fbpx
Wikipedia

Maya calendar

The Maya calendar is a system of calendars used in pre-Columbian Mesoamerica and in many modern communities in the Guatemalan highlands,[1] Veracruz, Oaxaca and Chiapas, Mexico.[2]

The essentials of the Maya calendar are based upon a system which had been in common use throughout the region, dating back to at least the 5th century BC. It shares many aspects with calendars employed by other earlier Mesoamerican civilizations, such as the Zapotec and Olmec and contemporary or later ones such as the Mixtec and Aztec calendars.[3]

By the Maya mythological tradition, as documented in Colonial Yucatec accounts and reconstructed from Late Classic and Postclassic inscriptions, the deity Itzamna is frequently credited with bringing the knowledge of the calendrical system to the ancestral Maya, along with writing in general and other foundational aspects of Mayan culture.[4]

Overview edit

The Maya calendar consists of several cycles or counts of different lengths. The 260-day count is known to scholars as the Tzolkin, or Tzolkʼin.[5] The Tzolkin was combined with a 365-day vague solar year known as the Haabʼ to form a synchronized cycle lasting for 52 Haabʼ called the Calendar Round. The Calendar Round is still in use by many groups in the Guatemalan highlands.[6]

A different calendar was used to track longer periods of time and for the inscription of calendar dates (i.e., identifying when one event occurred in relation to others). This is the Long Count. It is a count of days since a mythological starting-point.[7] According to the correlation between the Long Count and Western calendars accepted by the great majority of Maya researchers (known as the Goodman-Martinez-Thompson, or GMT, correlation), this starting-point is equivalent to August 11, 3114 BC in the proleptic Gregorian calendar or September 6, in the Julian calendar (−3113 astronomical). The GMT correlation was chosen by John Eric Sydney Thompson in 1935 on the basis of earlier correlations by Joseph Goodman in 1905 (August 11), Juan Martínez Hernández in 1926 (August 12) and Thompson himself in 1927 (August 13).[8] By its linear nature, the Long Count was capable of being extended to refer to any date far into the past or future. This calendar involved the use of a positional notation system, in which each position signified an increasing multiple of the number of days. The Maya numeral system was essentially vigesimal (i.e., base-20) and each unit of a given position represented 20 times the unit of the position which preceded it. An important exception was made for the second-order place value, which instead represented 18 × 20, or 360 days, more closely approximating the solar year than would 20 × 20 = 400 days. The cycles of the Long Count are independent of the solar year.

Many Maya Long Count inscriptions contain a supplementary series, which provides information on the lunar phase, number of the current lunation in a series of six and which of the nine Lords of the Night rules.

Less-prevalent or poorly understood cycles, combinations and calendar progressions were also tracked. An 819-day Count is attested in a few inscriptions. Repeating sets of 9 days (see below "Nine lords of the night")[9] associated with different groups of deities, animals and other significant concepts are also known.

Tzolkʼin edit

The tzolkʼin (in modern Maya orthography; also commonly written tzolkin) is the name commonly employed by Mayanist researchers for the Maya Sacred Round or 260-day calendar. The word tzolkʼin is a neologism coined in Yucatec Maya, to mean "count of days" (Coe 1992). The various names of this calendar as used by precolumbian Maya people are still debated by scholars. The Aztec calendar equivalent was called Tōnalpōhualli, in the Nahuatl language.

The tzolkʼin calendar combines twenty day names with the thirteen day numbers to produce 260 unique days. It is used to determine the time of religious and ceremonial events and for divination. Each successive day is numbered from 1 up to 13 and then starting again at 1. Separately from this, every day is given a name in sequence from a list of 20 day names:

Tzolkʼin calendar: named days and associated glyphs
Seq.
Num. 1
Day
Name 2
Glyph
example 3
16th-c.
Yucatec 4
K'iche' Reconstructed
Classic Maya 5
Seq.
Num. 1
Day
Name 2
Glyph
example 3
16th-c.
Yucatec 4
Quiché Reconstructed
Classic Maya 5
01 Imix   Imix Imox Imix (?) / Haʼ (?) 11 Chuwen   Chuen Bʼatzʼ (unknown)
02 Ikʼ   Ik Iqʼ Ikʼ 12 Ebʼ   Eb (unknown)
03 Akʼbʼal   Akbal Aqʼabʼal Akʼbʼal (?) 13 Bʼen   Ben Aj C'klab[clarification needed]
04 Kʼan   Kan Kʼat Kʼan (?) 14 Ix   Ix Iʼx, Balam Hix (?)
05 Chikchan   Chicchan Kan (unknown) 15 Men   Men Tzikin Men (?)[10]
06 Kimi   Cimi Kame Cham (?) 16 Kʼibʼ   Cib Ajmaq (unknown)
07 Manikʼ   Manik Kej Manichʼ (?) 17 Kabʼan   Caban Noʼj Chabʼ (?)
08 Lamat   Lamat Qʼanil Ekʼ (?) 18 Etzʼnabʼ   Etznab Tijax (unknown)
09 Muluk   Muluc Toj (unknown) 19 Kawak   Cauac Kawoq (unknown)
10 Ok   Oc Tzʼiʼ (unknown) 20 Ajaw   Ahau Ajpu Ajaw
NOTES:
  1. The sequence number of the named day in the Tzolkʼin calendar
  2. Day name, in the standardized and revised orthography of the Guatemalan Academia de Lenguas Mayas[5]
  3. An example glyph (logogram) for the named day. Note that for most of these several different forms are recorded; the ones shown here are typical of carved monumental inscriptions (these are "cartouche" versions)
  4. Day name, as recorded from 16th-century Yucatec Maya accounts, principally Diego de Landa; this orthography has (until recently) been widely used
  5. In most cases, the actual day name as spoken in the time of the Classic Period (c. 200–900) when most inscriptions were made is not known. The versions given here (in Classic Maya, the main language of the inscriptions) are reconstructed on the basis of phonological evidence, if available; a '?' symbol indicates the reconstruction is tentative.[11]

Some systems started the count with 1 Imix, followed by 2 Ikʼ, 3 Akʼbʼal, etc. up to 13 Bʼen. The day numbers then start again at 1 while the named-day sequence continues onwards, so the next days in the sequence are 1 Ix, 2 Men, 3 Kʼibʼ, 4 Kabʼan, 5 Etzʼnabʼ, 6 Kawak and 7 Ajaw. With all twenty named days used, these now began to repeat the cycle while the number sequence continues, so the next day after 7 Ajaw is 8 Imix. The repetition of these interlocking 13- and 20-day cycles therefore takes 260 days to complete (that is, for every possible combination of number/named day to occur once).

The earliest known inscription with a Tzolkʼin is an Olmec earspool with 2 Ahau 3 Ceh - 6.3.10.9.0, September 2, -678 (Julian astronomical).[12]

Haabʼ edit

Haabʼ months: names and glyphs[13] in sequence
Seq.
Num.
Yucatec
name
Hieroglyph
Classic Period

glyph sign

Meaning of glyph
[14]
Reconstructed Classic Maya
1 Pop     k'anjalaw
2 Woʼ     ik'at
3 Sip     chakat
4 Sotzʼ     bat sotz'
5 Sek     kaseew
6 Xul     chikin
7 Yaxkʼin     yaxk'in
8 Mol     mol
9 Chʼen     black[15] ik'siho'm
10 Yax     green[15] yaxsiho'm
11 Sak     white[15] saksiho'm
12 Keh     red[15] chaksiho'm
13 Mak     mak
14 Kʼankʼin     uniiw
15 Muwan     muwaan
16 Pax     paxiil
17 Kʼayab     k'anasiiy
18 Kumkʼu     ohl
19 Wayebʼ     five unlucky days wayhaab

The Haabʼ was made up of eighteen months of twenty days each plus a period of five days ("nameless days") at the end of the year known as Wayeb' (or Uayeb in 16th-century orthography). The five days of Wayebʼ were thought to be a dangerous time. Foster (2002) writes, "During Wayeb, portals between the mortal realm and the Underworld dissolved. No boundaries prevented the ill-intending deities from causing disasters." To ward off these evil spirits, the Maya had customs and rituals they practiced during Wayebʼ. For example, people avoided leaving their houses and washing or combing their hair. Bricker (1982) estimates that the Haabʼ was first used around 550 BC with a starting point of the winter solstice.[16]

