fbpx
Wikipedia

Algebra over a field

In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear".[1]

The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and non-associative algebras. Given an integer n, the ring of real square matrices of order n is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative, satisfying the Jacobi identity instead.

An algebra is unital or unitary if it has an identity element with respect to the multiplication. The ring of real square matrices of order n forms a unital algebra since the identity matrix of order n is the identity element with respect to matrix multiplication. It is an example of a unital associative algebra, a (unital) ring that is also a vector space.

Many authors use the term algebra to mean associative algebra, or unital associative algebra, or in some subjects such as algebraic geometry, unital associative commutative algebra.

Replacing the field of scalars by a commutative ring leads to the more general notion of an algebra over a ring. Algebras are not to be confused with vector spaces equipped with a bilinear form, like inner product spaces, as, for such a space, the result of a product is not in the space, but rather in the field of coefficients.

Definition and motivation edit

Motivating examples edit

Algebra vector space bilinear operator associativity commutativity
complex numbers   product of complex numbers
 
Yes Yes
cross product of 3D vectors   cross product
 
No No (anticommutative)
quaternions   Hamilton product
 
Yes No
polynomials   polynomial multiplication Yes Yes
square matrices   matrix multiplication Yes No

Definition edit

Let K be a field, and let A be a vector space over K equipped with an additional binary operation from A × A to A, denoted here by · (that is, if x and y are any two elements of A, then x · y is an element of A that is called the product of x and y). Then A is an algebra over K if the following identities hold for all elements x, y, z in A , and all elements (often called scalars) a and b in K:

  • Right distributivity: (x + y) · z = x · z + y · z
  • Left distributivity: z · (x + y) = z · x + z · y
  • Compatibility with scalars: (ax) · (by) = (ab) (x · y).

These three axioms are another way of saying that the binary operation is bilinear. An algebra over K is sometimes also called a K-algebra, and K is called the base field of A. The binary operation is often referred to as multiplication in A. The convention adopted in this article is that multiplication of elements of an algebra is not necessarily associative, although some authors use the term algebra to refer to an associative algebra.

When a binary operation on a vector space is commutative, left distributivity and right distributivity are equivalent, and, in this case, only one distributivity requires a proof. In general, for non-commutative operations left distributivity and right distributivity are not equivalent, and require separate proofs.

Basic concepts edit

Algebra homomorphisms edit

Given K-algebras A and B, a homomorphism of K-algebras or K-algebra homomorphism is a K-linear map f: AB such that f(xy) = f(x) f(y) for all x, y in A. The space of all K-algebra homomorphisms between A and B is frequently written as

 

A K-algebra isomorphism is a bijective K-algebra homomorphism.

Subalgebras and ideals edit

A subalgebra of an algebra over a field K is a linear subspace that has the property that the product of any two of its elements is again in the subspace. In other words, a subalgebra of an algebra is a non-empty subset of elements that is closed under addition, multiplication, and scalar multiplication. In symbols, we say that a subset L of a K-algebra A is a subalgebra if for every x, y in L and c in K, we have that x · y, x + y, and cx are all in L.

In the above example of the complex numbers viewed as a two-dimensional algebra over the real numbers, the one-dimensional real line is a subalgebra.

A left ideal of a K-algebra is a linear subspace that has the property that any element of the subspace multiplied on the left by any element of the algebra produces an element of the subspace. In symbols, we say that a subset L of a K-algebra A is a left ideal if for every x and y in L, z in A and c in K, we have the following three statements.

  1. x + y is in L (L is closed under addition),
  2. cx is in L (L is closed under scalar multiplication),
  3. z · x is in L (L is closed under left multiplication by arbitrary elements).

If (3) were replaced with x · z is in L, then this would define a right ideal. A two-sided ideal is a subset that is both a left and a right ideal. The term ideal on its own is usually taken to mean a two-sided ideal. Of course when the algebra is commutative, then all of these notions of ideal are equivalent. Conditions (1) and (2) together are equivalent to L being a linear subspace of A. It follows from condition (3) that every left or right ideal is a subalgebra.

This definition is different from the definition of an ideal of a ring, in that here we require the condition (2). Of course if the algebra is unital, then condition (3) implies condition (2).

Extension of scalars edit

If we have a field extension F/K, which is to say a bigger field F that contains K, then there is a natural way to construct an algebra over F from any algebra over K. It is the same construction one uses to make a vector space over a bigger field, namely the tensor product  . So if A is an algebra over K, then   is an algebra over F.

