fbpx
Wikipedia

Instructions per second

Instructions per second (IPS) is a measure of a computer's processor speed. For complex instruction set computers (CISCs), different instructions take different amounts of time, so the value measured depends on the instruction mix; even for comparing processors in the same family the IPS measurement can be problematic. Many reported IPS values have represented "peak" execution rates on artificial instruction sequences with few branches and no cache contention, whereas realistic workloads typically lead to significantly lower IPS values. Memory hierarchy also greatly affects processor performance, an issue barely considered in IPS calculations. Because of these problems, synthetic benchmarks such as Dhrystone are now generally used to estimate computer performance in commonly used applications, and raw IPS has fallen into disuse.

Computer processing efficiency, measured as the number of watts needed per million instructions per second (Watts per MIPS).

The term is commonly used in association with a metric prefix (k, M, G, T, P, or E) to form kilo instructions per second (kIPS), million instructions per second (MIPS), and billion instructions per second (GIPS) and so on. Formerly TIPS was used occasionally for "thousand ips".

Computing

IPS can be calculated using this equation:[1]

 

However, the instructions/cycle measurement depends on the instruction sequence, the data and external factors.

Thousand instructions per second (TIPS/kIPS)

Before standard benchmarks were available, average speed rating of computers was based on calculations for a mix of instructions with the results given in kilo Instructions Per Second (kIPS). The most famous was the Gibson Mix,[2] produced by Jack Clark Gibson of IBM for scientific applications in 1959. Other ratings, such as the ADP mix which does not include floating point operations, were produced for commercial applications. The thousand instructions per second (kIPS) unit is rarely used today, as most current microprocessors can execute at least a million instructions per second.

The Gibson Mix

Gibson divided computer instructions into 12 classes, based on the IBM 704 architecture, adding a 13th class to account for indexing time. Weights were primarily based on analysis of seven scientific programs run on the 704, with a small contribution from some IBM 650 programs. The overall score was then the weighted sum of the average execution speed for instructions in each class.[3]

Millions of instructions per second (MIPS)

The speed of a given CPU depends on many factors, such as the type of instructions being executed, the execution order and the presence of branch instructions (problematic in CPU pipelines). CPU instruction rates are different from clock frequencies, usually reported in Hz, as each instruction may require several clock cycles to complete or the processor may be capable of executing multiple independent instructions simultaneously. MIPS can be useful when comparing performance between processors made with similar architecture (e.g. Microchip branded microcontrollers), but they are difficult to compare between differing CPU architectures.[4] This led to the term "Meaningless Indicator of Processor Speed,"[5] or less commonly, "Meaningless Indices of Performance," [6] being popular amongst technical people by the mid-1980s.

For this reason, MIPS has become not a measure of instruction execution speed, but task performance speed compared to a reference. In the late 1970s, minicomputer performance was compared using VAX MIPS, where computers were measured on a task and their performance rated against the VAX-11/780 that was marketed as a 1 MIPS machine. (The measure was also known as the VAX Unit of Performance or VUP.) This was chosen because the 11/780 was roughly equivalent in performance to an IBM System/370 model 158–3, which was commonly accepted in the computing industry as running at 1 MIPS.

Many minicomputer performance claims were based on the Fortran version of the Whetstone benchmark, giving Millions of Whetstone Instructions Per Second (MWIPS). The VAX 11/780 with FPA (1977) runs at 1.02 MWIPS.

Effective MIPS speeds are highly dependent on the programming language used. The Whetstone Report has a table showing MWIPS speeds of PCs via early interpreters and compilers up to modern languages. The first PC compiler was for BASIC (1982) when a 4.8 MHz 8088/87 CPU obtained 0.01 MWIPS. Results on a 2.4 GHz Intel Core 2 Duo (1 CPU 2007) vary from 9.7 MWIPS using BASIC Interpreter, 59 MWIPS via BASIC Compiler, 347 MWIPS using 1987 Fortran, 1,534 MWIPS through HTML/Java to 2,403 MWIPS using a modern C/C++ compiler.

For the most early 8-bit and 16-bit microprocessors, performance was measured in thousand instructions per second (1000 kIPS = 1 MIPS).

zMIPS refers to the MIPS measure used internally by IBM to rate its mainframe servers (zSeries, IBM System z9, and IBM System z10).

Weighted million operations per second (WMOPS) is a similar measurement, used for audio codecs.

Timeline of instructions per second

Processor / System Dhrystone MIPS or MIPS, and frequency D instructions per clock cycle D instructions per clock cycle per core Year Source
UNIVAC I 0.002 MIPS at 2.25 MHz 0.0008 0.0008 1951

[7]

