fbpx
Wikipedia

Conversion of units

Conversion of units is the conversion between different units of measurement for the same quantity, typically through multiplicative conversion factors which change the measured quantity value without changing its effects.

Overview

The process of conversion depends on the specific situation and the intended purpose. This may be governed by regulation, contract, technical specifications or other published standards. Engineering judgment may include such factors as:

Some conversions from one system of units to another need to be exact, without increasing or decreasing the precision of the first measurement. This is sometimes called soft conversion. It does not involve changing the physical configuration of the item being measured.

By contrast, a hard conversion or an adaptive conversion may not be exactly equivalent. It changes the measurement to convenient and workable numbers and units in the new system. It sometimes involves a slightly different configuration, or size substitution, of the item.[clarification needed] Nominal values are sometimes allowed and used.

Factor-label method

The factor-label method, also known as the unit-factor method or the unity bracket method,[1] is a widely used technique for unit conversions using the rules of algebra.[2][3][4]

The factor-label method is the sequential application of conversion factors expressed as fractions and arranged so that any dimensional unit appearing in both the numerator and denominator of any of the fractions can be cancelled out until only the desired set of dimensional units is obtained. For example, 10 miles per hour can be converted to metres per second by using a sequence of conversion factors as shown below:

 

Each conversion factor is chosen based on the relationship between one of the original units and one of the desired units (or some intermediary unit), before being re-arranged to create a factor that cancels out the original unit. For example, as "mile" is the numerator in the original fraction and  , "mile" will need to be the denominator in the conversion factor. Dividing both sides of the equation by 1 mile yields  , which when simplified results in the dimensionless  . Because of the identity property of multiplication, multiplying any quantity (physical or not) by the dimensionless 1 does not change that quantity.[5] Once this and the conversion factor for seconds per hour have been multiplied by the original fraction to cancel out the units mile and hour, 10 miles per hour converts to 4.4704 metres per second.

As a more complex example, the concentration of nitrogen oxides (NOx) in the flue gas from an industrial furnace can be converted to a mass flow rate expressed in grams per hour (g/h) of NOx by using the following information as shown below:

NOx concentration
= 10 parts per million by volume = 10 ppmv = 10 volumes/106 volumes
NOx molar mass
= 46 kg/kmol = 46 g/mol
Flow rate of flue gas
= 20 cubic metres per minute = 20 m3/min
The flue gas exits the furnace at 0 °C temperature and 101.325 kPa absolute pressure.
The molar volume of a gas at 0 °C temperature and 101.325 kPa is 22.414 m3/kmol.
 

After canceling out any dimensional units that appear both in the numerators and denominators of the fractions in the above equation, the NOx concentration of 10 ppmv converts to mass flow rate of 24.63 grams per hour.

Checking equations that involve dimensions

The factor-label method can also be used on any mathematical equation to check whether or not the dimensional units on the left hand side of the equation are the same as the dimensional units on the right hand side of the equation. Having the same units on both sides of an equation does not ensure that the equation is correct, but having different units on the two sides (when expressed in terms of base units) of an equation implies that the equation is wrong.

For example, check the universal gas law equation of PV = nRT, when:

  • the pressure P is in pascals (Pa)
  • the volume V is in cubic metres (m3)
  • the amount of substance n is in moles (mol)
  • the universal gas constant R is 8.3145 Pa⋅m3/(mol⋅K)
  • the temperature T is in kelvins (K)
 

As can be seen, when the dimensional units appearing in the numerator and denominator of the equation's right hand side are cancelled out, both sides of the equation have the same dimensional units. Dimensional analysis can be used as a tool to construct equations that relate non-associated physico-chemical properties. The equations may reveal hitherto unknown or overlooked properties of matter, in the form of left-over dimensions – dimensional adjusters – that can then be assigned physical significance. It is important to point out that such 'mathematical manipulation' is neither without prior precedent, nor without considerable scientific significance. Indeed, the Planck constant, a fundamental physical constant, was 'discovered' as a purely mathematical abstraction or representation that built on the Rayleigh–Jeans law for preventing the ultraviolet catastrophe. It was assigned and ascended to its quantum physical significance either in tandem or post mathematical dimensional adjustment – not earlier.

