fbpx
Wikipedia

Elementary class

In model theory, a branch of mathematical logic, an elementary class (or axiomatizable class) is a class consisting of all structures satisfying a fixed first-order theory.

Definition edit

A class K of structures of a signature σ is called an elementary class if there is a first-order theory T of signature σ, such that K consists of all models of T, i.e., of all σ-structures that satisfy T. If T can be chosen as a theory consisting of a single first-order sentence, then K is called a basic elementary class.

More generally, K is a pseudo-elementary class if there is a first-order theory T of a signature that extends σ, such that K consists of all σ-structures that are reducts to σ of models of T. In other words, a class K of σ-structures is pseudo-elementary if and only if there is an elementary class K' such that K consists of precisely the reducts to σ of the structures in K'.

For obvious reasons, elementary classes are also called axiomatizable in first-order logic, and basic elementary classes are called finitely axiomatizable in first-order logic. These definitions extend to other logics in the obvious way, but since the first-order case is by far the most important, axiomatizable implicitly refers to this case when no other logic is specified.

Conflicting and alternative terminology edit

While the above is nowadays standard terminology in "infinite" model theory, the slightly different earlier definitions are still in use in finite model theory, where an elementary class may be called a Δ-elementary class, and the terms elementary class and first-order axiomatizable class are reserved for basic elementary classes (Ebbinghaus et al. 1994, Ebbinghaus and Flum 2005). Hodges calls elementary classes axiomatizable classes, and he refers to basic elementary classes as definable classes. He also uses the respective synonyms EC  class and EC class (Hodges, 1993).

There are good reasons for this diverging terminology. The signatures that are considered in general model theory are often infinite, while a single first-order sentence contains only finitely many symbols. Therefore, basic elementary classes are atypical in infinite model theory. Finite model theory, on the other hand, deals almost exclusively with finite signatures. It is easy to see that for every finite signature σ and for every class K of σ-structures closed under isomorphism there is an elementary class   of σ-structures such that K and   contain precisely the same finite structures. Hence, elementary classes are not very interesting for finite model theorists.

Easy relations between the notions edit

Clearly every basic elementary class is an elementary class, and every elementary class is a pseudo-elementary class. Moreover, as an easy consequence of the compactness theorem, a class of σ-structures is basic elementary if and only if it is elementary and its complement is also elementary.

Examples edit

A basic elementary class edit

Let σ be a signature consisting only of a unary function symbol f. The class K of σ-structures in which f is one-to-one is a basic elementary class. This is witnessed by the theory T, which consists only of the single sentence

 .

An elementary, basic pseudoelementary class that is not basic elementary edit

Let σ be an arbitrary signature. The class K of all infinite σ-structures is elementary. To see this, consider the sentences

  " ",
  " ",

and so on. (So the sentence   says that there are at least n elements.) The infinite σ-structures are precisely the models of the theory

 .

But K is not a basic elementary class. Otherwise the infinite σ-structures would be precisely those that satisfy a certain first-order sentence τ. But then the set   would be inconsistent. By the compactness theorem, for some natural number n the set   would be inconsistent. But this is absurd, because this theory is satisfied by any finite σ-structure with   or more elements.

However, there is a basic elementary class K' in the signature σ' = σ   {f}, where f is a unary function symbol, such that K consists exactly of the reducts to σ of σ'-structures in K'. K' is axiomatised by the single sentence  , which expresses that f is injective but not surjective. Therefore, K is elementary and what could be called basic pseudo-elementary, but not basic elementary.

Pseudo-elementary class that is non-elementary edit

Finally, consider the signature σ consisting of a single unary relation symbol P. Every σ-structure is partitioned into two subsets: Those elements for which P holds, and the rest. Let K be the class of all σ-structures for which these two subsets have the same cardinality, i.e., there is a bijection between them. This class is not elementary, because a σ-structure in which both the set of realisations of P and its complement are countably infinite satisfies precisely the same first-order sentences as a σ-structure in which one of the sets is countably infinite and the other is uncountable.

Now consider the signature  , which consists of P along with a unary function symbol f. Let   be the class of all  -structures such that f is a bijection and P holds for x iff P does not hold for f(x).   is clearly an elementary class, and therefore K is an example of a pseudo-elementary class that is not elementary.