The Haabʼ month names are known today by their corresponding names in colonial-era Yukatek Maya, as transcribed by 16th-century sources (in particular, Diego de Landa and books such as the Chilam Balam of Chumayel). Phonemic analyses of Haabʼ glyph names in pre-Columbian Maya inscriptions have demonstrated that the names for these twenty-day periods varied considerably from region to region and from period to period, reflecting differences in the base language(s) and usage in the Classic and Postclassic eras predating their recording by Spanish sources.[17]

Each day in the Haabʼ calendar was identified by a day number in the month followed by the name of the month. Day numbers began with a glyph translated as the "seating of" a named month, which is usually regarded as day 0 of that month, although a minority treat it as day 20 of the month preceding the named month. In the latter case, the seating of Pop is day 5 of Wayebʼ. For the majority, the first day of the year was 0 Pop (the seating of Pop). This was followed by 1 Pop, 2 Pop as far as 19 Pop then 0 Wo, 1 Wo and so on.

Because the Haabʼ had 365 days and the tropical year is 365.2422 days, the days of the Haabʼ did not coincide with the tropical year.

Calendar Round edit

A Calendar Round date is a date that gives both the Tzolkʼin and Haabʼ. This date will repeat after 52 Haabʼ years or 18,980 days, a Calendar Round. For example, the current creation started on 4 Ahau 8 Kumkʼu. When this date recurs it is known as a Calendar Round completion.

Arithmetically, the duration of the Calendar Round is the least common multiple of 260 and 365; 18,980 is 73 × 260 Tzolkʼin days and 52 × 365 Haabʼ days.[18]

Not every possible combination of Tzolkʼin and Haabʼ can occur. For Tzolkʼin days Imix, Kimi, Chuwen and Kibʼ, the Haabʼ day can only be 4, 9, 14 or 19; for Ikʼ, Manikʼ, Ebʼ and Kabʼan, the Haabʼ day can only be 0, 5, 10 or 15; for Akbʼalʼ, Lamat, Bʼen and Etzʼnabʼ, the Haabʼ day can only be 1, 6, 11 or 16; for Kʼan, Muluk, Ix and Kawak, the Haabʼ day can only be 2, 7, 12 or 17; and for Chikchan, Ok, Men and Ajaw, the Haabʼ day can only be 3, 8, 13 or 18.[19]

Year Bearer edit

A "Year Bearer" is a Tzolkʼin day name that occurs on 0 Pop, the first day of the Haabʼ. Since there are 20 Tzolkʼin day names, 365 days in the Haabʼ, and the remainder of 365 divided by 20 is 5 (365 = 18×20 + 5), the Tzolkʼin day name for each successive 0 Pop will be 5 later in the cycle of Tzolk'in day names. Similarly, since there are 13 Tzolk'in day numbers, and the remainder of 365 divided by 13 is 1 (365 = 28×13 + 1), the Tzolk'in day number for each successive 0 Pop will be 1 greater than before. As such, the sequence of Tzolk'in dates corresponding to the Haab' date 0 Pop are as follows:

  • 1 Ikʼ
  • 2 Manikʼ
  • 3 Ebʼ
  • 4 Kabʼan
  • 5 Ikʼ
  • ...
  • 19 Eb'
  • 20 Kab'an
  • 1 Ik'
  • ...

Thus, the Year Bearers are the four Tzolkʼin day names that appear in this sequence: Ik', Manik', Eb', and Kab'an.

"Year Bearer" literally translates a Mayan concept.[20] Its importance resides in two facts. For one, the four years headed by the Year Bearers are named after them and share their characteristics; therefore, they also have their own prognostications and patron deities.[21] Moreover, since the Year Bearers are geographically identified with boundary markers or mountains, they help define the local community.[22]

The classic system of Year Bearers described above is found at Tikal and in the Dresden Codex. During the Late Classic period a different set of Year Bearers was in use in Campeche. In this system, the Year Bearers were the Tzolkʼin that coincided with 1 Pop. These were Akʼbʼal, Lamat, Bʼen and Edznab. During the Post-Classic period in Yucatán a third system was in use. In this system the Year Bearers were the days that coincided with 2 Pop: Kʼan, Muluc, Ix and Kawak. This system is found in the Chronicle of Oxkutzcab. In addition, just before the Spanish conquest in Mayapan the Maya began to number the days of the Haabʼ from 1 to 20. In this system the Year Bearers are the same as in the 1 Pop – Campeche system. The Classic Year Bearer system is still in use in the Guatemalan highlands[23] and in Veracruz, Oaxaca and Chiapas, Mexico.[24]

Long Count edit

 
East side of Stela C, Quirigua with the mythical creation date of 13 baktuns, 0 katuns, 0 tuns, 0 uinals, 0 kins, 4 Ahau, 8 Cumku – August 11, 3114 BC in the proleptic Gregorian calendar

Since Calendar Round dates repeat every 18,980 days, approximately 52 solar years, the cycle repeats roughly once each lifetime, so a more refined method of dating was needed if history was to be recorded accurately. To specify dates over periods longer than 52 years, Mesoamericans used the Long Count calendar.