IBM 7030 ("Stretch") 1.200 MIPS at 3.30 MHz 0.364 0.364 1961 [8][9]
CDC 6600 10.00 MIPS at 10.00 MHz 1 1 1965 [10][11]
Intel 4004 0.092 MIPS at 0.740 MHz
(Not Dhrystone)
0.124 0.124 1971 [12]
IBM System/370 Model 158 0.640 MIPS at 8.696 MHz 0.0736 0.0736 1972 [13]
Intel 8080 0.290 MIPS at 2.000 MHz
(Not Dhrystone)
0.145 0.145 1974 [14]
Cray 1 160.0 MIPS at 80.00 MHz 2 2 1975 [15]
MOS Technology 6502 0.430 MIPS at 1.000 MHz 0.43 0.43 1975 [16]
Intel 8080A 0.435 MIPS at 3.000 MHz
(Not Dhrystone)
0.145 0.145 1976 [14]
Zilog Z80 0.580 MIPS at 4.000 MHz
(Not Dhrystone)
0.145 0.145 1976 [16]
Motorola 6802 0.500 MIPS at 1.000 MHz 0.5 0.5 1977 [17]
IBM System/370 Model 158-3 0.730 MIPS at 8.696 MHz 0.0839 0.0839 1977 [13]
VAX-11/780 1.000 MIPS at 5.000 MHz 0.2 0.2 1977 [13]
Motorola 6809 0.420 MIPS at 1.000 MHz 0.42 0.42 1978 [16]
Intel 8086 0.330 MIPS at 5.000 MHz 0.066 0.066 1978 [14]
Fujitsu MB8843 2.000 MIPS at 2.000 MHz
(Not Dhrystone)
1 1 1978 [18]
Intel 8088 0.750 MIPS at 10.00 MHz 0.075 0.075 1979 [14]
Motorola 68000 1.400 MIPS at 8.000 MHz 0.175 0.175 1979 [16]
Zilog Z8001/Z8002 1.5 MIPS at 6 MHz 0.25 0.25 1979 [19]
Intel 8035/8039/8048 6 MIPS at 6 MHz
(Not Dhrystone)
1 1 1980 [20]
Fujitsu MB8843/MB8844 6 MIPS at 6 MHz
(Not Dhrystone)
1 1 1980 [18]
Zilog Z80/Z80H 1.16 MIPS at 8 MHz
(Not Dhrystone)
0.145 0.145 1981 [16][21]
Motorola 6802 1.79 MIPS at 3.58 MHz 0.5 0.5 1981 [17][22]
Zilog Z8001/Z8002B 2.5 MIPS at 10 MHz 0.25 0.25 1981 [19]
MOS Technology 6502 2.522 MIPS at 5.865 MHz 0.43 0.43 1981 [16][22]
Intel 80286 1.28 MIPS at 12 MHz 0.107 0.107 1982 [13]
Motorola 68000 2.188 MIPS at 12.5 MHz 0.175 0.175 1982 [16]
Motorola 68010 2.407 MIPS at 12.5 MHz 0.193 0.193 1982 [23]
NEC V20 4 MIPS at 8 MHz
(Not Dhrystone)
0.5 0.5 1982 [24]
LINKS-1 Computer Graphics System (257-processor) 642.5 MIPS at 10 MHz 2.5 0.25 1982 [25]
Texas Instruments TMS32010 5 MIPS at 20 MHz 0.25 0.25 1983 [26]
NEC V30 5 MIPS at 10 MHz
(Not Dhrystone)
0.5 0.5 1983 [24]
Motorola 68010 3.209 MIPS at 16.67 MHz 0.193 0.193 1984 [23]
Motorola 68020 4.848 MIPS at 16 MHz 0.303 0.303 1984 [27]
Hitachi HD63705 2 MIPS at 2 MHz 1 1 1985 [28][29]
Intel i386DX 2.15 MIPS at 16 MHz 0.134 0.134 1985 [13]
Hitachi-Motorola 68HC000 3.5 MIPS at 20 MHz 0.175 0.175 1985 [16]
Intel 8751 1 MIPS at 12 MHz 0.083 0.083 1985 [30]
Sega System 16 (4-processor) 16.33 MIPS at 10 MHz 4.083 1.020 1985 [31]
ARM2 4 MIPS at 8 MHz 0.5 0.5 1986 [32]
Texas Instruments TMS34010 6 MIPS at 50 MHz 0.12 0.12 1986 [33]
NEC V70 6.6 MIPS at 20 MHz 0.33 0.33 1987 [34]
Motorola 68030 9 MIPS at 25 MHz 0.36 0.36 1987 [35][36]
Gmicro/200 10 MIPS at 20 MHz 0.5 0.5 1987 [37]
Texas Instruments TMS320C20 12.5 MIPS at 25 MHz 0.5 0.5 1987 [38]
Analog Devices ADSP-2100 12.5 MIPS at 12.5 MHz 1 1 1987 [39]
Texas Instruments TMS320C25 25 MIPS at 50 MHz 0.5 0.5 1987 [38]
Motorola 68020 10 MIPS at 33 MHz 0.303 0.303 1988 [27]
Motorola 68030 18 MIPS at 50 MHz 0.36 0.36 1988 [36]
Namco System 21 (10-processor) 73.927 MIPS at 25 MHz 2.957 0.296 1988 [40]
Intel i386DX 4.3 MIPS at 33 MHz 0.13 0.13 1989 [13]
Intel i486DX 8.7 MIPS at 25 MHz 0.348 0.348 1989 [13]
NEC V80 16.5 MIPS at 33 MHz 0.5 0.5 1989 [34]
Intel i860 25 MIPS at 25 MHz 1 1 1989 [41]
Atari Hard Drivin' (7-processor) 33.573 MIPS at 50 MHz 0.671 0.0959 1989 [42]
NEC SX-3 (4-processor) 680 MIPS at 400 MHz 1.7 0.425 1989 [43]
ARM3 12 MIPS at 25 MHz 0.5 0.5 1989 [44]
Motorola 68040 44 MIPS at 40 MHz 1.1 1.1 1990 [45]
Namco System 21 (Galaxian³) (96-processor) 1,660.386 MIPS at 40 MHz 41.51 0.432 1990 [46]
AMD Am386 9 MIPS at 40 MHz 0.225 0.225 1991 [47]
Intel i486DX 11.1 MIPS at 33 MHz 0.336 0.336 1991 [13]
Intel i860 50 MIPS at 50 MHz 1 1 1991 [41]
Intel i486DX2 25.6 MIPS at 66 MHz 0.388 0.388 1992 [13]
Alpha 21064 (EV4) 86 MIPS at 150 MHz 0.573 0.573 1992 [13]
Alpha 21064 (EV4S/EV45) 135 MIPS at 200 MHz 0.675 0.675 1993 [13][48]
MIPS R4400 85 MIPS at 150 MHz 0.567 0.567 1993 [49]
Gmicro/500 132 MIPS at 66 MHz 2 2 1993 [50]
IBM-Motorola PowerPC 601 157.7 MIPS at 80 MHz 1.971 1.971 1993 [51]
SGI Onyx RealityEngine2 (36-processor) 2,640 MIPS at 150 MHz 17.6 0.489 1993 [52]
Namco Magic Edge Hornet Simulator (36-processor) 2,880 MIPS at 150 MHz 19.2 0.533 1993 [49]
ARM7 40 MIPS at 45 MHz 0.889 0.889 1994 [53]
Intel DX4 70 MIPS at 100 MHz 0.7 0.7 1994 [14]
Motorola 68060 110 MIPS at 75 MHz 1.33 1.33 1994
Intel Pentium 188 MIPS at 100 MHz 1.88 1.88 1994 [54]
Microchip PIC16F 5 MIPS at 20 MHz 0.25 0.25 1995 [55]
IBM-Motorola PowerPC 603e 188 MIPS at 133 MHz 1.414 1.414 1995 [56]
ARM 7500FE 35.9 MIPS at 40 MHz 0.9 0.9 1996
IBM-Motorola PowerPC 603ev 423 MIPS at 300 MHz 1.41 1.41 1996 [56]