Non-pseudo-elementary class edit

Let σ be an arbitrary signature. The class K of all finite σ-structures is not elementary, because (as shown above) its complement is elementary but not basic elementary. Since this is also true for every signature extending σ, K is not even a pseudo-elementary class.

This example demonstrates the limits of expressive power inherent in first-order logic as opposed to the far more expressive second-order logic. Second-order logic, however, fails to retain many desirable properties of first-order logic, such as the completeness and compactness theorems.

References edit

  • Chang, Chen Chung; Keisler, H. Jerome (1990) [1973], Model Theory, Studies in Logic and the Foundations of Mathematics (3rd ed.), Elsevier, ISBN 978-0-444-88054-3
  • Ebbinghaus, Heinz-Dieter; Flum, Jörg (2005) [1995], Finite model theory, Berlin, New York: Springer-Verlag, p. 360, ISBN 978-3-540-28787-2
  • Ebbinghaus, Heinz-Dieter; Flum, Jörg; Thomas, Wolfgang (1994), Mathematical Logic (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-94258-2
  • Hodges, Wilfrid (1997), A shorter model theory, Cambridge University Press, ISBN 978-0-521-58713-6
  • Poizat, Bruno (2000), A Course in Model Theory: An Introduction to Contemporary Mathematical Logic, Berlin, New York: Springer-Verlag, ISBN 978-0-387-98655-5