The Maya name for a day was kʼin. Twenty of these kʼins are known as a winal or uinal. Eighteen winals make one tun. Twenty tuns are known as a kʼatun. Twenty kʼatuns make a bʼakʼtun.

The Long Count calendar identifies a date by counting the number of days from the Mayan creation date 4 Ahaw, 8 Kumkʼu (August 11, 3114 BC in the proleptic Gregorian calendar or September 6 in the Julian calendar -3113 astronomical dating). But instead of using a base-10 (decimal) scheme, the Long Count days were tallied in a modified base-20 scheme. Thus 0.0.0.1.5 is equal to 25 and 0.0.0.2.0 is equal to 40. As the winal unit resets after only counting to 18, the Long Count consistently uses base-20 only if the tun is considered the primary unit of measurement, not the kʼin; with the kʼin and winal units being the number of days in the tun. The Long Count 0.0.1.0.0 represents 360 days, rather than the 400 in a purely base-20 (vigesimal) count.

There are also four rarely used higher-order cycles: piktun, kalabtun, kʼinchiltun, and alautun.

Since the Long Count dates are unambiguous, the Long Count was particularly well suited to use on monuments. The monumental inscriptions would not only include the 5 digits of the Long Count, but would also include the two tzolkʼin characters followed by the two haabʼ characters.

Misinterpretation of the Mesoamerican Long Count calendar was the basis for a popular belief that a cataclysm would take place on December 21, 2012. December 21, 2012 was simply the day that the calendar went to the next bʼakʼtun, at Long Count 13.0.0.0.0. The date of the start of the next b'ak'tun (Long Count 14.0.0.0.0) is March 26, 2407. The date of the start of the next piktun (a complete series of 20 bʼakʼtuns), at Long Count 1.0.0.0.0.0, is October 13, 4772.

Table of Long Count units
Long Count
unit
Long Count
period
Days Approximate
Solar Years
1 Kʼin   1  
1 Winal 20 Kʼin 20  
1 Tun 18 Winal 360 1
1 Kʼatun 20 Tun 7,200 20
1 Bʼakʼtun 20 Kʼatun 144,000 394
1 Piktun 20 Bʼakʼtun 2,880,000 7,885
1 Kalabtun 20 Piktun 57,600,000 157,704
1 Kʼinchiltun 20 Kalabtun 1,152,000,000 3,154,071
1 Alautun 20 Kʼinchiltun 23,040,000,000 63,081,429

Supplementary Series edit

Many Classic period inscriptions include a series of glyphs known as the Supplementary Series. The operation of this series was largely worked out by John E. Teeple. The Supplementary Series most commonly consists of the following elements:

Lords of the Night edit

Each night was ruled by one of the nine lords of the underworld. This nine-day cycle was usually written as two glyphs: a glyph that referred to the Nine Lords as a group, followed by a glyph for the lord that would rule the next night.

Lunar Series edit

A lunar series generally is written as five glyphs that provide information about the current lunation, the number of the lunation in a series of six, the current ruling lunar deity and the length of the current lunation.

Moon age edit

The Maya counted the number of days in the current lunation. They used two systems for the zero date of the lunar cycle: either the first night they could see the thin crescent moon or the first morning when they could not see the waning moon.[25] The age of the moon was depicted by a set of glyphs that mayanists coined glyphs D and E:

  • A new moon glyph was used for day zero in the lunar cycle.
  • D glyphs were used for lunar ages for days 1 through 19, with the number of days that had passed from the new moon.
  • For lunar ages 20 to 30, an E glyph was used, with the number of days from 20.