Intel Pentium Pro 541 MIPS at 200 MHz 2.7 2.7 1996 [57]
Hitachi SH-4 360 MIPS at 200 MHz 1.8 1.8 1997 [58][59]
IBM-Motorola PowerPC 750 525 MIPS at 233 MHz 2.3 2.3 1997
Zilog eZ80 80 MIPS at 50 MHz 1.6 1.6 1999 [60]
Intel Pentium III 2,054 MIPS at 600 MHz 3.4 3.4 1999 [54]
Sega Naomi Multiboard (32-processor) 6,400 MIPS at 200 MHz 32 1 1999 [61]
Freescale MPC8272 760 MIPS at 400 MHz 1.9 1.9 2000 [62]
AMD Athlon 3,561 MIPS at 1.2 GHz 3.0 3.0 2000
Silicon Recognition ZISC 78 8,600 MIPS at 33 MHz 260.6 260.6 2000 [63]
ARM11 515 MIPS at 412 MHz 1.25 1.25 2002 [64]
AMD Athlon XP 2500+ 7,527 MIPS at 1.83 GHz 4.1 4.1 2003 [54]
Pentium 4 Extreme Edition 9,726 MIPS at 3.2 GHz 3.0 3.0 2003
Microchip PIC10F 1 MIPS at 4 MHz 0.25 0.25 2004 [65][66]
ARM Cortex-M3 125 MIPS at 100 MHz 1.25 1.25 2004 [67]
Nios II 190 MIPS at 165 MHz 1.13 1.13 2004 [68]
MIPS32 4KEc 356 MIPS at 233 MHz 1.5 1.5 2004 [69]
VIA C7 1,799 MIPS at 1.3 GHz 1.4 1.4 2005 [70]
ARM Cortex-A8 2,000 MIPS at 1.0 GHz 2.0 2.0 2005 [71]
AMD Athlon FX-57 12,000 MIPS at 2.8 GHz 4.3 4.3 2005
AMD Athlon 64 3800+ X2 (2-core) 14,564 MIPS at 2.0 GHz 7.3 3.6 2005 [72]
PowerPC G4 MPC7448 3,910 MIPS at 1.7 GHz 2.3 2.3 2005 [73]
ARM Cortex-R4 450 MIPS at 270 MHz 1.66 1.66 2006 [74]
MIPS32 24K 604 MIPS at 400 MHz 1.51 1.51 2006 [75]
PS3 Cell BE (PPE only) 10,240 MIPS at 3.2 GHz 3.2 3.2 2006
IBM Xenon CPU (3-core) 19,200 MIPS at 3.2 GHz 6.0 2.0 2005
AMD Athlon FX-60 (2-core) 18,938 MIPS at 2.6 GHz 7.3 3.6 2006 [72]
Intel Core 2 Extreme X6800 (2-core) 27,079 MIPS at 2.93 GHz 9.2 4.6 2006 [72]
Intel Core 2 Extreme QX6700 (4-core) 49,161 MIPS at 2.66 GHz 18.4 4.6 2006 [76]
MIPS64 20Kc 1,370 MIPS at 600 MHz 2.3 2.3 2007 [77]
P.A. Semi PA6T-1682M 8,800 MIPS at 1.8 GHz 4.4 4.4 2007 [78]
Qualcomm Scorpion (Cortex A8-like) 2,100 MIPS at 1 GHz 2.1 2.1 2008 [64]
Intel Atom N270 3,846 MIPS at 1.6 GHz 2.4 2.4 2008 [79]
Intel Core 2 Extreme QX9770 (4-core) 59,455 MIPS at 3.2 GHz 18.6 4.6 2008 [76]
Intel Core i7 920 (4-core) 82,300 MIPS at 2.93 GHz 28.089 7.022 2008 [80]
ARM Cortex-M0 45 MIPS at 50 MHz 0.9 0.9 2009 [81]
ARM Cortex-A9 (2-core) 7,500 MIPS at 1.5 GHz 5.0 2.5 2009 [82]
AMD Phenom II X4 940 Black Edition 42,820 MIPS at 3.0 GHz 14.3 3.5 2009 [83]
AMD Phenom II X6 1100T 78,440 MIPS at 3.3 GHz 23.7 3.9 2010 [80]
Intel Core i7 Extreme Edition 980X (6-core) 147,600 MIPS at 3.33 GHz 44.7 7.46 2010 [84]
ARM Cortex A5 1,256 MIPS at 800 MHz 1.57 1.57 2011 [71]
ARM Cortex A7 2,850 MIPS at 1.5 GHz 1.9 1.9 2011 [64]
Qualcomm Krait (Cortex A15-like, 2-core) 9,900 MIPS at 1.5 GHz 6.6 3.3 2011 [64]
AMD E-350 (2-core) 10,000 MIPS at 1.6 GHz 6.25 3.125 2011 [85]
Nvidia Tegra 3 (Quad core Cortex-A9) 13,800 MIPS at 1.5 GHz 9.2 2.5 2011
Samsung Exynos 5250 (Cortex-A15-like 2-core) 14,000 MIPS at 2.0 GHz 7.0 3.5 2011 [86]
Intel Core i5-2500K (4-core) 83,000 MIPS at 3.3 GHz 25.152 6.288 2011 [87]
Intel Core i7 875K 92,100 MIPS at 2.93 GHz 31.4 7.85 2011 [80]
AMD FX-8150 (8-core) 90,749 MIPS at 3.6 GHz 25.2 3.15 2011 [88]
Intel Core i7 2600K (4-core) 117,160 MIPS at 3.4 GHz 34.45 8.61 2011 [89]
Intel Core i7-3960X (6-core) 176,170 MIPS at 3.3 GHz 53.38 8.89 2011 [90]
AMD FX-8350 (8-core) 97,125 MIPS at 4.2 GHz 23.1 2.9 2012 [88][91]
AMD FX-9590 (8-core) 115,625 MIPS at 5.0 GHz 23.1 2.9 2012 [80]
Intel Core i7 3770K (4-core) 106,924 MIPS at 3.9 GHz 27.4 6.9 2012 [88]
Intel Core i7 4770K (4-core) 133,740 MIPS at 3.9 GHz 34.29 8.57 2013 [88][91][92]
Intel Core i7 5960X (8-core) 298,190 MIPS at 3.5 GHz 85.2 10.65 2014 [93]
Raspberry Pi 2 (quad-core ARM Cortex A7) 4,744 MIPS at 1.0 GHz 4.744 1.186 2014 [94]
Intel Core i7 6950X (10-core) 320,440 MIPS at 3.5 GHz 91.55 9.16 2016 [95]
ARM Cortex A73 (4-core) 71,120 MIPS at 2.8 GHz 25.4 6.35 2016
ARM Cortex A75 ? ? 8.2-9.5 2017 [96]
ARM Cortex A76 ? ? 10.7-12.4 2018 [96]
ARM Cortex A53 2,300 MIPS at 1 GHz 2.3 2.3 2012 [97]
ARM Cortex A35 2,100 MIPS at 1 GHz 2.1 2.1 2015 [97]
ARM Cortex A72 15,750 to 18,375 at 2.5 GHz 6.3 to 7.35 6.3 to 7.35 2015 [97]
ARM Cortex A57 10,250 to 11,750 at 2.5 GHz 4.1 to 4.7 4.1 to 4.7 2012 [97]
Sitara AM64x ARM Cortex A53 (2-core) 5,992 MIPS at 1 GHz 6 3 2021 [98]
AMD Ryzen 7 1800X (8-core) 304,510 MIPS at 3.7 GHz 82.3 10.29 2017 [99]
Intel Core i7-8086K (6-core) 221,720 MIPS at 5.0 GHz 44.34 7.39 2018 [100]
Intel Core i9-9900K (8-core) 412,090 MIPS at 4.7 GHz 87.68 10.96 2018 [101]
AMD Ryzen 9 3950X (16-core) 749,070 MIPS at 4.6 GHz 162.84 10.18 2019 [101]
AMD Ryzen Threadripper 3990X (64 core) 2,356,230 MIPS at 4.35 GHz 541.66 8.46 2020 [102]
Processor / System Dhrystone MIPS / MIPS D instructions per clock cycle D instructions per clock cycle per core Year Source