Limitations

The factor-label method can convert only unit quantities for which the units are in a linear relationship intersecting at 0. (Ratio scale in Stevens's typology) Most units fit this paradigm. An example for which it cannot be used is the conversion between degrees Celsius and kelvins (or degrees Fahrenheit). Between degrees Celsius and kelvins, there is a constant difference rather than a constant ratio, while between degrees Celsius and degrees Fahrenheit there is neither a constant difference nor a constant ratio. There is, however, an affine transform ( , rather than a linear transform  ) between them.

For example, the freezing point of water is 0 °C and 32 °F, and a 5 °C change is the same as a 9 °F change. Thus, to convert from units of Fahrenheit to units of Celsius, one subtracts 32 °F (the offset from the point of reference), divides by 9 °F and multiplies by 5 °C (scales by the ratio of units), and adds 0 °C (the offset from the point of reference). Reversing this yields the formula for obtaining a quantity in units of Celsius from units of Fahrenheit; one could have started with the equivalence between 100 °C and 212 °F, though this would yield the same formula at the end.

Hence, to convert the numerical quantity value of a temperature T[F] in degrees Fahrenheit to a numerical quantity value T[C] in degrees Celsius, this formula may be used:

T[C] = (T[F] − 32) × 5/9.

To convert T[C] in degrees Celsius to T[F] in degrees Fahrenheit, this formula may be used:

T[F] = (T[C] × 9/5) + 32.

Calculation involving non-SI Units

In the cases where non-SI units are used, the numerical calculation of a formula can be done by first working out the pre-factor, and then plug in the numerical values of the given/known quantities.

For example, in the study of Bose–Einstein condensate,[6] atomic mass m is usually given in daltons, instead of kilograms, and chemical potential μ is often given in the Boltzmann constant times nanokelvin. The condensate's healing length is given by:

 

For a 23Na condensate with chemical potential of (the Boltzmann constant times) 128 nK, the calculation of healing length (in micrometres) can be done in two steps:

Calculate the pre-factor

Assume that   this gives

 
which is our pre-factor.

Calculate the numbers

Now, make use of the fact that  . With  ,  .

This method is especially useful for programming and/or making a worksheet, where input quantities are taking multiple different values; For example, with the pre-factor calculated above, it is very easy to see that the healing length of 174Yb with chemical potential 20.3 nK is  .

Software tools

There are many conversion tools. They are found in the function libraries of applications such as spreadsheets databases, in calculators, and in macro packages and plugins for many other applications such as the mathematical, scientific and technical applications.

There are many standalone applications that offer the thousands of the various units with conversions. For example, the free software movement offers a command line utility GNU units for Linux and Windows.

See also

Notes and references

  1. ^ Béla Bodó; Colin Jones (26 June 2013). Introduction to Soil Mechanics. John Wiley & Sons. pp. 9–. ISBN 978-1-118-55388-6.
  2. ^ Goldberg, David (2006). Fundamentals of Chemistry (5th ed.). McGraw-Hill. ISBN 978-0-07-322104-5.
  3. ^ Ogden, James (1999). The Handbook of Chemical Engineering. Research & Education Association. ISBN 978-0-87891-982-6.
  4. ^ "Dimensional Analysis or the Factor Label Method". Mr Kent's Chemistry Page.
  5. ^ "Identity property of multiplication". Retrieved 2015-09-09.
  6. ^ Foot, C. J. (2005). Atomic physics. Oxford University Press. ISBN 978-0-19-850695-9.
Notes