Kinds of algebras and examples edit

Algebras over fields come in many different types. These types are specified by insisting on some further axioms, such as commutativity or associativity of the multiplication operation, which are not required in the broad definition of an algebra. The theories corresponding to the different types of algebras are often very different.

Unital algebra edit

An algebra is unital or unitary if it has a unit or identity element I with Ix = x = xI for all x in the algebra.

Zero algebra edit

An algebra is called a zero algebra if uv = 0 for all u, v in the algebra,[2] not to be confused with the algebra with one element. It is inherently non-unital (except in the case of only one element), associative and commutative.

One may define a unital zero algebra by taking the direct sum of modules of a field (or more generally a ring) K and a K-vector space (or module) V, and defining the product of every pair of elements of V to be zero. That is, if λ, μK and u, vV, then (λ + u) (μ + v) = λμ + (λv + μu). If e1, ... ed is a basis of V, the unital zero algebra is the quotient of the polynomial ring K[E1, ..., En] by the ideal generated by the EiEj for every pair (i, j).

An example of unital zero algebra is the algebra of dual numbers, the unital zero R-algebra built from a one dimensional real vector space.

These unital zero algebras may be more generally useful, as they allow to translate any general property of the algebras to properties of vector spaces or modules. For example, the theory of Gröbner bases was introduced by Bruno Buchberger for ideals in a polynomial ring R = K[x1, ..., xn] over a field. The construction of the unital zero algebra over a free R-module allows extending this theory as a Gröbner basis theory for submodules of a free module. This extension allows, for computing a Gröbner basis of a submodule, to use, without any modification, any algorithm and any software for computing Gröbner bases of ideals.

Associative algebra edit

Examples of associative algebras include

Non-associative algebra edit

A non-associative algebra[3] (or distributive algebra) over a field K is a K-vector space A equipped with a K-bilinear map  . The usage of "non-associative" here is meant to convey that associativity is not assumed, but it does not mean it is prohibited – that is, it means "not necessarily associative".

Examples detailed in the main article include:

Algebras and rings edit

The definition of an associative K-algebra with unit is also frequently given in an alternative way. In this case, an algebra over a field K is a ring A together with a ring homomorphism

 

where Z(A) is the center of A. Since η is a ring homomorphism, then one must have either that A is the zero ring, or that η is injective. This definition is equivalent to that above, with scalar multiplication

 

given by

 

Given two such associative unital K-algebras A and B, a unital K-algebra homomorphism f: AB is a ring homomorphism that commutes with the scalar multiplication defined by η, which one may write as

 

for all   and  . In other words, the following diagram commutes:

 

Structure coefficients edit

For algebras over a field, the bilinear multiplication from A × A to A is completely determined by the multiplication of basis elements of A. Conversely, once a basis for A has been chosen, the products of basis elements can be set arbitrarily, and then extended in a unique way to a bilinear operator on A, i.e., so the resulting multiplication satisfies the algebra laws.

Thus, given the field K, any finite-dimensional algebra can be specified up to isomorphism by giving its dimension (say n), and specifying n3 structure coefficients ci,j,k, which are scalars. These structure coefficients determine the multiplication in A via the following rule:

 

where e1,...,en form a basis of A.

Note however that several different sets of structure coefficients can give rise to isomorphic algebras.

In mathematical physics, the structure coefficients are generally written with upper and lower indices, so as to distinguish their transformation properties under coordinate transformations. Specifically, lower indices are covariant indices, and transform via pullbacks, while upper indices are contravariant, transforming under pushforwards. Thus, the structure coefficients are often written ci,jk, and their defining rule is written using the Einstein notation as

eiej = ci,jkek.

If you apply this to vectors written in index notation, then this becomes

(xy)k = ci,jkxiyj.

If K is only a commutative ring and not a field, then the same process works if A is a free module over K. If it isn't, then the multiplication is still completely determined by its action on a set that spans A; however, the structure constants can't be specified arbitrarily in this case, and knowing only the structure constants does not specify the algebra up to isomorphism.

Classification of low-dimensional unital associative algebras over the complex numbers edit

Two-dimensional, three-dimensional and four-dimensional unital associative algebras over the field of complex numbers were completely classified up to isomorphism by Eduard Study.[4]

There exist two such two-dimensional algebras. Each algebra consists of linear combinations (with complex coefficients) of two basis elements, 1 (the identity element) and a. According to the definition of an identity element,

 

It remains to specify

    for the first algebra,
    for the second algebra.

