariant additive functors. This suggests that, if C is any preadditive category, a covariant additive functor from C to Ab should be considered a generalized left module over C. These functors form a functor category C-Mod which is the natural generalization of the module category R-Mod.

Modules over commutative rings can be generalized in a different direction: take a ringed space (X, OX) and consider the sheaves of OX-modules (see sheaf of modules). These form a category OX-Mod, and play an important role in modern algebraic geometry. If X has only a single point, then this is a module category in the old sense over the commutative ring OX(X).

One can also consider modules over a semiring. Modules over rings are abelian groups, but modules over semirings are only commutative monoids. Most applications of modules are still possible. In particular, for any semiring S, the matrices over S form a semiring over which the tuples of elements from S are a module (in this generalized sense only). This allows a further generalization of the concept of vector space incorporating the semirings from theoretical computer science.

Over near-rings, one can consider near-ring modules, a nonabelian generalization of modules.[citation needed]

See also edit

Notes edit

  1. ^ Dummit, David S. & Foote, Richard M. (2004). Abstract Algebra. Hoboken, NJ: John Wiley & Sons, Inc. ISBN 978-0-471-43334-7.
  2. ^ Mcgerty, Kevin (2016). "ALGEBRA II: RINGS AND MODULES" (PDF).
  3. ^ Ash, Robert. "Module Fundamentals" (PDF). Abstract Algebra: The Basic Graduate Year.
  4. ^ Jacobson (1964), p. 4, Def. 1