External links

  • Statutory Instrument 1995 No. 1804 Units of measurement regulations 1995 From legislation.gov.uk
  • (PDF). Archived from the original (PDF) on 2016-12-27. Retrieved 2004-03-15. (35.7 KB)
  • NIST Guide to SI Units Many conversion factors listed.
  • Units, Symbols, and Conversions XML Dictionary
  • Units of Measurement Software at Curlie
  • Units of Measurement Online Conversion at Curlie
  • (in French)"Instruction sur les poids et mesures républicaines:
    déduites de la grandeur de la terre,
    uniformes pour toute la République,
    et sur les calculs relatifs à leur division décimale"

conversion, units, conversion, between, different, units, measurement, same, quantity, typically, through, multiplicative, conversion, factors, which, change, measured, quantity, value, without, changing, effects, contents, overview, factor, label, method, che. Conversion of units is the conversion between different units of measurement for the same quantity typically through multiplicative conversion factors which change the measured quantity value without changing its effects Contents 1 Overview 2 Factor label method 2 1 Checking equations that involve dimensions 2 2 Limitations 3 Calculation involving non SI Units 3 1 Calculate the pre factor 3 2 Calculate the numbers 4 Software tools 5 See also 6 Notes and references 7 External linksOverview EditThe process of conversion depends on the specific situation and the intended purpose This may be governed by regulation contract technical specifications or other published standards Engineering judgment may include such factors as The precision and accuracy of measurement and the associated uncertainty of measurement The statistical confidence interval or tolerance interval of the initial measurement The number of significant figures of the measurement The intended use of the measurement including the engineering tolerances Historical definitions of the units and their derivatives used in old measurements e g international foot vs US survey foot Some conversions from one system of units to another need to be exact without increasing or decreasing the precision of the first measurement This is sometimes called soft conversion It does not involve changing the physical configuration of the item being measured By contrast a hard conversion or an adaptive conversion may not be exactly equivalent It changes the measurement to convenient and workable numbers and units in the new system It sometimes involves a slightly different configuration or size substitution of the item clarification needed Nominal values are sometimes allowed and used Factor label method EditThe factor label method also known as the unit factor method or the unity bracket method 1 is a widely used technique for unit conversions using the rules of algebra 2 3 4 The factor label method is the sequential application of conversion factors expressed as fractions and arranged so that any dimensional unit appearing in both the numerator and denominator of any of the fractions can be cancelled out until only the desired set of dimensional units is obtained For example 10 miles per hour can be converted to metres per second by using a sequence of conversion factors as shown below 10 m i 1 h 1609 344 m 1 m i 1 h 3600 s 4 4704 m s displaystyle frac mathrm 10 cancel mi mathrm 1 cancel h times frac mathrm 1609 344 m mathrm 1 cancel mi times frac mathrm 1 cancel h mathrm 3600 s mathrm 4 4704 frac m s Each conversion factor is chosen based on the relationship between one of the original units and one of the desired units or some intermediary unit before being re arranged to create a factor that cancels out the original unit For example as mile is the numerator in the original fraction and 1 m i 1609 344 m displaystyle mathrm 1 mi mathrm 1609 344 m mile will need to be the denominator in the conversion factor Dividing both sides of the equation by 1 mile yields 1 m i 1 m i 1609 344 m 1 m i displaystyle frac mathrm 1 mi mathrm 1 mi frac mathrm 1609 344 m mathrm 1 mi which when simplified results in the dimensionless 1 1609 344 m 1 m i displaystyle 1 frac mathrm 1609 344 m mathrm 1 mi Because of the identity property of multiplication multiplying any quantity physical or not by the dimensionless 1 does not change that quantity 5 Once this and the conversion factor for seconds per hour have been multiplied by the original fraction to cancel out the