See also

References

  1. ^ US, Dell. "Technical Resources migrated from TechCenter - Dell US". en.community.dell.com.
  2. ^ Gibson, J.C. (1970). The Gibson Mix (Technical Report TR 00.2043). Poughkeepsie, N.Y.: IBM Systems Development Division.
  3. ^ Elliot, Jimmie Lynn (June 5, 1975). "Appendix E, The Gibson Mix by Jack C. Gibson". Computer Performance and Evaluation Utilizating the Resource Planing and Management System, Masters Thesis. Oregon State University. pp. 88–92. Retrieved March 21, 2021.
  4. ^ Ted MacNeil. . IBM magazine. Archived from the original on 2012-07-23. Retrieved 2009-11-15.
  5. ^ Musumeci, Gian-Paolo D.; Loukides, Mike; Loukides, Michael Kosta (2002). System Performance Tuning. p. 32. ISBN 9780596002848.
  6. ^ "The Best of Both Worlds: Mac II vs. IBM PS/2 Model 80". PC Magazine. November 24, 1987. p. 105.
  7. ^ US Steel News. Vol. 15–20. Industrial Relations Department of The United States Steel Corporation of Delaware. 1950–1955. p. 29.
  8. ^ Padua, David (2011-09-08). Encyclopedia of Parallel Computing. Springer Science & Business Media. ISBN 9780387097657.
  9. ^ Meagher, R.E. (May 9, 1961). "STRETCH Report" (PDF). Computer History.
  10. ^ "Control Data Corporation, CDC-6600 & 7600". ed-thelen.org. Retrieved 2017-05-25.
  11. ^ . Dr. Dobb's. Archived from the original on 2017-06-05. Retrieved 2017-05-25.
  12. ^ "MCS4 > IntelP4004".
  13. ^ a b c d e f g h i j k . Archived from the original on 2014-10-09.
  14. ^ a b c d e . 24 April 2012. Archived from the original on 2012-04-24.
  15. ^ "History of Computers and Computing, Birth of the modern computer, Electronic computer, Cray computers of Seymour Cray". history-computer.com. Retrieved 2017-05-25.
  16. ^ a b c d e f g h Drolez, Ludovic. "Lud's Open Source Corner".
  17. ^ a b 2 cycles per instruction [1]
  18. ^ a b 1 instruction per cycle
  19. ^ a b 4 cycles per instruction [3] 2015-06-09 at the Wayback Machine = 0.25 instructions per cycle
  20. ^ "intel :: dataSheets :: 8048 8035 HMOS Single Component 8-Bit Microcomputer DataSheet 1980". 1980.
  21. ^ . 25 October 1997. Archived from the original on 2012-02-19.
  22. ^ a b "System 16 - Irem M27 Hardware (Irem)".
  23. ^ a b 10% faster [4] than 68000 (0.175 MIPS per MHz [5])
  24. ^ a b NEC V20/V30: "250 nanoseconds per instruction @ 8 MHz" means some fastest 2-clock register-register instructions only
  25. ^ LINKS-1 Computer Graphics System: 257× Zilog Z8001 [6] at 10 MHz [7] (2.5 MIPS [8] 2015-06-09 at the Wayback Machine) each
  26. ^ (PDF). Archived from the original (PDF) on 2014-10-06.
  27. ^ a b "32-Bit Microprocessor-NXP".
  28. ^ (PDF). Archived from the original (PDF) on October 6, 2014.
  29. ^ (PDF). www.datasheetarchive.com. Archived from the original (PDF) on 18 September 2014. Retrieved 13 January 2022.
  30. ^ 1 instruction per cycle [9]
  31. ^ Sega System 16: Hitachi-Motorola 68000 @ 10 MHz (1.75 MIPS), NEC-Zilog Z80 @ 4 MHz (0.58 MIPS) [10] [11], Intel 8751 @ 8 MHz [12] (8 MIPS [13]), Intel 8048 @ 6 MHz . Archived from the original on 2016-01-25. Retrieved 2016-08-08.{{cite web}}: CS1 maint: archived copy as title (link) (6 MIPS [14])
  32. ^ "ARM2 - Microarchitectures - Acorn". Wikichip.org. Retrieved 17 October 2018.
  33. ^ Inc, InfoWorld Media Group (23 January 1989). "InfoWorld". InfoWorld Media Group, Inc. – via Google Books. {{cite web}}: |last= has generic name (help)
  34. ^ a b Yasuhiko Komoto; Tatsuya Saito; Kazumasa Mine. "情報学広場:情報処理学会電子図書館" [Overview of 32-bit V-Series Microprocessor]. Advanced Products Department Microcomputer Division NEC Corporation.
  35. ^ Inc, Ziff Davis (24 November 1987). "PC Mag". Ziff Davis, Inc. – via Google Books. {{cite web}}: |last= has generic name (help)
  36. ^ a b "Enhanced 32-Bit Processor-NXP".
  37. ^ "TRON VLSI CPU Introduction".
  38. ^ a b "060 1987 Drivers Eyes + 1989 Winning Run" (PDF). The history of racing games. June 2007.
  39. ^ "Analog Devices - datasheet pdf" (PDF).
  40. ^ Namco System 21 hardware: 5× Texas Instruments TMS320C20 @ 25 MHz (62.5 MIPS [15]), 2× Motorola 68000 @ 12.288 MHz [16] (4.301 MIPS [17]), Motorola 68020 [18] @ 12.5 MHz (3.788 MIPS [19]), Hitachi HD63705 @ 2.048 MHz [20] (2.048 MIPS ), Motorola 6809 @ 3.072 MHz [22] (1.29 MIPS [23])
  41. ^ a b "Intel i860-based Bus Boards". Archived from the original on 2013-06-25.
  42. ^ Atari Hard Drivin' hardware: [24] Motorola 68000 @ 7 MHz (1.225 MIPS [25]), Motorola 68010 @ 7 MHz (1.348 MIPS [26]), 3× Texas Instruments TMS34010 @ 50 MHz (18 MIPS [27]), Analog Devices ADSP-2100 @ 8 MHz (8 MIPS [28]), Texas Instruments TMS32010 @ 20 MHz (5 MIPS (PDF). Archived from the original (PDF) on 2014-10-06. Retrieved 2014-09-17.{{cite web}}: CS1 maint: archived copy as title (link))
  43. ^ . Pik - Praxis der Informationsverarbeitung und Kommunikation. 13 (4). 1990. doi:10.1515/piko.1990.13.4.205. Archived from the original on 2014-11-09. Retrieved 2014-09-29.
  44. ^ "ARM3 - Microarchitectures - Acorn". Wikichip.org. Retrieved 17 October 2018.
  45. ^ "(Including EC, LC, and V)-NXP".
  46. ^ Namco System 21 (Galaxian³) hardware: [29] 80× Texas Instruments TMS320C25 @ 40 MHz (1600 MIPS [30]), 5× Motorola 68020 @ 24.576 MHz (37.236 MIPS [31]) Motorola 68000 @ 12.288 MHz (2.15 MIPS [32]), 10× Motorola 68000 @ 12 MHz (21 MIPS [33])
  47. ^ Enterprise, I. D. G. (25 March 1991). "Computerworld". IDG Enterprise – via Google Books.
  48. ^ Digital's 21064 Microprocessor, Digital Equipment Corporation[permanent dead link] (c1992) accessdate=2009-08-29
  49. ^ a b "System 16 - Namco Magic Edge Hornet Simulator Hardware (Namco)".
  50. ^ Uchiyama, Kunio; Arakawa, Fumio; Narita, Susumu; Aoki, Hirokazu; Kawasaki, Ikuya; Matsui, Shigezumi; Yamamoto, Mitsuyoshi; Nakagawa, Norio; Kudo, Ikuo (1 September 1993). "The Gmicro/500 Superscalar Microprocessor with Branch Buffers". IEEE Micro. 13 (5): 12–22. doi:10.1109/40.237998. S2CID 30178249.
  51. ^ "dhrystone".
  52. ^ 24× MIPS R4400 (2040 MIPS), [34] 12× Intel i860 (600 MIPS) "Intel i860-based Bus Boards". Archived from the original on 2013-06-25. Retrieved 2014-09-17.
  53. ^ . Archived from the original on 2003-03-01.
  54. ^ a b c "Charts, benchmarks CPU Charts 2004, Sandra - CPU Dhrystone". Archived from the original on 2013-02-05.
  55. ^ "PIC16F84A - 8-bit PIC Microcontrollers".
  56. ^ a b (PDF). Archived from the original (PDF) on 2014-09-18. Retrieved 2014-09-17.
  57. ^ "SiSoftware – Windows, GPGPU, Android, iOS analysers, diagnostic and benchmarking apps".
  58. ^ . Archived from the original on 2014-12-11. Retrieved 2014-09-18.
  59. ^ . Archived from the original on 2016-03-05.
  60. ^ "Zilog Sees New Lease of Life for Z80 in Internet Appliances". Computergram International. 1999. Archived from the original on 2012-05-25.
  61. ^ Sega Naomi Multiboard hardware: [35] [36] 2014-10-06 at the Wayback Machine 16× Hitachi SH-4 at 200 MHz (5760 MIPS [37] 2014-12-11 at the Wayback Machine), 16× ARM7 at 45 MHz (640 MIPS )
  62. ^ (PDF). Archived from the original (PDF) on 2012-02-18. Retrieved 2008-05-13.
  63. ^ "ZISC78 datasheet & application note - Datasheet Archive".
  64. ^ a b c d Shimpi, Anand Lal. "ARM's Cortex A7: Bringing Cheaper Dual-Core & More Power Efficient High-End Devices".
  65. ^ "PIC10F200 - 8-bit PIC Microcontrollers".
  66. ^ . Archived from the original on 2014-10-06.
  67. ^ "Cortex-M3 Processor - ARM".
  68. ^ "Nios II Performance Benchmarks" (PDF).
  69. ^ "MIPS Architecture Enabling Growing List of Mobile Application Processors".
  70. ^ "mini-itx.com - epia px 10000 review".
  71. ^ a b "Cortex-A Series - ARM".
  72. ^ a b c "Charts, benchmarks CPU Charts 2007, Synthetic SiSoft Sandra XI CPU". Archived from the original on 2013-02-04.
  73. ^ "MPC7448: RISC Microprocessor".
  74. ^ "Cortex-R4 Processor - ARM".
  75. ^ 24K[permanent dead link]
  76. ^ a b "Tom's Hardware Articles - Find and Filter Our Latest Articles".
  77. ^ "Semiconductor IP Cores Companies".
  78. ^ Merritt, Rick (5 February 2007). "Startup takes PowerPC to 25 W". EE Times. UBM Tech. Archived from the original on 21 January 2013. Retrieved 20 November 2012.
  79. ^ "Benchmarks of ECS 945GCT-D with Intel Atom 1.6GHz".
  80. ^ a b c d "Charts, benchmarks Desktop CPU Charts 2010, ALU Performance: SiSoftware Sandra 2010 Pro (ALU)". Archived from the original on 2013-02-04.
  81. ^ "Cortex-M0 Processor - ARM".
  82. ^ . Archived from the original on 2011-07-19.
  83. ^ . Archived from the original on 2009-04-04. Retrieved 2009-01-15.
  84. ^ "OC3D :: Review :: Intel 980x Gulftown :: Synthetic Benchmarks". 12 March 2010.
  85. ^ "Benchmark Results: Sandra 2011 - ASRock's E350M1: AMD's Brazos Platform Hits The Desktop First". 14 January 2011.
  86. ^ "Samsung Semiconductor Global Official Website".
  87. ^ "Core i5 2500K and Core i7 2600K review".
  88. ^ a b c d "Test: Sandra Dhrystone (MIPS) for i7-4770K, i7-3770K, FX-8350, FX-8150".
  89. ^ "Benchmark Results: SiSoftware Sandra 2011 - The Intel Core i7-990X Extreme Edition Processor Review". 25 February 2011.
  90. ^ . Archived from the original on 2011-11-16. Retrieved 2011-11-14.
  91. ^ a b "AMD FX-8350 Black Edition vs Intel Core i7-4770K - Compare CPUs".
  92. ^ "Intel Core i7-4770K Desktop Processor".
  93. ^ Rob Williams (August 29, 2014). "Core i7-5960X Extreme Edition Review: Intel's Overdue Desktop 8-Core Is Here". Techgage.
  94. ^ By (2015-02-05). "Benchmarking The Raspberry Pi 2". hackaday.com.
  95. ^ ccokeman (May 30, 2016). "Intel Core I7 6950X Extreme Edition Broadwell-E CPU Review".
  96. ^ a b http://users.nik.uni-obuda.hu/sima/letoltes/Processor_families_Knowledge_Base_2019/ARM_processors_lecture_2018_12_02.pdf[bare URL PDF]
  97. ^ a b c d https://elearning.unicampania.it/pluginfile.php/65623/mod_folder/content/0/ARM_organization_part2.pdf[bare URL PDF]
  98. ^ https://www.ti.com/lit/an/spracv1a/spracv1a.pdf[bare URL PDF]
  99. ^ Chiappetta, Marco (2017-03-02). . HotHardware. Archived from the original on 2017-03-05. Retrieved 2017-03-05.
  100. ^ "Details for Component Intel Core i7-8086K". SiSoftware Official Live Ranker.
  101. ^ a b Marco Chiappetta (14 November 2019). . HotHardware. Archived from the original on 6 March 2020. Retrieved 22 March 2020.
  102. ^ Marco Chiappetta (7 February 2020). . HotHardware. Archived from the original on 18 March 2020. Retrieved 22 March 2020.