Count of Lunations edit

The Maya counted the lunations. This cycle appears in the lunar series as two glyphs that modern scholars call the 'C' and 'X' glyphs. The C glyph could be prefixed with a number indicating the lunation. No prefixing number meant one, whereas the numbers two through six indicated the other lunations.[26][27] There was also a part of the C glyph that indicated where this fell in a larger cycle of 18 lunations. Accompanying the C glyph was the 'X' glyph that showed a similar pattern of 18 lunations.[28][29]

Lunation length edit

The present era lunar synodic period is about 29.5305877 mean solar days or about 29 days 12 hours 44 minutes and 2+7/9 seconds. As a whole number, the number of days per lunation will be either 29 or 30 days, with the 30-day intervals necessarily occurring slightly more frequently than the 29-day intervals. The Maya wrote whether the lunar month was 29 or 30 days as two glyphs: a glyph for lunation length followed by either a glyph made up of a moon glyph over a bundle with a suffix of 9 for a 29-day lunation or a moon glyph with a suffix of 10 for a 30-day lunation. Since the Maya didn't use fractions, lunations were approximated by using the formula that there were 149 lunations completed in 4400 days, which yielded a rather short mean month of exactly 4400/149 = 29+79/149 days = 29 days 12 hours 43 minutes and 29+59/149 seconds, or about 29.5302 days.[30]

819-day count edit

Some Mayan monuments include glyphs that record an 819-day count in their Initial Series. These can also be found in the Dresden codex.[31] This is described in Thompson.[32] More examples of this can be found in Kelley.[33] Each group of 819 days was associated with one of four colors and the cardinal direction with which it was associated – black corresponded to west, red to east, white to north and yellow to south.

The 819-day count can be described several ways: Most of these are referred to using a "Y" glyph and a number. Many also have a glyph for Kʼawill – the god with a smoking mirror in his head. Kʼawill has been suggested as having a link to Jupiter.[34] In the Dresden codex almanac 59 there are Chaacs of the four colors. The accompanying texts begin with a directional glyph and a verb for 819-day-count phrases. Anderson[35] provides a detailed description of the 819-day count.

Synodic periods of the classical planets edit

 Moon: 1 x 819 + 8 days = 28 (synodic 29.53 d) "28 months" Moon: 4 x 819 + 2 days = 111 (synodic 29.53 d) "111 months" Moon: 15 x 819 + 0.3 days = 416 (synodic 29.53 d) "416 months" 
 Draconic: 31 x 819 days = 933 (draconic 27.21 d) "nodal months" 
 Mercury: 1 x 819 + 8 days = 7 (synodic 115.88 d) Mercury: 15 x 819 + 2 days = 106 (synodic 115.88 d) 
 Venus: 5 x 819 + 8 days = 7 (synodic 583.9 d) 
 Sun: 4 x 819 + 11 days = 9 (synodic 365.24 d) "9 years" Sun: 33 x 819 + 1 days = 74 (synodic 365.24 d) "74 years" 
 Mars: 20 x 819 + 2 days = 21 (synodic 779.9 d) 
 Jupiter: 1 x 819 + 21 days = 2 (synodic 398.88 d) Jupiter: 19 x 819 + 5 days = 39 (synodic 398.88 d) 
 Saturn: 6 x 819 - 1 days = 13 (synod 378.09 d) 

[36]

Short count edit

During the late Classic period the Maya began to use an abbreviated short count instead of the Long Count. An example of this can be found on altar 14 at Tikal.[37] In the kingdoms of Postclassic Yucatán, the Short Count was used instead of the Long Count. The cyclical Short Count is a count of 13 kʼatuns (or 260 tuns), in which each kʼatun was named after its concluding day, Ahau ('Lord'). 1 Imix was selected as the recurrent 'first day' of the cycle, corresponding to 1 Cipactli in the Aztec day count. The cycle was counted from katun 11 Ahau to katun 13 Ahau. Since a katun is 20 × 360 = 7200 days long, and the remainder of 7200 divided by 13 is 11 (7200 = 553×13 + 11), the day number of the concluding day of each successive katun is 9 greater than before (wrapping around at 13, since only 13 day numbers are used). That is, starting with the katun that begins with 1 Imix, the sequence of concluding day numbers is 11, 9, 7, 5, 3, 1, 12, 10, 8, 6, 4, 2, 13, 11, ..., all named Ahau. The concluding day 13 Ahau was followed by the re-entering first day 1 Imix. This is the system as found in the colonial Books of Chilam Balam. In characteristic Mesoamerican fashion, these books project the cycle onto the landscape, with 13 Ahauob 'Lordships' dividing the land of Yucatán into 13 'kingdoms'.[38]