units mile and hour 10 miles per hour converts to 4 4704 metres per second As a more complex example the concentration of nitrogen oxides NOx in the flue gas from an industrial furnace can be converted to a mass flow rate expressed in grams per hour g h of NOx by using the following information as shown below NOx concentration 10 parts per million by volume 10 ppmv 10 volumes 106 volumes NOx molar mass 46 kg kmol 46 g mol Flow rate of flue gas 20 cubic metres per minute 20 m3 min The flue gas exits the furnace at 0 C temperature and 101 325 kPa absolute pressure The molar volume of a gas at 0 C temperature and 101 325 kPa is 22 414 m3 kmol 1000 g NO x 1 kg NO x 46 kg NO x 1 kmol NO x 1 kmol NO x 22 414 m 3 NO x 10 m 3 NO x 10 6 m 3 gas 20 m 3 gas 1 minute 60 minute 1 hour 24 63 g NO x hour displaystyle frac 1000 ce g NO x 1 cancel ce kg NO x times frac 46 cancel ce kg NO x 1 cancel ce kmol NO x times frac 1 cancel ce kmol NO x 22 414 cancel ce m 3 ce NO x times frac 10 cancel ce m 3 ce NO x 10 6 cancel ce m 3 ce gas times frac 20 cancel ce m 3 ce gas 1 cancel ce minute times frac 60 cancel ce minute 1 ce hour 24 63 frac ce g NO x ce hour After canceling out any dimensional units that appear both in the numerators and denominators of the fractions in the above equation the NOx concentration of 10 ppmv converts to mass flow rate of 24 63 grams per hour Checking equations that involve dimensions Edit The factor label method can also be used on any mathematical equation to check whether or not the dimensional units on the left hand side of the equation are the same as the dimensional units on the right hand side of the equation Having the same units on both sides of an equation does not ensure that the equation is correct but having different units on the two sides when expressed in terms of base units of an equation implies that the equation is wrong For example check the universal gas law equation of PV nRT when the pressure P is in pascals Pa the volume V is in cubic metres m3 the amount of substance n is in moles mol the universal gas constant R is 8 3145 Pa m3 mol K the temperature T is in kelvins K P a m 3 m o l 1 P a m 3 m o l K K 1 displaystyle mathrm Pa cdot m 3 frac cancel mathrm mol 1 times frac mathrm Pa cdot m 3 cancel mathrm mol cancel mathrm K times frac cancel mathrm K 1 As can be seen when the dimensional units appearing in the numerator and denominator of the equation s right hand side are cancelled out both sides of the equation have the same dimensional units Dimensional analysis can be used as a tool to construct equations that relate non associated physico chemical properties The equations may reveal hitherto unknown or overlooked properties of matter in the form of left over dimensions dimensional adjusters that can then be assigned physical significance It is important to point out that such mathematical manipulation is neither without prior precedent nor without considerable scientific significance Indeed the Planck constant a fundamental physical constant was discovered as a purely mathematical abstraction or representation that built on the Rayleigh Jeans law for preventing the ultraviolet catastrophe It was assigned and ascended to its quantum physical significance either in tandem or post mathematical dimensional adjustment not earlier Limitations Edit The factor label method can convert only unit quantities for which the units are in a linear relationship intersecting at 0 Ratio scale in Stevens s typology Most units fit this paradigm An example for which it cannot be used is the conversion between degrees Celsius and kelvins or degrees Fahrenheit Between degrees Celsius and kelvins there is a constant difference rather than a constant ratio while between degrees Celsius and degrees Fahrenheit there is neither a constant difference nor a constant ratio There is however an affine transform x a x b displaystyle x mapsto ax b rather than a linear transform x a x displaystyle x mapsto ax between them For example the freezing point of water is 0 C and 32 F and a 5 C change is the same as a 9 F change Thus to convert from units of Fahrenheit to units of Celsius one subtracts 32 F the offset from the point of reference divides by 9 F and multiplies by 5 C scales by the ratio of units and adds 0 C the offset from the point of reference Reversing this yields the formula for obtaining a quantity in units of Celsius from units of Fahrenheit