References edit

External links edit

module, mathematics, this, article, includes, list, general, references, lacks, sufficient, corresponding, inline, citations, please, help, improve, this, article, introducing, more, precise, citations, 2015, learn, when, remove, this, template, message, mathe. This article includes a list of general references but it lacks sufficient corresponding inline citations Please help to improve this article by introducing more precise citations May 2015 Learn how and when to remove this template message In mathematics a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring The concept of module generalizes also the notion of abelian group since the abelian groups are exactly the modules over the ring of integers Like a vector space a module is an additive abelian group and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication Modules are very closely related to the representation theory of groups They are also one of the central notions of commutative algebra and homological algebra and are used widely in algebraic geometry and algebraic topology Contents 1 Introduction and definition 1 1 Motivation 1 2 Formal definition 2 Examples 3 Submodules and homomorphisms 4 Types of modules 5 Further notions 5 1 Relation to representation theory 5 2 Generalizations 6 See also 7 Notes 8 References 9 External linksIntroduction and definition editMotivation edit In a vector space the set of scalars is a field and acts on the vectors by scalar multiplication subject to certain axioms such as the distributive law In a module the scalars need only be a ring so the module concept represents a significant generalization In commutative algebra both ideals and quotient rings are modules so that many arguments about ideals or quotient rings can be combined into a single argument about modules In non commutative algebra the distinction between left ideals ideals and modules becomes more pronounced though some ring theoretic conditions can be expressed either about left ideals or left modules Much of the theory of modules consists of extending as many of the desirable properties of vector spaces as possible to the realm of modules over a well behaved ring such as a principal ideal domain However modules can be quite a bit more complicated than vector spaces for instance not all modules have a basis and even for those that do free modules the number of elements in a basis need not be the same for all bases that is to say that they may not have a unique rank if the underlying ring does not satisfy the invariant basis number condition unlike vector spaces which always have a possibly infinite basis whose cardinality is then unique These last two assertions require the axiom of choice in general but not in the case of finite dimensional spaces or certain well behaved infinite dimensional spaces such as Lp spaces Formal definition edit Suppose that R is a ring and 1 is its multiplicative identity A left R module M consists of an abelian group M and an operation R M M such that for all r s in R and x y in M we have r x y r x r y displaystyle r cdot x y r cdot x r cdot y nbsp r s x r x s x displaystyle r s cdot x r cdot x s cdot x nbsp r s x r s x displaystyle rs cdot x r cdot s cdot x nbsp 1 x x displaystyle 1 cdot x x nbsp The operation is called scalar multiplication Often the symbol is omitted but in this article we use it and reserve juxtaposition for multiplication in R One may write RM to emphasize that M is a left R module A right R module MR is defined similarly in terms of an operation M R M Authors who do not require rings to be unital omit condition 4 in the definition above they would call the structures defined above unital left R modules In this article consistent with the glossary of ring theory all rings and modules are assumed to be unital 1 An R S bimodule is an abelian group together with both a left scalar multiplication by elements of R and a right scalar multiplication by elements of S making it simultaneously a left R module and a right S module satisfying the additional condition r x s r x s for all r in R x in M and s in S If R is commutative then left R modules are the same as right R modules and are simply called R modules Examples editIf K is a field then K vector spaces vector spaces over K and K modules are identical If K is a field and K x a univariate polynomial ring then a K x module M is a K module with an additional action of x on M that commutes with the action of K on M In other words a K x module is a K vector space M combined with a linear map from M to M Applying the structure theorem for finitely generated modules over a principal ideal domain to this example shows the existence of the rational and Jordan canonical forms The concept of a Z module agrees with the notion of an abelian group That is every abelian group is a module over the ring of integers Z in a unique way For n gt 0 let n x x x x n summands 0 x 0 and n x n x Such a module need not have a basis groups containing torsion elements do not For example in the group of integers modulo 3 one cannot find even one element which satisfies the definition of a linearly independent set since when an integer such as 3 or 6 multiplies an element the result is 0 However if a finite field is considered as a module over the same finite field taken as a ring it is a vector space and does have a basis The decimal fractions including negative ones form a module over the integers Only singletons are linearly independent sets but there is no singleton that can serve as a basis so the module has no basis and no rank If R is any ring and n a natural number then the cartesian product Rn is both a left and right R module over R if we use the component wise operations Hence when n 1 R is an R module where the scalar multiplication is just ring multiplication The case n 0 yields the trivial R module 0 consisting only of its identity element Modules of this type are called free and if R has invariant basis number e g any commutative ring or field the number n is then the rank of the free module If Mn R is the ring of n n matrices over a ring R M is an Mn R module and ei is the n n matrix with 1 in the i i entry and zeros elsewhere then eiM is an R module since reim eirm eiM So M breaks up as the direct sum of R modules M e1M enM Conversely given an R module M0 then M0 n is an Mn R module In fact the category of R modules and the category of Mn R modules are equivalent The special case is that the module M is just R as a module over itself then Rn is an Mn R module If S is a nonempty set M is a left R module and MS is the collection of all functions f S M then with addition and scalar multiplication in MS defined pointwise by f g s f s g s and rf s rf s MS is a left R module The right R module case is analogous In particular if R is commutative then the collection of R module homomorphisms h M N see below is an R module and in fact a submodule of NM If X is a smooth manifold then the smooth functions from X to the real numbers form a ring C X The set of all smooth vector fields defined on X form a module over C X and so do the tensor fields and the differential forms on X More generally the sections of any vector bundle form a projective module over C X and by Swan s theorem every projective module is isomorphic to the module of sections of some bundle the category of C X modules and the category of vector bundles over X are equivalent If R is any ring and I is any left ideal in R then I is a left R module and analogously right ideals in R are right R modules If R is a ring we can define the opposite ring Rop which has the same underlying set and the same addition operation but the opposite multiplication if ab c in R then ba c in Rop Any left R module M can then be seen to be a right module over Rop and any right module over R can be considered a left module over Rop Modules over a Lie algebra are associative algebra modules over its universal enveloping algebra If R and S are rings with a