There exist five such three-dimensional algebras. Each algebra consists of linear combinations of three basis elements, 1 (the identity element), a and b. Taking into account the definition of an identity element, it is sufficient to specify

    for the first algebra,
    for the second algebra,
    for the third algebra,
    for the fourth algebra,
    for the fifth algebra.

The fourth of these algebras is non-commutative, and the others are commutative.

Generalization: algebra over a ring edit

In some areas of mathematics, such as commutative algebra, it is common to consider the more general concept of an algebra over a ring, where a commutative ring R replaces the field K. The only part of the definition that changes is that A is assumed to be an R-module (instead of a K-vector space).

Associative algebras over rings edit

A ring A is always an associative algebra over its center, and over the integers. A classical example of an algebra over its center is the split-biquaternion algebra, which is isomorphic to  , the direct product of two quaternion algebras. The center of that ring is  , and hence it has the structure of an algebra over its center, which is not a field. Note that the split-biquaternion algebra is also naturally an 8-dimensional  -algebra.

In commutative algebra, if A is a commutative ring, then any unital ring homomorphism   defines an R-module structure on A, and this is what is known as the R-algebra structure.[5] So a ring comes with a natural  -module structure, since one can take the unique homomorphism  .[6] On the other hand, not all rings can be given the structure of an algebra over a field (for example the integers). See Field with one element for a description of an attempt to give to every ring a structure that behaves like an algebra over a field.

See also edit

Notes edit

  1. ^ See also Hazewinkel, Gubareni & Kirichenko 2004, p. 3 Proposition 1.1.1
  2. ^ Prolla, João B. (2011) [1977]. "Lemma 4.10". Approximation of Vector Valued Functions. Elsevier. p. 65. ISBN 978-0-08-087136-3.
  3. ^ Schafer, Richard D. (1996). An Introduction to Nonassociative Algebras. ISBN 0-486-68813-5.
  4. ^ Study, E. (1890), "Über Systeme complexer Zahlen und ihre Anwendungen in der Theorie der Transformationsgruppen", Monatshefte für Mathematik, 1 (1): 283–354, doi:10.1007/BF01692479, S2CID 121426669
  5. ^ Matsumura, H. (1989). Commutative Ring Theory. Cambridge Studies in Advanced Mathematics. Vol. 8. Translated by Reid, M. (2nd ed.). Cambridge University Press. ISBN 978-0-521-36764-6.
  6. ^ Kunz, Ernst (1985). Introduction to Commutative algebra and algebraic geometry. Birkhauser. ISBN 0-8176-3065-1.