See also edit

Notes edit

  1. ^ Tedlock, Barbara, Time and the Highland Maya Revised edition (1992 Page 1) "Scores of indigenous Guatemalan communities, principally those speaking the Mayan languages known as Ixil, Mam, Pokomchí and Quiché, keep the 260-day cycle and (in many cases) the ancient solar cycle as well (chapter 4)."
  2. ^ Miles, Susanna W, "An Analysis of the Modern Middle American Calendars: A Study in Conservation." In Acculturation in the Americas. Edited by Sol Tax, p. 273. Chicago: University of Chicago Press, 1952.
  3. ^ "Maya Calendar Origins: Monuments, Mythistory, and the Materialization of Time".
  4. ^ See entry on Itzamna, in Miller and Taube (1993), pp.99–100.
  5. ^ a b Academia de las Lenguas Mayas de Guatemala (1988). Lenguas Mayas de Guatemala: Documento de referencia para la pronunciación de los nuevos alfabetos oficiales. Guatemala City: Instituto Indigenista Nacional. For details and notes on adoption among the Mayanist community, see Kettunen & Helmke (2020), p. 7.
  6. ^ Tedlock (1992), p. 1
  7. ^ "Mythological" in the sense that when the Long Count was first devised sometime in the Mid- to Late Preclassic, long after this date; see e.g. Miller and Taube (1993, p. 50).
  8. ^ Voss (2006, p. 138)
  9. ^ See separate brief Wikipedia article Lords of the Night
  10. ^ Stuart, David (2024-04-19). "Day Sign Notes: Men / Tz'ikin". Maya Decipherment. Retrieved 2024-05-01.
  11. ^ Classic-era reconstructions are as per Kettunen and Helmke (2020), pp. 56–57.
  12. ^ Edmonson, Munro S. (1988). The Book of the Year MIDDLE AMERICAN CALENDRICAL SYSTEMS. Salt Lake City: University of Utah Press. p. 20. ISBN 0-87480-288-1.
  13. ^ Kettunen and Helmke (2020), pp. 58–59
  14. ^ These names come from de Landa's description of the calendar and they are commonly used by Mayanists, but the Classic Maya did not use these actual names for the day signs. The original names are unknown. See Coe, Michael D.; Mark L Van Stone (2005). Reading the Maya Glyphs. London: Thames & Hudson. p. 43. ISBN 978-0-500-28553-4.
  15. ^ a b c d Coe, Michael D.; Mark L Van Stone (2005). Reading the Maya Glyphs. London: Thames & Hudson. p. 43. ISBN 978-0-500-28553-4.
  16. ^ Zero Pop actually fell on the same day as the solstice on 12/27/−575, 12/27/−574, 12/27/−573 and 12/26/−572 (astronomical year numbering, Universal Time), if you don't account for the fact that the Maya region is in roughly time zone UT−6. See IMCCE seasons. August 23, 2012, at the Wayback Machine
  17. ^ Boot (2002), pp. 111–114.
  18. ^ For further details, see Thompson 1966: 123–124
  19. ^ Kettunen and Helmke (2020), p. 51
  20. ^ Thompson 1966: 124
  21. ^ For a thorough treatment of the Year Bearers, see Tedlock 1992: 89–90; 99–104 and Thompson 1966
  22. ^ See Coe 1965
  23. ^ Tedlock 1992: 92
  24. ^ Miles, Susanna W, "An Analysis of the Modern Middle American Calendars: A Study in Conservation." In Acculturation in the Americas. Edited by Sol Tax, pp. 273–84. Chicago: University of Chicago Press, 1952.
  25. ^ Thompson, J. Eric S. Maya Hieroglyphic Writing, 1950 Page 236
  26. ^ Teeple 1931:53
  27. ^ Thompson Maya Hieroglyphic Writing 1950:240
  28. ^ Linden 1996:343–356.
  29. ^ Schele, Grube, Fahsen 1992
  30. ^ Teeple 1931:67
  31. ^ Grofe, Michael John 2007 The Serpent Series: Precession in the Maya Dresden Codex page 55 p. 206
  32. ^ Maya Hieroglyphic Writing 1961 pp. 212–217
  33. ^ Decipherment of Maya Script, David Kelley 1973 pp. 56–57
  34. ^ Star Gods of the Maya Susan Milbrath 1999, University of Texas Press
  35. ^ . Traditional High Cultures Home Page. Archived from the original on May 6, 2015. Retrieved March 30, 2015.
  36. ^ 2023, John H. Linden, Victoria R. Bricker, The Maya 819-Day Count and Planetary Astronomy https://doi.org/10.1017/S0956536122000323
  37. ^ Coe, William R. 'TIKAL a handbook of the ancient Maya Ruins' The University Museum of the University of Pennsylvania, Philadelphia, Pa. 1967 p. 114
  38. ^ Roys 1967: 132, 184–185