one could have started with the equivalence between 100 C and 212 F though this would yield the same formula at the end Hence to convert the numerical quantity value of a temperature T F in degrees Fahrenheit to a numerical quantity value T C in degrees Celsius this formula may be used T C T F 32 5 9 To convert T C in degrees Celsius to T F in degrees Fahrenheit this formula may be used T F T C 9 5 32 Calculation involving non SI Units EditIn the cases where non SI units are used the numerical calculation of a formula can be done by first working out the pre factor and then plug in the numerical values of the given known quantities For example in the study of Bose Einstein condensate 6 atomic mass m is usually given in daltons instead of kilograms and chemical potential m is often given in the Boltzmann constant times nanokelvin The condensate s healing length is given by 3 ℏ 2 m m displaystyle xi frac hbar sqrt 2m mu For a 23Na condensate with chemical potential of the Boltzmann constant times 128 nK the calculation of healing length in micrometres can be done in two steps Calculate the pre factor Edit Assume that m 1 Da m k B 1 nK displaystyle m 1 text Da mu k text B cdot 1 text nK this gives3 ℏ 2 m m 15 574 m m displaystyle xi frac hbar sqrt 2m mu 15 574 mathrm mu m which is our pre factor Calculate the numbers Edit Now make use of the fact that 3 1 m m displaystyle xi propto frac 1 sqrt m mu With m 23 Da m 128 k B nK displaystyle m 23 text Da mu 128 k text B cdot text nK 3 15 574 23 128 mm 0 287 mm displaystyle xi frac 15 574 sqrt 23 cdot 128 text mm 0 287 text mm This method is especially useful for programming and or making a worksheet where input quantities are taking multiple different values For example with the pre factor calculated above it is very easy to see that the healing length of 174Yb with chemical potential 20 3 nK is 3 15 574 174 20 3 mm 0 262 mm displaystyle xi frac 15 574 sqrt 174 cdot 20 3 text mm 0 262 text mm Software tools EditThere are many conversion tools They are found in the function libraries of applications such as spreadsheets databases in calculators and in macro packages and plugins for many other applications such as the mathematical scientific and technical applications There are many standalone applications that offer the thousands of the various units with conversions For example the free software movement offers a command line utility GNU units for Linux and Windows See also EditMain listing List of conversion factors Accuracy and precision Conversion of units of temperature Dimensional analysis English units False precision Imperial units International System of Units Mesures usuelles Metric prefix e g kilo prefix Metric system Natural units Orders of Magnitude Rounding Significant figures Unified Code for Units of Measure United States customary units Unit of length Units software Units conversion by factor label Units of measurementNotes and references Edit Bela Bodo Colin Jones 26 June 2013 Introduction to Soil Mechanics John Wiley amp Sons pp 9 ISBN 978 1 118 55388 6 Goldberg David 2006 Fundamentals of Chemistry 5th ed McGraw Hill ISBN 978 0 07 322104 5 Ogden James 1999 The Handbook of Chemical Engineering Research amp Education Association ISBN 978 0 87891 982 6 Dimensional Analysis or the Factor Label Method Mr Kent s Chemistry Page Identity property of multiplication Retrieved 2015 09 09 Foot C J 2005 Atomic physics Oxford University Press ISBN 978 0 19 850695 9 NotesExternal links Edit Wikibooks has a book on the topic of FHSST Physics Units How to Change Units Wikivoyage has a travel guide for Metric and Imperial equivalents Statutory Instrument 1995 No 1804 Units of measurement regulations 1995 From legislation gov uk NIST Fundamental physical constants Non SI units PDF Archived from the original PDF on 2016 12 27 Retrieved 2004 03 15 35 7 KB NIST Guide to SI Units Many conversion factors listed The Unified Code for Units of Measure Units Symbols and Conversions XML Dictionary Units of Measurement Software at Curlie Units of Measurement Online Conversion at Curlie in French Instruction sur les poids et mesures republicaines deduites de la grandeur de la terre uniformes pour toute la Republique et sur les calculs relatifs a leur division decimale Retrieved from https en wikipedia org w index php title Conversion of units amp oldid 1124957199, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.