instructions, second, measure, computer, processor, speed, complex, instruction, computers, ciscs, different, instructions, take, different, amounts, time, value, measured, depends, instruction, even, comparing, processors, same, family, measurement, problemat. Instructions per second IPS is a measure of a computer s processor speed For complex instruction set computers CISCs different instructions take different amounts of time so the value measured depends on the instruction mix even for comparing processors in the same family the IPS measurement can be problematic Many reported IPS values have represented peak execution rates on artificial instruction sequences with few branches and no cache contention whereas realistic workloads typically lead to significantly lower IPS values Memory hierarchy also greatly affects processor performance an issue barely considered in IPS calculations Because of these problems synthetic benchmarks such as Dhrystone are now generally used to estimate computer performance in commonly used applications and raw IPS has fallen into disuse Computer processing efficiency measured as the number of watts needed per million instructions per second Watts per MIPS The term is commonly used in association with a metric prefix k M G T P or E to form kilo instructions per second kIPS million instructions per second MIPS and billion instructions per second GIPS and so on Formerly TIPS was used occasionally for thousand ips Contents 1 Computing 2 Thousand instructions per second TIPS kIPS 2 1 The Gibson Mix 3 Millions of instructions per second MIPS 4 Timeline of instructions per second 5 See also 6 ReferencesComputing EditIPS can be calculated using this equation 1 IPS sockets cores socket clock Is cycle displaystyle text IPS text sockets times frac text cores text socket times text clock times frac text Is text cycle However the instructions cycle measurement depends on the instruction sequence the data and external factors Thousand instructions per second TIPS kIPS EditBefore standard benchmarks were available average speed rating of computers was based on calculations for a mix of instructions with the results given in kilo Instructions Per Second kIPS The most famous was the Gibson Mix 2 produced by Jack Clark Gibson of IBM for scientific applications in 1959 Other ratings such as the ADP mix which does not include floating point operations were produced for commercial applications The thousand instructions per second kIPS unit is rarely used today as most current microprocessors can execute at least a million instructions per second The Gibson Mix Edit Gibson divided computer instructions into 12 classes based on the IBM 704 architecture adding a 13th class to account for indexing time Weights were primarily based on analysis of seven scientific programs run on the 704 with a small contribution from some IBM 650 programs The overall score was then the weighted sum of the average execution speed for instructions in each class 3 The Gibson Mix 1 Loads and Store 31 22 Fixed Point Add and Subtract 6 13 Compares 3 84 Branches 16 65 Floating Add and Subtract 6 96 Floating Multiply 3 87 Floating Divide 1 58 Fixed Point Multiply 0 69 Fixed Point Divide 0 210 Shifting 4 411 Logical And Or etc 1 612 Instructions Not Using Registers 5 313 Indexing 18Total 100Millions of instructions per second MIPS EditNot to be confused with MIPS architecture The speed of a given CPU depends on many factors such as the type of instructions being executed the execution order and the presence of branch instructions problematic in CPU pipelines CPU instruction rates are different from clock frequencies usually reported in Hz as each instruction may require several clock cycles to complete or the processor may be capable of executing multiple independent instructions simultaneously MIPS can be useful when comparing performance between processors made with similar architecture e g Microchip branded microcontrollers but they are difficult to compare between differing CPU architectures 4 This led to the term Meaningless Indicator of Processor Speed 5 or less commonly Meaningless Indices of Performance 6 being popular amongst technical people by the mid 1980s For this reason MIPS has become not a measure of instruction execution speed but task performance speed compared to a reference In the late 1970s minicomputer performance was compared using VAX MIPS where computers were measured on a task and their performance rated against the VAX 11 780 that was marketed as a 1 MIPS machine The measure was also known as the VAX Unit of Performance or VUP This was chosen because the 11 780 was roughly equivalent in performance to an IBM System 370 model 158 3 which was commonly accepted in the computing industry as running at 1 MIPS Many minicomputer performance claims were based on the Fortran version of the Whetstone benchmark giving Millions of Whetstone Instructions Per Second MWIPS The VAX 11 780 with FPA 1977 runs at 1 02 MWIPS Effective MIPS speeds are highly dependent on the programming language used The Whetstone Report has a table showing MWIPS speeds of PCs via early interpreters and compilers up to modern languages The first PC compiler was for BASIC 1982 when a 4 8 MHz 8088 87 CPU obtained 0 01 MWIPS Results on a 2 4 GHz Intel Core 2 Duo 1 CPU 2007 vary from 9 7 MWIPS using BASIC Interpreter 59 MWIPS via BASIC Compiler 347 MWIPS using 1987 Fortran 1 534 MWIPS through HTML Java to 2 403 MWIPS using a modern C C compiler For the most early 8 bit and 16 bit microprocessors performance was measured in thousand instructions per second 1000 kIPS 1 MIPS zMIPS refers to the MIPS measure used internally by IBM to rate its mainframe servers zSeries IBM System z9 and IBM System z10 Weighted million operations per second WMOPS is a similar measurement used for audio codecs Timeline of instructions per second EditProcessor System Dhrystone MIPS or MIPS and frequency D instructions per clock cycle D instructions per clock cycle per core Year SourceUNIVAC I 0 002 MIPS at 2 25 MHz 0 0008 0 0008 1951 7 IBM 7030 Stretch 1 200 MIPS at 3 30 MHz 0 364 0 364 1961 8 9 CDC 6600 10 00 MIPS at 10 00 MHz 1 1 1965 10 11 Intel 4004 0 092 MIPS at 0 740 MHz Not Dhrystone 0 124 0 124 1971 12 IBM System 370 Model 158 0 640 MIPS at 8 696 MHz 0 0736 0 0736 1972 13 Intel 8080 0 