References edit

External links edit

  • Day Symbols of the Maya Year at Project Gutenberg 1897 text by Cyrus Thomas
  • date converter at FAMSI This converter uses the Julian/Gregorian calendar and includes the 819 day cycle and lunar age.


maya, calendar, system, calendars, used, columbian, mesoamerica, many, modern, communities, guatemalan, highlands, veracruz, oaxaca, chiapas, mexico, essentials, based, upon, system, which, been, common, throughout, region, dating, back, least, century, shares. The Maya calendar is a system of calendars used in pre Columbian Mesoamerica and in many modern communities in the Guatemalan highlands 1 Veracruz Oaxaca and Chiapas Mexico 2 The essentials of the Maya calendar are based upon a system which had been in common use throughout the region dating back to at least the 5th century BC It shares many aspects with calendars employed by other earlier Mesoamerican civilizations such as the Zapotec and Olmec and contemporary or later ones such as the Mixtec and Aztec calendars 3 By the Maya mythological tradition as documented in Colonial Yucatec accounts and reconstructed from Late Classic and Postclassic inscriptions the deity Itzamna is frequently credited with bringing the knowledge of the calendrical system to the ancestral Maya along with writing in general and other foundational aspects of Mayan culture 4 Contents 1 Overview 2 Tzolkʼin 3 Haabʼ 4 Calendar Round 4 1 Year Bearer 5 Long Count 6 Supplementary Series 6 1 Lords of the Night 6 2 Lunar Series 6 2 1 Moon age 6 2 2 Count of Lunations 6 2 3 Lunation length 7 819 day count 7 1 Synodic periods of the classical planets 8 Short count 9 See also 10 Notes 11 References 12 External linksOverview editFurther information Maya astronomy The Maya calendar consists of several cycles or counts of different lengths The 260 day count is known to scholars as the Tzolkin or Tzolkʼin 5 The Tzolkin was combined with a 365 day vague solar year known as the Haabʼ to form a synchronized cycle lasting for 52 Haabʼ called the Calendar Round The Calendar Round is still in use by many groups in the Guatemalan highlands 6 A different calendar was used to track longer periods of time and for the inscription of calendar dates i e identifying when one event occurred in relation to others This is the Long Count It is a count of days since a mythological starting point 7 According to the correlation between the Long Count and Western calendars accepted by the great majority of Maya researchers known as the Goodman Martinez Thompson or GMT correlation this starting point is equivalent to August 11 3114 BC in the proleptic Gregorian calendar or September 6 in the Julian calendar 3113 astronomical The GMT correlation was chosen by John Eric Sydney Thompson in 1935 on the basis of earlier correlations by Joseph Goodman in 1905 August 11 Juan Martinez Hernandez in 1926 August 12 and Thompson himself in 1927 August 13 8 By its linear nature the Long Count was capable of being extended to refer to any date far into the past or future This calendar involved the use of a positional notation system in which each position signified an increasing multiple of the number of days The Maya numeral system was essentially vigesimal i e base 20 and each unit of a given position represented 20 times the unit of the position which preceded it An important exception was made for the second order place value which instead represented 18 20 or 360 days more closely approximating the solar year than would 20 20 400 days The cycles of the Long Count are independent of the solar year Many Maya Long Count inscriptions contain a supplementary series which provides information on the lunar phase number of the current lunation in a series of six and which of the nine Lords of the Night rules Less prevalent or poorly understood cycles