ring homomorphism f R S then every S module M is an R module by defining rm f r m In particular S itself is such an R module Submodules and homomorphisms editSuppose M is a left R module and N is a subgroup of M Then N is a submodule or more explicitly an R submodule if for any n in N and any r in R the product r n or n r for a right R module is in N If X is any subset of an R module M then the submodule spanned by X is defined to be X N X N textstyle langle X rangle bigcap N supseteq X N nbsp where N runs over the submodules of M which contain X or explicitly i 1 k r i x i r i R x i X textstyle left sum i 1 k r i x i mid r i in R x i in X right nbsp which is important in the definition of tensor products 2 The set of submodules of a given module M together with the two binary operations and forms a lattice which satisfies the modular law Given submodules U N1 N2 of M such that N1 N2 then the following two submodules are equal N1 U N2 N1 U N2 If M and N are left R modules then a map f M N is a homomorphism of R modules if for any m n in M and r s in R f r m s n r f m s f n displaystyle f r cdot m s cdot n r cdot f m s cdot f n nbsp This like any homomorphism of mathematical objects is just a mapping which preserves the structure of the objects Another name for a homomorphism of R modules is an R linear map A bijective module homomorphism f M N is called a module isomorphism and the two modules M and N are called isomorphic Two isomorphic modules are identical for all practical purposes differing solely in the notation for their elements The kernel of a module homomorphism f M N is the submodule of M consisting of all elements that are sent to zero by f and the image of f is the submodule of N consisting of values f m for all elements m of M 3 The isomorphism theorems familiar from groups and vector spaces are also valid for R modules Given a ring R the set of all left R modules together with their module homomorphisms forms an abelian category denoted by R Mod see category of modules Types of modules editSee also Glossary of module theory Finitely generated An R module M is finitely generated if there exist finitely many elements x1 xn in M such that every element of M is a linear combination of those elements with coefficients from the ring R Cyclic A module is called a cyclic module if it is generated by one element Free A free R module is a module that has a basis or equivalently one that is isomorphic to a direct sum of copies of the ring R These are the modules that behave very much like vector spaces Projective Projective modules are direct summands of free modules and share many of their desirable properties Injective Injective modules are defined dually to projective modules Flat A module is called flat if taking the tensor product of it with any exact sequence of R modules preserves exactness Torsionless A module is called torsionless if it embeds into its algebraic dual Simple A simple module S is a module that is not 0 and whose only submodules are 0 and S Simple modules are sometimes called irreducible 4 Semisimple A semisimple module is a direct sum finite or not of simple modules Historically these modules are also called completely reducible Indecomposable An indecomposable module is a non zero module that cannot be written as a direct sum of two non zero submodules Every simple module is indecomposable but there are indecomposable modules which are not simple e g uniform modules Faithful A faithful module M is one where the action of each r 0 in R on M is nontrivial i e r x 0 for some x in M Equivalently the annihilator of M is the zero ideal Torsion free A torsion free module is a module over a ring such that 0 is the only element annihilated by a regular element non zero divisor of the ring equivalently rm 0 implies r 0 or m 0 Noetherian A Noetherian module is a module which satisfies the ascending chain condition on submodules that is every increasing chain of submodules becomes stationary after finitely many steps Equivalently every submodule is finitely generated Artinian An Artinian module is a module which satisfies the descending chain condition on submodules that is every decreasing chain of submodules becomes stationary after finitely many steps Graded A graded module is a module with a decomposition as a direct sum M x Mx over a graded ring R x Rx such that RxMy Mx y for all x and y Uniform A uniform module is a module in which all pairs of nonzero submodules have nonzero intersection Further notions editRelation to representation theory edit A representation of a group G over a field k is a module over the group ring k G If M is a left R module then the action of an element r in R is defined to be the map M M that sends each x to rx or xr in the case of a right module and is necessarily a group endomorphism of the abelian group M The set of all group endomorphisms of M is denoted EndZ M and forms a ring under addition and composition and sending a ring element r of R to its action actually defines a ring homomorphism from R to EndZ M Such a ring homomorphism R EndZ M is called a representation of R over the abelian group M an alternative and equivalent way of defining left R modules is to say that a left R module is an abelian group M together with a representation of R over it Such a representation R EndZ M may also be called a ring action of R on M A representation is called faithful if and only if the map R EndZ M is injective In terms of modules this means that if r is an element of R such that rx 0 for all x in M then r 0 Every abelian group is a faithful module over the integers or over some ring of integers modulo n Z nZ Generalizations edit A ring R corresponds to a preadditive category R with a single object With this understanding a left R module is just a covariant additive functor from R to the category Ab of abelian groups and right R modules are contravariant additive functors This suggests that if C is any preadditive category a covariant additive functor from C to Ab should be considered a generalized left module over C These functors form a functor category C Mod which is the natural generalization of the module category R Mod Modules over commutative rings can be generalized in a different direction take a ringed space X OX and consider the sheaves of OX modules see sheaf of modules These form a category OX Mod and play an important role in modern algebraic geometry If X has only a single point then this is a module category in the old sense over the commutative ring OX X One can also consider modules over a semiring Modules over rings are abelian groups but modules over semirings are only commutative monoids Most applications of modules are still possible In particular for any semiring S the matrices over S form a semiring over which the tuples of elements from S are a module in this generalized sense only This allows a further generalization of the concept of vector space incorporating the semirings from theoretical computer science Over near rings one can consider near ring modules a nonabelian generalization of modules citation needed See also editGroup ring Algebra ring theory Module model theory Module spectrum AnnihilatorNotes edit Dummit David S amp Foote Richard M 2004 Abstract Algebra Hoboken NJ John Wiley amp Sons Inc ISBN 978 0 471 43334 7 Mcgerty Kevin 2016 ALGEBRA II RINGS AND MODULES PDF Ash Robert Module Fundamentals PDF Abstract Algebra The Basic Graduate Year Jacobson 1964 p 4 Def 1References editF W Anderson and K R Fuller Rings and Categories of Modules Graduate Texts in Mathematics Vol 13 2nd Ed Springer Verlag New York 1992 ISBN 0 387 97845 3 ISBN 3 540 97845 3 Nathan Jacobson Structure of rings Colloquium publications Vol 37 2nd Ed AMS Bookstore 1964 ISBN 978 0 8218 1037 8External links edit Module Encyclopedia of Mathematics EMS Press 2001 1994 module at the nLab Retrieved from https en wikipedia org w index php title Module mathematics amp oldid 1188425202, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.