290 MIPS at 2 000 MHz Not Dhrystone 0 145 0 145 1974 14 Cray 1 160 0 MIPS at 80 00 MHz 2 2 1975 15 MOS Technology 6502 0 430 MIPS at 1 000 MHz 0 43 0 43 1975 16 Intel 8080A 0 435 MIPS at 3 000 MHz Not Dhrystone 0 145 0 145 1976 14 Zilog Z80 0 580 MIPS at 4 000 MHz Not Dhrystone 0 145 0 145 1976 16 Motorola 6802 0 500 MIPS at 1 000 MHz 0 5 0 5 1977 17 IBM System 370 Model 158 3 0 730 MIPS at 8 696 MHz 0 0839 0 0839 1977 13 VAX 11 780 1 000 MIPS at 5 000 MHz 0 2 0 2 1977 13 Motorola 6809 0 420 MIPS at 1 000 MHz 0 42 0 42 1978 16 Intel 8086 0 330 MIPS at 5 000 MHz 0 066 0 066 1978 14 Fujitsu MB8843 2 000 MIPS at 2 000 MHz Not Dhrystone 1 1 1978 18 Intel 8088 0 750 MIPS at 10 00 MHz 0 075 0 075 1979 14 Motorola 68000 1 400 MIPS at 8 000 MHz 0 175 0 175 1979 16 Zilog Z8001 Z8002 1 5 MIPS at 6 MHz 0 25 0 25 1979 19 Intel 8035 8039 8048 6 MIPS at 6 MHz Not Dhrystone 1 1 1980 20 Fujitsu MB8843 MB8844 6 MIPS at 6 MHz Not Dhrystone 1 1 1980 18 Zilog Z80 Z80H 1 16 MIPS at 8 MHz Not Dhrystone 0 145 0 145 1981 16 21 Motorola 6802 1 79 MIPS at 3 58 MHz 0 5 0 5 1981 17 22 Zilog Z8001 Z8002B 2 5 MIPS at 10 MHz 0 25 0 25 1981 19 MOS Technology 6502 2 522 MIPS at 5 865 MHz 0 43 0 43 1981 16 22 Intel 80286 1 28 MIPS at 12 MHz 0 107 0 107 1982 13 Motorola 68000 2 188 MIPS at 12 5 MHz 0 175 0 175 1982 16 Motorola 68010 2 407 MIPS at 12 5 MHz 0 193 0 193 1982 23 NEC V20 4 MIPS at 8 MHz Not Dhrystone 0 5 0 5 1982 24 LINKS 1 Computer Graphics System 257 processor 642 5 MIPS at 10 MHz 2 5 0 25 1982 25 Texas Instruments TMS32010 5 MIPS at 20 MHz 0 25 0 25 1983 26 NEC V30 5 MIPS at 10 MHz Not Dhrystone 0 5 0 5 1983 24 Motorola 68010 3 209 MIPS at 16 67 MHz 0 193 0 193 1984 23 Motorola 68020 4 848 MIPS at 16 MHz 0 303 0 303 1984 27 Hitachi HD63705 2 MIPS at 2 MHz 1 1 1985 28 29 Intel i386DX 2 15 MIPS at 16 MHz 0 134 0 134 1985 13 Hitachi Motorola 68HC000 3 5 MIPS at 20 MHz 0 175 0 175 1985 16 Intel 8751 1 MIPS at 12 MHz 0 083 0 083 1985 30 Sega System 16 4 processor 16 33 MIPS at 10 MHz 4 083 1 020 1985 31 ARM2 4 MIPS at 8 MHz 0 5 0 5 1986 32 Texas Instruments TMS34010 6 MIPS at 50 MHz 0 12 0 12 1986 33 NEC V70 6 6 MIPS at 20 MHz 0 33 0 33 1987 34 Motorola 68030 9 MIPS at 25 MHz 0 36 0 36 1987 35 36 Gmicro 200 10 MIPS at 20 MHz 0 5 0 5 1987 37 Texas Instruments TMS320C20 12 5 MIPS at 25 MHz 0 5 0 5 1987 38 Analog Devices ADSP 2100 12 5 MIPS at 12 5 MHz 1 1 1987 39 Texas Instruments TMS320C25 25 MIPS at 50 MHz 0 5 0 5 1987 38 Motorola 68020 10 MIPS at 33 MHz 0 303 0 303 1988 27 Motorola 68030 18 MIPS at 50 MHz 0 36 0 36 1988 36 Namco System 21 10 processor 73 927 MIPS at 25 MHz 2 957 0 296 1988 40 Intel i386DX 4 3 MIPS at 33 MHz 0 13 0 13 1989 13 Intel i486DX 8 7 MIPS at 25 MHz 0 348 0 348 1989 13 NEC V80 16 5 MIPS at 33 MHz 0 5 0 5 1989 34 Intel i860 25 MIPS at 25 MHz 1 1 1989 41 Atari Hard Drivin 7 processor 33 573 MIPS at 50 MHz 0 671 0 0959 1989 42 NEC SX 3 4 processor 680 MIPS at 400 MHz 1 7 0 425 1989 43 ARM3 12 MIPS at 25 MHz 0 5 0 5 1989 44 Motorola 68040 44 MIPS at 40 MHz 1 1 1 1 1990 45 Namco System 21 Galaxian 96 processor 1 660 386 MIPS at 40 MHz 41 51 0 432 1990 46 AMD Am386 9 MIPS at 40 MHz 0 225 0 225 1991 47 Intel i486DX 11 1 MIPS at 33 MHz 0 336 0 336 1991 13 Intel i860 50 MIPS at 50 MHz 1 1 1991 41 Intel i486DX2 25 6 MIPS at 66 MHz 0 388 0 388 1992 13 Alpha 21064 EV4 86 MIPS at 150 MHz 0 573 0 573 1992 13 Alpha 21064 EV4S EV45 135 MIPS at 200 MHz 0 675 0 675 1993 13 48 MIPS R4400 85 MIPS at 150 MHz 0 567 0 567 1993 49 Gmicro 500 132 MIPS at 66 MHz 2 2 1993 50 IBM Motorola PowerPC 601 157 7 MIPS at 80 MHz 1 971 1 971 1993 51 SGI Onyx RealityEngine2 36 processor 2 640 MIPS at 150 MHz 17 6 0 489 1993 52 Namco Magic Edge Hornet Simulator 36 processor 2 880 MIPS at 150 MHz 19 2 0 533 1993 49 ARM7 40 MIPS at 45 MHz 0 889 0 889 1994 53 Intel DX4 70 MIPS at 100 MHz 0 7 0 7 1994 14 Motorola 68060 110 MIPS at 75 MHz 1 33 1 33 1994Intel Pentium 188 MIPS at 100 MHz 1 88 1 88 1994 54 Microchip PIC16F 5 MIPS at 20 MHz 0 25 0 25 1995 55 IBM Motorola PowerPC 603e 188 MIPS at 133 MHz 1 414 1 414 1995 56 ARM 7500FE 35 9 MIPS at 40 MHz 0 9 0 9 1996IBM Motorola PowerPC 603ev 423 MIPS at 300 MHz 1 41 1 41 1996 56 Intel Pentium Pro 541 MIPS at 200 MHz 2 7 2 7 1996 57 Hitachi SH 4 360 MIPS at 200 MHz 1 8 1 8 1997 58 59 IBM Motorola PowerPC 750 525 MIPS at 233 MHz 2 3 2 3 1997Zilog eZ80 80 MIPS at 50 MHz 1 6 1 6 1999 60 Intel Pentium III 2 054 MIPS at 600 MHz 3 4 3 4 1999 54 Sega Naomi Multiboard 32 processor 6 400 MIPS at 200 MHz 32 1 1999 61 Freescale MPC8272 760 MIPS at 400 MHz 1 9 1 9 2000 62 AMD Athlon 3 561 MIPS at 1 2 GHz 3 0 3 0 2000Silicon Recognition ZISC 78 8 600 MIPS at 33 MHz 260 6 260 6 2000 63 ARM11 515 MIPS at 412 MHz 1 25 1 25 2002 64 AMD Athlon XP 2500 7 527 MIPS at 1 83 GHz 4 1 4 1 2003 54 Pentium 4 Extreme Edition 9 726 MIPS at 3 2 GHz 3 0 3 0 2003Microchip PIC10F 1 MIPS at 4 MHz 0 25 0 25 2004 65 66 ARM Cortex M3 125 MIPS at 100 MHz 1 25 1 25 2004 67 Nios II 190 MIPS at 165 MHz 1 13 1 13 2004 68 MIPS32 4KEc 356 MIPS at 233 MHz 1 5 1 5 2004 69 VIA C7 1 799 MIPS at 1 3 GHz 1 4 1 4 2005 70 ARM Cortex A8 2 000 MIPS at 1 0 GHz 2 0 2 0 2005 71 AMD Athlon FX 57 12 000 MIPS at 2 8 GHz 4 3 4 3 2005AMD Athlon 64 3800 X2 2 core 14 564 MIPS at 2 0 GHz 7 3 3 6 2005 72 PowerPC G4 MPC7448 3 910 MIPS at 1 7 GHz 2 3 2 3 2005 73 ARM Cortex R4 450 MIPS at 270 MHz 1 66 1 66 2006 74 MIPS32 24K 604 MIPS at 400 MHz 1 51 1 51 2006 75 PS3 Cell BE PPE only 10 240 MIPS at 3 2 GHz 3 2 3 2 2006IBM Xenon CPU 3 core 19 200 MIPS at 3 2 GHz 6 0 2 0 2005AMD Athlon FX 60 2 core 18 938 MIPS at 2 6 GHz 7 3 3 6 2006 72 Intel Core 2 Extreme X6800 2 core 27 079 MIPS at 2 93 GHz 9 2 4 6 2006 72 Intel Core 2 Extreme QX6700 4 core 49 161 MIPS at 2 66 GHz 18 4 4 6 2006 76 MIPS64 20Kc 1 370 MIPS at 600 MHz 2 3 2 3 2007 77 P A Semi PA6T 1682M 8 800 MIPS at 1 8 GHz 4 4 4 4 2007 78 Qualcomm Scorpion Cortex A8 like 2 100 MIPS at 1 GHz 2 1 2 1 2008 64 Intel Atom N270 3 846 MIPS at 1 6 GHz 2 4 2 4 2008 79 Intel Core 2 Extreme QX9770 4 core 59 455 MIPS at 3 2 GHz 18 6 4 6 2008 76 Intel Core i7 920 4 core 82 300 MIPS at 2 93 GHz 28 089 7 022 2008 80 ARM Cortex M0 45 MIPS at 50 MHz 0 9 0 9 2009 81 ARM Cortex A9 2 core 7 500 MIPS at 1 5 GHz 5 0 2 5 2009 82 AMD Phenom II X4 940 Black Edition 42 820 MIPS at 3 0 GHz 14 3 3 5 2009 83 AMD Phenom II X6 1100T 78 440 MIPS at 3 3 GHz 23 7 3 9 2010 80 Intel Core