References edit

algebra, over, field, mathematics, algebra, over, field, often, simply, called, algebra, vector, space, equipped, with, bilinear, product, thus, algebra, algebraic, structure, consisting, together, with, operations, multiplication, addition, scalar, multiplica. In mathematics an algebra over a field often simply called an algebra is a vector space equipped with a bilinear product Thus an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by vector space and bilinear 1 The multiplication operation in an algebra may or may not be associative leading to the notions of associative algebras and non associative algebras Given an integer n the ring of real square matrices of order n is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative Three dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative satisfying the Jacobi identity instead An algebra is unital or unitary if it has an identity element with respect to the multiplication The ring of real square matrices of order n forms a unital algebra since the identity matrix of order n is the identity element with respect to matrix multiplication It is an example of a unital associative algebra a unital ring that is also a vector space Many authors use the term algebra to mean associative algebra or unital associative algebra or in some subjects such as algebraic geometry unital associative commutative algebra Replacing the field of scalars by a commutative ring leads to the more general notion of an algebra over a ring Algebras are not to be confused with vector spaces equipped with a bilinear form like inner product spaces as for such a space the result of a product is not in the space but rather in the field of coefficients Contents 1 Definition and motivation 1 1 Motivating examples 1 2 Definition 2 Basic concepts 2 1 Algebra homomorphisms 2 2 Subalgebras and ideals 2 3 Extension of scalars 3 Kinds of algebras and examples 3 1 Unital algebra 3 2 Zero algebra 3 3 Associative algebra 3 4 Non associative algebra 4 Algebras and rings 5 Structure coefficients 6 Classification of low dimensional unital associative algebras over the complex numbers 7 Generalization algebra over a ring 7 1 Associative algebras over rings 8 See also 9 Notes 10 ReferencesDefinition and motivation editMotivating examples edit Algebra vector space bilinear operator associativity commutativity complex numbers R 2 displaystyle mathbb R 2 nbsp product of complex numbers a i b c i d displaystyle left a ib right cdot left c id right nbsp Yes Yes cross product of 3D vectors R 3 displaystyle mathbb R 3 nbsp cross product a b displaystyle vec a times vec b nbsp No No anticommutative quaternions R 4 displaystyle mathbb R 4 nbsp Hamilton product a v b w displaystyle a vec v b vec w nbsp Yes No polynomials R X displaystyle mathbb R X nbsp polynomial multiplication Yes Yes square matrices R n n displaystyle mathbb R n times n nbsp matrix multiplication Yes No Definition edit Let K be a field and let A be a vector space over K equipped with an additional binary operation from A A to A denoted here by that is if x and y are any two elements of A then x y is an element of A that is called the product of x and y Then A is an algebra over K if the following identities hold for all elements x y z in A and all elements often called scalars a and b in K Right distributivity x y z x z y z Left distributivity z x y z x z y Compatibility with scalars ax by ab x y These three axioms are another way of saying that the binary operation is bilinear An algebra over K is sometimes also called a K algebra and K is called the base field of A The binary operation is often referred to as multiplication in A The convention adopted in this article is that multiplication of elements of an algebra is not necessarily associative although some authors use the term algebra to refer to an associative algebra When a binary operation on a vector space is commutative left distributivity and right distributivity are equivalent and in this case only one distributivity requires a proof In general for non commutative operations left distributivity and right distributivity are not equivalent and require separate proofs Basic concepts editAlgebra homomorphisms edit Given K algebras A and B a homomorphism of K algebras or K algebra homomorphism is a K linear map f A B such that f xy f x f y for all x y in A The space of all K algebra homomorphisms between A and B is frequently written as H o m K alg A B displaystyle mathbf Hom K text alg A B nbsp A K algebra isomorphism is a bijective K algebra homomorphism Subalgebras and ideals edit Main article Substructure mathematics A subalgebra of an algebra over a field K is a linear subspace that has the property that the product of any two of its elements is again in the subspace In other words a subalgebra of an algebra is a non empty subset of elements that is closed under addition multiplication and scalar multiplication In symbols we say that a subset L of a K algebra A is a subalgebra if for every x y in L and c in K we have that x y x y and cx are all in L In the above example of the complex numbers viewed as a two dimensional algebra over the real numbers the one dimensional real line is a subalgebra A left ideal of a K algebra is a linear subspace that has the property that any element of the subspace multiplied on the left by any element of the algebra produces an element of the subspace In symbols we say that a subset L of a K algebra A is a left ideal if for every x and y in L z in A and c in K we have the following three statements x y is in L L is closed under addition cx is in L L is closed under scalar multiplication z x is in L L is closed under left multiplication by arbitrary elements If 3 were replaced with x z is in L then this would define a right ideal A two sided ideal is a subset that is both a left and a right ideal The term ideal on