elementary, class, model, theory, branch, mathematical, logic, elementary, class, axiomatizable, class, class, consisting, structures, satisfying, fixed, first, order, theory, contents, definition, conflicting, alternative, terminology, easy, relations, betwee. In model theory a branch of mathematical logic an elementary class or axiomatizable class is a class consisting of all structures satisfying a fixed first order theory Contents 1 Definition 2 Conflicting and alternative terminology 3 Easy relations between the notions 4 Examples 4 1 A basic elementary class 4 2 An elementary basic pseudoelementary class that is not basic elementary 4 3 Pseudo elementary class that is non elementary 4 4 Non pseudo elementary class 5 ReferencesDefinition editA class K of structures of a signature s is called an elementary class if there is a first order theory T of signature s such that K consists of all models of T i e of all s structures that satisfy T If T can be chosen as a theory consisting of a single first order sentence then K is called a basic elementary class More generally K is a pseudo elementary class if there is a first order theory T of a signature that extends s such that K consists of all s structures that are reducts to s of models of T In other words a class K of s structures is pseudo elementary if and only if there is an elementary class K such that K consists of precisely the reducts to s of the structures in K For obvious reasons elementary classes are also called axiomatizable in first order logic and basic elementary classes are called finitely axiomatizable in first order logic These definitions extend to other logics in the obvious way but since the first order case is by far the most important axiomatizable implicitly refers to this case when no other logic is specified Conflicting and alternative terminology editWhile the above is nowadays standard terminology in infinite model theory the slightly different earlier definitions are still in use in finite model theory where an elementary class may be called a D elementary class and the terms elementary class and first order axiomatizable class are reserved for basic elementary classes Ebbinghaus et al 1994 Ebbinghaus and Flum 2005 Hodges calls elementary classes axiomatizable classes and he refers to basic elementary classes as definable classes He also uses the respective synonyms ECD displaystyle Delta nbsp class and EC class Hodges 1993 There are good reasons for this diverging terminology The signatures that are considered in general model theory are often infinite while a single first order sentence contains only finitely many symbols Therefore basic elementary classes are atypical in infinite model theory Finite model theory on the other hand deals almost exclusively with finite signatures It is easy to see that for every finite signature s and for every class K of s structures closed under isomorphism there is an elementary class K displaystyle K nbsp of s structures such that K and K displaystyle K nbsp contain precisely the same finite structures Hence elementary classes are not very interesting for finite model theorists Easy relations between the notions editClearly every basic elementary class is an elementary class and every elementary class is a pseudo elementary class Moreover as an easy consequence of the compactness theorem a class of s structures is basic elementary if and only if it is elementary and its complement is also elementary Examples editA basic elementary class edit Let s be a signature consisting only of a unary function symbol f The class K of s structures in which f is one to one is a basic elementary class This is witnessed by the theory T which consists only of the single sentence x y f x f y x y displaystyle forall x forall y f x f y to x y nbsp An elementary basic pseudoelementary class that is not basic elementary edit Let s be an arbitrary signature The class K of all infinite s structures is elementary To see this consider the sentences r 2 displaystyle rho 2 nbsp x 1 x 2 x 1 x 2 displaystyle exists x 1 exists x 2 x 1 not x 2 nbsp r 3 displaystyle rho 3 nbsp x 1 x 2 x 3 x 1 x 2 x 1 x 3 x 2 x 3 displaystyle exists x 1 exists x 2 exists x 3 x 1 not x 2 land x 1 not x 3 land x 2 not x 3 nbsp and so on So the sentence r n displaystyle rho n nbsp says that there are at least n elements The infinite s structures are precisely the models of the theory T r 2 r 3 r 4 displaystyle T infty rho 2 rho 3 rho 4 dots nbsp But K is not a basic elementary class Otherwise the infinite s structures would be precisely those that satisfy a certain first order sentence t But then the set t r 2 r 3 r 4 displaystyle neg tau rho 2 rho 3 rho 4 dots nbsp would be inconsistent By the compactness theorem for some natural number n the set t r 2 r 3 r 4 r n displaystyle neg tau rho 2 rho 3 rho 4 dots rho n nbsp would be inconsistent But this is absurd because this theory is satisfied by any finite s structure with n 1 displaystyle n 1 nbsp or more elements However there is a basic elementary class K in the signature s s displaystyle cup nbsp f where f is a unary function symbol such that K consists exactly of the reducts to s of s structures in K K is axiomatised by the single sentence x y f x f y x y y x y f x displaystyle forall x forall y f x f y rightarrow x y land exists y neg exists x y f x nbsp which expresses that f is injective but not surjective Therefore K is elementary and what could be called basic pseudo elementary but not basic elementary Pseudo elementary class that is non elementary edit Finally consider the signature s consisting of a single unary relation symbol P Every s structure is partitioned into two subsets Those elements for which P holds and the rest Let K be the class of all s structures for which these two subsets have the same cardinality i e there is a bijection between them This class is not elementary because a s structure in which both the set of realisations of P and its complement are countably infinite satisfies precisely the same first order sentences as a s structure in which one of the sets is countably infinite and the other is uncountable Now consider the signature s displaystyle sigma nbsp which consists of P along with a unary function symbol f Let K displaystyle K nbsp be the class of all s displaystyle sigma nbsp structures such that f is a bijection and P holds for x iff P does not hold for f x K displaystyle K nbsp is clearly an elementary class and therefore K is an example of a pseudo elementary class that is not elementary Non pseudo elementary class edit Let s be an arbitrary signature The class K of all finite s structures is not elementary because as shown above its complement is elementary but not basic elementary Since this is also true for every signature extending s K is not even a pseudo elementary class This example demonstrates the limits of expressive power inherent in first order logic as opposed to the far more expressive second order logic Second order logic however fails to retain many desirable properties of first order logic such as the completeness and compactness theorems References editChang Chen Chung Keisler H Jerome 1990 1973 Model Theory Studies in Logic and the Foundations of Mathematics 3rd ed Elsevier ISBN 978 0 444 88054 3 Ebbinghaus Heinz Dieter Flum Jorg 2005 1995 Finite model theory Berlin New York Springer Verlag p 360 ISBN 978 3 540 28787 2 Ebbinghaus Heinz Dieter Flum Jorg Thomas Wolfgang 1994 Mathematical Logic 2nd ed Berlin New York Springer Verlag ISBN 978 0 387 94258 2 Hodges Wilfrid 1997 A shorter model theory Cambridge University Press ISBN 978 0 521 58713 6 Poizat Bruno 2000 A Course in Model Theory An Introduction to Contemporary Mathematical Logic Berlin New York Springer Verlag ISBN 978 0 387 98655 5 Retrieved from https en wikipedia org w index php title Elementary class amp oldid 1142471849, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.