i7 Extreme Edition 980X 6 core 147 600 MIPS at 3 33 GHz 44 7 7 46 2010 84 ARM Cortex A5 1 256 MIPS at 800 MHz 1 57 1 57 2011 71 ARM Cortex A7 2 850 MIPS at 1 5 GHz 1 9 1 9 2011 64 Qualcomm Krait Cortex A15 like 2 core 9 900 MIPS at 1 5 GHz 6 6 3 3 2011 64 AMD E 350 2 core 10 000 MIPS at 1 6 GHz 6 25 3 125 2011 85 Nvidia Tegra 3 Quad core Cortex A9 13 800 MIPS at 1 5 GHz 9 2 2 5 2011Samsung Exynos 5250 Cortex A15 like 2 core 14 000 MIPS at 2 0 GHz 7 0 3 5 2011 86 Intel Core i5 2500K 4 core 83 000 MIPS at 3 3 GHz 25 152 6 288 2011 87 Intel Core i7 875K 92 100 MIPS at 2 93 GHz 31 4 7 85 2011 80 AMD FX 8150 8 core 90 749 MIPS at 3 6 GHz 25 2 3 15 2011 88 Intel Core i7 2600K 4 core 117 160 MIPS at 3 4 GHz 34 45 8 61 2011 89 Intel Core i7 3960X 6 core 176 170 MIPS at 3 3 GHz 53 38 8 89 2011 90 AMD FX 8350 8 core 97 125 MIPS at 4 2 GHz 23 1 2 9 2012 88 91 AMD FX 9590 8 core 115 625 MIPS at 5 0 GHz 23 1 2 9 2012 80 Intel Core i7 3770K 4 core 106 924 MIPS at 3 9 GHz 27 4 6 9 2012 88 Intel Core i7 4770K 4 core 133 740 MIPS at 3 9 GHz 34 29 8 57 2013 88 91 92 Intel Core i7 5960X 8 core 298 190 MIPS at 3 5 GHz 85 2 10 65 2014 93 Raspberry Pi 2 quad core ARM Cortex A7 4 744 MIPS at 1 0 GHz 4 744 1 186 2014 94 Intel Core i7 6950X 10 core 320 440 MIPS at 3 5 GHz 91 55 9 16 2016 95 ARM Cortex A73 4 core 71 120 MIPS at 2 8 GHz 25 4 6 35 2016ARM Cortex A75 8 2 9 5 2017 96 ARM Cortex A76 10 7 12 4 2018 96 ARM Cortex A53 2 300 MIPS at 1 GHz 2 3 2 3 2012 97 ARM Cortex A35 2 100 MIPS at 1 GHz 2 1 2 1 2015 97 ARM Cortex A72 15 750 to 18 375 at 2 5 GHz 6 3 to 7 35 6 3 to 7 35 2015 97 ARM Cortex A57 10 250 to 11 750 at 2 5 GHz 4 1 to 4 7 4 1 to 4 7 2012 97 Sitara AM64x ARM Cortex A53 2 core 5 992 MIPS at 1 GHz 6 3 2021 98 AMD Ryzen 7 1800X 8 core 304 510 MIPS at 3 7 GHz 82 3 10 29 2017 99 Intel Core i7 8086K 6 core 221 720 MIPS at 5 0 GHz 44 34 7 39 2018 100 Intel Core i9 9900K 8 core 412 090 MIPS at 4 7 GHz 87 68 10 96 2018 101 AMD Ryzen 9 3950X 16 core 749 070 MIPS at 4 6 GHz 162 84 10 18 2019 101 AMD Ryzen Threadripper 3990X 64 core 2 356 230 MIPS at 4 35 GHz 541 66 8 46 2020 102 Processor System Dhrystone MIPS MIPS D instructions per clock cycle D instructions per clock cycle per core Year SourceSee also EditTOP500 FLOPS floating point operations per second SUPS Benchmark computing BogoMips measurement of CPU speed made by the Linux kernel Instructions per cycle Cycles per instruction Dhrystone benchmark DMIPS integer benchmark Whetstone benchmark floating point benchmark Million service units MSU Computer performance by orders of magnitude Performance per watt Data rate unitsReferences Edit US Dell Technical Resources migrated from TechCenter Dell US en community dell com Gibson J C 1970 The Gibson Mix Technical Report TR 00 2043 Poughkeepsie N Y IBM Systems Development Division Elliot Jimmie Lynn June 5 1975 Appendix E The Gibson Mix by Jack C Gibson Computer Performance and Evaluation Utilizating the Resource Planing and Management System Masters Thesis Oregon State University pp 88 92 Retrieved March 21 2021 Ted MacNeil Don t be Misled by MIPS IBM magazine Archived from the original on 2012 07 23 Retrieved 2009 11 15 Musumeci Gian Paolo D Loukides Mike Loukides Michael Kosta 2002 System Performance Tuning p 32 ISBN 9780596002848 The Best of Both Worlds Mac II vs IBM PS 2 Model 80 PC Magazine November 24 1987 p 105 US Steel News Vol 15 20 Industrial Relations Department of The United States Steel Corporation of Delaware 1950 1955 p 29 Padua David 2011 09 08 Encyclopedia of Parallel Computing Springer Science amp Business Media ISBN 9780387097657 Meagher R E May 9 1961 STRETCH Report PDF Computer History Control Data Corporation CDC 6600 amp 7600 ed thelen org Retrieved 2017 05 25 Control Data 6600 The Supercomputer Arrives Dr Dobb s Archived from the original on 2017 06 05 Retrieved 2017 05 25 MCS4 gt IntelP4004 a b c d e f g h i j k Cost of CPU Performance Through Time 1944 2003 Archived from the original on 2014 10 09 a b c d e Intel Processors 24 April 2012 Archived from the original on 2012 04 24 History of Computers and Computing Birth of the modern computer Electronic computer Cray computers of Seymour Cray history computer com Retrieved 2017 05 25 a b c d e f g h Drolez Ludovic Lud s Open Source Corner a b 2 cycles per instruction 1 a b 1 instruction per cycle 2 a b 4 cycles per instruction 3 Archived 2015 06 09 at the Wayback Machine 0 25 instructions per cycle intel dataSheets 8048 8035 HMOS Single Component 8 Bit Microcomputer DataSheet 1980 1980 Sega G80 Hardware Reference 25 October 1997 Archived from the original on 2012 02 19 a b System 16 Irem M27 Hardware Irem a b 10 faster 4 than 68000 0 175 MIPS per MHz 5 a b NEC V20 V30 250 nanoseconds per instruction 8 MHz means some fastest 2 clock register register instructions only LINKS 1 Computer Graphics System 257 Zilog Z8001 6 at 10 MHz 7 2 5 MIPS 8 Archived 2015 06 09 at the Wayback Machine each TMS320C1x DIGITAL SIGNAL PROCESSORS PDF Archived from the original PDF on 2014 10 06 a b 32 Bit Microprocessor NXP ZTAT ZeroTurnAroundTime Microcomputers PDF Archived from the original PDF on October 6 2014 HD63705V0 Datasheet Search Engine Download PDF www datasheetarchive com Archived from the original PDF on 18 September 2014 Retrieved 13 January 2022 1 instruction per cycle 9 Sega System 16 Hitachi Motorola 68000 10 MHz 1 75 MIPS NEC Zilog Z80 4 MHz 0 58 MIPS 10 11 Intel 8751 8 MHz 12 8 MIPS 13 Intel 8048 6 MHz Archived copy Archived from the original on 2016 01 25 Retrieved 2016 08 08 a href Template Cite web html title Template Cite web cite web a CS1 maint archived copy as title link 6 MIPS 14 ARM2 Microarchitectures Acorn Wikichip org Retrieved 17 October 2018 Inc InfoWorld Media Group 23 January 1989 InfoWorld InfoWorld Media Group Inc via Google Books a href Template Cite web html title Template Cite web cite web a last has generic name help a b Yasuhiko Komoto Tatsuya Saito Kazumasa Mine 情報学広場 情報処理学会電子図書館 Overview of 32 bit V Series Microprocessor Advanced Products Department Microcomputer Division NEC Corporation Inc Ziff Davis 24 November 1987 PC Mag Ziff Davis Inc via Google Books a href Template Cite web html title Template Cite web cite web a last has generic name help a b Enhanced 32 Bit Processor NXP TRON VLSI CPU Introduction a b 060 1987 Drivers Eyes 1989 Winning Run PDF The