its own is usually taken to mean a two sided ideal Of course when the algebra is commutative then all of these notions of ideal are equivalent Conditions 1 and 2 together are equivalent to L being a linear subspace of A It follows from condition 3 that every left or right ideal is a subalgebra This definition is different from the definition of an ideal of a ring in that here we require the condition 2 Of course if the algebra is unital then condition 3 implies condition 2 Extension of scalars edit Main article Extension of scalars If we have a field extension F K which is to say a bigger field F that contains K then there is a natural way to construct an algebra over F from any algebra over K It is the same construction one uses to make a vector space over a bigger field namely the tensor product V F V K F displaystyle V F V otimes K F nbsp So if A is an algebra over K then A F displaystyle A F nbsp is an algebra over F Kinds of algebras and examples editAlgebras over fields come in many different types These types are specified by insisting on some further axioms such as commutativity or associativity of the multiplication operation which are not required in the broad definition of an algebra The theories corresponding to the different types of algebras are often very different Unital algebra edit An algebra is unital or unitary if it has a unit or identity element I with Ix x xI for all x in the algebra Zero algebra edit An algebra is called a zero algebra if uv 0 for all u v in the algebra 2 not to be confused with the algebra with one element It is inherently non unital except in the case of only one element associative and commutative One may define a unital zero algebra by taking the direct sum of modules of a field or more generally a ring K and a K vector space or module V and defining the product of every pair of elements of V to be zero That is if l m K and u v V then l u m v lm lv mu If e1 ed is a basis of V the unital zero algebra is the quotient of the polynomial ring K E1 En by the ideal generated by the EiEj for every pair i j An example of unital zero algebra is the algebra of dual numbers the unital zero R algebra built from a one dimensional real vector space These unital zero algebras may be more generally useful as they allow to translate any general property of the algebras to properties of vector spaces or modules For example the theory of Grobner bases was introduced by Bruno Buchberger for ideals in a polynomial ring R K x1 xn over a field The construction of the unital zero algebra over a free R module allows extending this theory as a Grobner basis theory for submodules of a free module This extension allows for computing a Grobner basis of a submodule to use without any modification any algorithm and any software for computing Grobner bases of ideals Associative algebra edit Main article Associative algebra Examples of associative algebras include the algebra of all n by n matrices over a field or commutative ring K Here the multiplication is ordinary matrix multiplication group algebras where a group serves as a basis of the vector space and algebra multiplication extends group multiplication the commutative algebra K x of all polynomials over K see polynomial ring algebras of functions such as the R algebra of all real valued continuous functions defined on the interval 0 1 or the C algebra of all holomorphic functions defined on some fixed open set in the complex plane These are also commutative Incidence algebras are built on certain partially ordered sets algebras of linear operators for example on a Hilbert space Here the algebra multiplication is given by the composition of operators These algebras also carry a topology many of them are defined on an underlying Banach space which turns them into Banach algebras If an involution is given as well we obtain B algebras and C algebras These are studied in functional analysis Non associative algebra edit Main article Non associative algebra A non associative algebra 3 or distributive algebra over a field K is a K vector space A equipped with a K bilinear map A A A displaystyle A times A rightarrow A nbsp The usage of non associative here is meant to convey that associativity is not assumed but it does not mean it is prohibited that is it means not necessarily associative Examples detailed in the main article include Euclidean space R3 with multiplication given by the vector cross product Octonions Lie algebras Jordan algebras Alternative algebras Flexible algebras Power associative algebrasAlgebras and rings editThe definition of an associative K algebra with unit is also frequently given in an alternative way In this case an algebra over a field K is a ring A together with a ring homomorphism h K Z A displaystyle eta colon K to Z A nbsp where Z A is the center of A Since h is a ring homomorphism then one must have either that A is the zero ring or that h is injective This definition is equivalent to that above with scalar multiplication K A A displaystyle K times A to A nbsp given by k a h k a displaystyle k a mapsto eta k a nbsp Given two such associative unital K algebras A and B a unital K algebra homomorphism f A B is a ring homomorphism that commutes with the scalar multiplication defined by h which one may write as f k a k f a displaystyle f ka kf a nbsp for all k K displaystyle k in K nbsp and a A displaystyle a in A nbsp In other words the following diagram commutes K h A h B A f B displaystyle begin matrix amp amp K amp amp amp eta A swarrow amp amp eta B searrow amp A amp amp begin matrix f longrightarrow end matrix amp amp B end matrix nbsp Structure coefficients editMain article Structure constants For algebras over a field the bilinear multiplication from A A to A is completely determined by the multiplication of basis elements of A Conversely once a basis for A has been chosen the products of basis elements