history of racing games June 2007 Analog Devices datasheet pdf PDF Namco System 21 hardware 5 Texas Instruments TMS320C20 25 MHz 62 5 MIPS 15 2 Motorola 68000 12 288 MHz 16 4 301 MIPS 17 Motorola 68020 18 12 5 MHz 3 788 MIPS 19 Hitachi HD63705 2 048 MHz 20 2 048 MIPS 21 Motorola 6809 3 072 MHz 22 1 29 MIPS 23 a b Intel i860 based Bus Boards Archived from the original on 2013 06 25 Atari Hard Drivin hardware 24 Motorola 68000 7 MHz 1 225 MIPS 25 Motorola 68010 7 MHz 1 348 MIPS 26 3 Texas Instruments TMS34010 50 MHz 18 MIPS 27 Analog Devices ADSP 2100 8 MHz 8 MIPS 28 Texas Instruments TMS32010 20 MHz 5 MIPS Archived copy PDF Archived from the original PDF on 2014 10 06 Retrieved 2014 09 17 a href Template Cite web html title Template Cite web cite web a CS1 maint archived copy as title link SUPERCOMPUTER Pik Praxis der Informationsverarbeitung und Kommunikation 13 4 1990 doi 10 1515 piko 1990 13 4 205 Archived from the original on 2014 11 09 Retrieved 2014 09 29 ARM3 Microarchitectures Acorn Wikichip org Retrieved 17 October 2018 Including EC LC and V NXP Namco System 21 Galaxian hardware 29 80 Texas Instruments TMS320C25 40 MHz 1600 MIPS 30 5 Motorola 68020 24 576 MHz 37 236 MIPS 31 Motorola 68000 12 288 MHz 2 15 MIPS 32 10 Motorola 68000 12 MHz 21 MIPS 33 Enterprise I D G 25 March 1991 Computerworld IDG Enterprise via Google Books Digital s 21064 Microprocessor Digital Equipment Corporation permanent dead link c1992 accessdate 2009 08 29 a b System 16 Namco Magic Edge Hornet Simulator Hardware Namco Uchiyama Kunio Arakawa Fumio Narita Susumu Aoki Hirokazu Kawasaki Ikuya Matsui Shigezumi Yamamoto Mitsuyoshi Nakagawa Norio Kudo Ikuo 1 September 1993 The Gmicro 500 Superscalar Microprocessor with Branch Buffers IEEE Micro 13 5 12 22 doi 10 1109 40 237998 S2CID 30178249 dhrystone 24 MIPS R4400 2040 MIPS 34 12 Intel i860 600 MIPS Intel i860 based Bus Boards Archived from the original on 2013 06 25 Retrieved 2014 09 17 DCTP Saturn Specifications Archived from the original on 2003 03 01 a b c Charts benchmarks CPU Charts 2004 Sandra CPU Dhrystone Archived from the original on 2013 02 05 PIC16F84A 8 bit PIC Microcontrollers a b MOTOROLA P OWER PC 603 E MICROPROCESSOR PDF Archived from the original PDF on 2014 09 18 Retrieved 2014 09 17 SiSoftware Windows GPGPU Android iOS analysers diagnostic and benchmarking apps DCTP Hitachi s 200 MHz SH 4 Archived from the original on 2014 12 11 Retrieved 2014 09 18 DCTP January 1998 News Archives Archived from the original on 2016 03 05 Zilog Sees New Lease of Life for Z80 in Internet Appliances Computergram International 1999 Archived from the original on 2012 05 25 Sega Naomi Multiboard hardware 35 36 Archived 2014 10 06 at the Wayback Machine 16 Hitachi SH 4 at 200 MHz 5760 MIPS 37 Archived 2014 12 11 at the Wayback Machine 16 ARM7 at 45 MHz 640 MIPS 38 Freescale Semiconductor MPC8272 PowerQUICC II Processor Family PDF Archived from the original PDF on 2012 02 18 Retrieved 2008 05 13 ZISC78 datasheet amp application note Datasheet Archive a b c d Shimpi Anand Lal ARM s Cortex A7 Bringing Cheaper Dual Core amp More Power Efficient High End Devices PIC10F200 8 bit PIC Microcontrollers Microchip Redirect Archived from the original on 2014 10 06 Cortex M3 Processor ARM Nios II Performance Benchmarks PDF MIPS Architecture Enabling Growing List of Mobile Application Processors mini itx com epia px 10000 review a b Cortex A Series ARM a b c Charts benchmarks CPU Charts 2007 Synthetic SiSoft Sandra XI CPU Archived from the original on 2013 02 04 MPC7448 RISC Microprocessor Cortex R4 Processor ARM 24K permanent dead link a b Tom s Hardware Articles Find and Filter Our Latest Articles Semiconductor IP Cores Companies Merritt Rick 5 February 2007 Startup takes PowerPC to 25 W EE Times UBM Tech Archived from the original on 21 January 2013 Retrieved 20 November 2012 Benchmarks of ECS 945GCT D with Intel Atom 1 6GHz a b c d Charts benchmarks Desktop CPU Charts 2010 ALU Performance SiSoftware Sandra 2010 Pro ALU Archived from the original on 2013 02 04 Cortex M0 Processor ARM EEE Journal ARM11 vs Cortex A8 vs Cortex A9 Netbooks processors EEE PC MSI Wind HP Acer Aspire ARM Cortex vs Intel Atom Archived from the original on 2011 07 19 The Phenom II List of Overclocks Page 21 Archived from the original on 2009 04 04 Retrieved 2009 01 15 OC3D Review Intel 980x Gulftown Synthetic Benchmarks 12 March 2010 Benchmark Results Sandra 2011 ASRock s E350M1 AMD s Brazos Platform Hits The Desktop First 14 January 2011 Samsung Semiconductor Global Official Website Core i5 2500K and Core i7 2600K review a b c d Test Sandra Dhrystone MIPS for i7 4770K i7 3770K FX 8350 FX 8150 Benchmark Results SiSoftware Sandra 2011 The Intel Core i7 990X Extreme Edition Processor Review 25 February 2011 HardOCP Synthetic Benchmarks Archived from the original on 2011 11 16 Retrieved 2011 11 14 a b AMD FX 8350 Black Edition vs Intel Core i7 4770K Compare CPUs Intel Core i7 4770K Desktop Processor Rob Williams August 29 2014 Core i7 5960X Extreme Edition Review Intel s Overdue Desktop 8 Core Is Here Techgage By 2015 02 05 Benchmarking The Raspberry Pi 2 hackaday com ccokeman May 30 2016 Intel Core I7 6950X Extreme Edition Broadwell E CPU Review a b http users nik uni obuda hu sima letoltes Processor families Knowledge Base 2019 ARM processors lecture 2018 12 02 pdf bare URL PDF a b c d https elearning unicampania it pluginfile php 65623 mod folder content 0 ARM organization part2 pdf bare URL PDF https www ti com lit an spracv1a spracv1a pdf bare URL PDF Chiappetta Marco 2017 03 02 AMD Ryzen 7 1800X 1700X And 1700 Review And Benchmarks Zen Brings The Fight Back To Intel HotHardware Archived from the original on 2017 03 05 Retrieved 2017 03 05 Details for Component Intel Core i7 8086K SiSoftware Official Live Ranker a b Marco Chiappetta 14 November 2019 AMD Ryzen 9 3950X Review A 16 Core Zen 2 Powerhouse HotHardware Archived from the original on 6 March 2020 Retrieved 22 March 2020 Marco Chiappetta 7 February 2020 AMD Threadripper 3990X Review A 64 Core Multithreaded Beast Unleashed HotHardware Archived from the original on 18 March 2020 Retrieved 22 March 2020 Retrieved from https en wikipedia org w index php title Instructions per second amp oldid 1142055081 Millions of instructions per second MIPS, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.