can be set arbitrarily and then extended in a unique way to a bilinear operator on A i e so the resulting multiplication satisfies the algebra laws Thus given the field K any finite dimensional algebra can be specified up to isomorphism by giving its dimension say n and specifying n3 structure coefficients ci j k which are scalars These structure coefficients determine the multiplication in A via the following rule e i e j k 1 n c i j k e k displaystyle mathbf e i mathbf e j sum k 1 n c i j k mathbf e k nbsp where e1 en form a basis of A Note however that several different sets of structure coefficients can give rise to isomorphic algebras In mathematical physics the structure coefficients are generally written with upper and lower indices so as to distinguish their transformation properties under coordinate transformations Specifically lower indices are covariant indices and transform via pullbacks while upper indices are contravariant transforming under pushforwards Thus the structure coefficients are often written ci jk and their defining rule is written using the Einstein notation as eiej ci jkek If you apply this to vectors written in index notation then this becomes xy k ci jkxiyj If K is only a commutative ring and not a field then the same process works if A is a free module over K If it isn t then the multiplication is still completely determined by its action on a set that spans A however the structure constants can t be specified arbitrarily in this case and knowing only the structure constants does not specify the algebra up to isomorphism Classification of low dimensional unital associative algebras over the complex numbers editTwo dimensional three dimensional and four dimensional unital associative algebras over the field of complex numbers were completely classified up to isomorphism by Eduard Study 4 There exist two such two dimensional algebras Each algebra consists of linear combinations with complex coefficients of two basis elements 1 the identity element and a According to the definition of an identity element 1 1 1 1 a a a 1 a displaystyle textstyle 1 cdot 1 1 quad 1 cdot a a quad a cdot 1 a nbsp It remains to specify a a 1 displaystyle textstyle aa 1 nbsp for the first algebra a a 0 displaystyle textstyle aa 0 nbsp for the second algebra There exist five such three dimensional algebras Each algebra consists of linear combinations of three basis elements 1 the identity element a and b Taking into account the definition of an identity element it is sufficient to specify a a a b b b a b b a 0 displaystyle textstyle aa a quad bb b quad ab ba 0 nbsp for the first algebra a a a b b 0 a b b a 0 displaystyle textstyle aa a quad bb 0 quad ab ba 0 nbsp for the second algebra a a b b b 0 a b b a 0 displaystyle textstyle aa b quad bb 0 quad ab ba 0 nbsp for the third algebra a a 1 b b 0 a b b a b displaystyle textstyle aa 1 quad bb 0 quad ab ba b nbsp for the fourth algebra a a 0 b b 0 a b b a 0 displaystyle textstyle aa 0 quad bb 0 quad ab ba 0 nbsp for the fifth algebra The fourth of these algebras is non commutative and the others are commutative Generalization algebra over a ring editIn some areas of mathematics such as commutative algebra it is common to consider the more general concept of an algebra over a ring where a commutative ring R replaces the field K The only part of the definition that changes is that A is assumed to be an R module instead of a K vector space Associative algebras over rings edit Main article Associative algebra A ring A is always an associative algebra over its center and over the integers A classical example of an algebra over its center is the split biquaternion algebra which is isomorphic to H H displaystyle mathbb H times mathbb H nbsp the direct product of two quaternion algebras The center of that ring is R R displaystyle mathbb R times mathbb R nbsp and hence it has the structure of an algebra over its center which is not a field Note that the split biquaternion algebra is also naturally an 8 dimensional R displaystyle mathbb R nbsp algebra In commutative algebra if A is a commutative ring then any unital ring homomorphism R A displaystyle R to A nbsp defines an R module structure on A and this is what is known as the R algebra structure 5 So a ring comes with a natural Z displaystyle mathbb Z nbsp module structure since one can take the unique homomorphism Z A displaystyle mathbb Z to A nbsp 6 On the other hand not all rings can be given the structure of an algebra over a field for example the integers See Field with one element for a description of an attempt to give to every ring a structure that behaves like an algebra over a field See also editAlgebra over an operad Alternative algebra Clifford algebra Differential algebra Free algebra Geometric algebra Max plus algebra Mutation algebra Operator algebra Zariski s lemmaNotes edit See also Hazewinkel Gubareni amp Kirichenko 2004 p 3 Proposition 1 1 1 Prolla Joao B 2011 1977 Lemma 4 10 Approximation of Vector Valued Functions Elsevier p 65 ISBN 978 0 08 087136 3 Schafer Richard D 1996 An Introduction to Nonassociative Algebras ISBN 0 486 68813 5 Study E 1890 Uber Systeme complexer Zahlen und ihre Anwendungen in der Theorie der Transformationsgruppen Monatshefte fur Mathematik 1 1 283 354 doi 10 1007 BF01692479 S2CID 121426669 Matsumura H 1989 Commutative Ring Theory Cambridge Studies in Advanced Mathematics Vol 8 Translated by Reid M 2nd ed Cambridge University Press ISBN 978 0 521 36764 6 Kunz Ernst 1985 Introduction to Commutative algebra and algebraic geometry Birkhauser ISBN 0 8176 3065 1 References editHazewinkel Michiel Gubareni Nadiya Kirichenko Vladimir V 2004 Algebras rings and modules Vol 1 Springer ISBN 1 4020 2690 0 Retrieved from https en wikipedia org w index php title Algebra over a field amp oldid 1218042154 Unital algebra, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.