combinations and calendar progressions were also tracked An 819 day Count is attested in a few inscriptions Repeating sets of 9 days see below Nine lords of the night 9 associated with different groups of deities animals and other significant concepts are also known Tzolkʼin editMain article Tzolkʼin The tzolkʼin in modern Maya orthography also commonly written tzolkin is the name commonly employed by Mayanist researchers for the Maya Sacred Round or 260 day calendar The word tzolkʼin is a neologism coined in Yucatec Maya to mean count of days Coe 1992 The various names of this calendar as used by precolumbian Maya people are still debated by scholars The Aztec calendar equivalent was called Tōnalpōhualli in the Nahuatl language The tzolkʼin calendar combines twenty day names with the thirteen day numbers to produce 260 unique days It is used to determine the time of religious and ceremonial events and for divination Each successive day is numbered from 1 up to 13 and then starting again at 1 Separately from this every day is given a name in sequence from a list of 20 day names Tzolkʼin calendar named days and associated glyphs Seq Num 1 DayName 2 Glyph example 3 16th c Yucatec 4 K iche ReconstructedClassic Maya 5 Seq Num 1 DayName 2 Glyph example 3 16th c Yucatec 4 Quiche ReconstructedClassic Maya 5 01 Imix nbsp Imix Imox Imix Haʼ 11 Chuwen nbsp Chuen Bʼatzʼ unknown 02 Ikʼ nbsp Ik Iqʼ Ikʼ 12 Ebʼ nbsp Eb Eʼ unknown 03 Akʼbʼal nbsp Akbal Aqʼabʼal Akʼbʼal 13 Bʼen nbsp Ben Aj C klab clarification needed 04 Kʼan nbsp Kan Kʼat Kʼan 14 Ix nbsp Ix Iʼx Balam Hix 05 Chikchan nbsp Chicchan Kan unknown 15 Men nbsp Men Tzikin Men 10 06 Kimi nbsp Cimi Kame Cham 16 Kʼibʼ nbsp Cib Ajmaq unknown 07 Manikʼ nbsp Manik Kej Manichʼ 17 Kabʼan nbsp Caban Noʼj Chabʼ 08 Lamat nbsp Lamat Qʼanil Ekʼ 18 Etzʼnabʼ nbsp Etznab Tijax unknown 09 Muluk nbsp Muluc Toj unknown 19 Kawak nbsp Cauac Kawoq unknown 10 Ok nbsp Oc Tzʼiʼ unknown 20 Ajaw nbsp Ahau Ajpu Ajaw NOTES The sequence number of the named day in the Tzolkʼin calendar Day name in the standardized and revised orthography of the Guatemalan Academia de Lenguas Mayas 5 An example glyph logogram for the named day Note that for most of these several different forms are recorded the ones shown here are typical of carved monumental inscriptions these are cartouche versions Day name as recorded from 16th century Yucatec Maya accounts principally Diego de Landa this orthography has until recently been widely used In most cases the actual day name as spoken in the time of the Classic Period c 200 900 when most inscriptions were made is not known The versions given here in Classic Maya the main language of the inscriptions are reconstructed on the basis of phonological evidence if available a symbol indicates the reconstruction is tentative 11 Some systems started the count with 1 Imix followed by 2 Ikʼ 3 Akʼbʼal etc up to 13 Bʼen The day numbers then start again at 1 while the named day sequence continues onwards so the next days in the sequence are 1 Ix 2 Men 3 Kʼibʼ 4 Kabʼan 5 Etzʼnabʼ 6 Kawak and 7 Ajaw With all twenty named days used these now began to repeat the cycle while the number sequence continues so the next day after 7 Ajaw is 8 Imix The repetition of these interlocking 13 and 20 day cycles therefore takes 260 days to complete that is for every possible combination of number named day to occur once The earliest known inscription with a Tzolkʼin is an Olmec earspool with 2 Ahau 3 Ceh 6 3 10 9 0 September 2 678 Julian astronomical 12 Haabʼ editHaabʼ months names and glyphs 13 in sequence Seq Num Yucatec name Hieroglyph Classic Period glyph sign Meaning of glyph 14 Reconstructed Classic Maya 1 Pop nbsp nbsp k anjalaw 2 Woʼ nbsp nbsp ik at 3 Sip nbsp nbsp chakat 4 Sotzʼ nbsp nbsp bat sotz 5 Sek nbsp nbsp kaseew 6 Xul nbsp nbsp chikin 7 Yaxkʼin nbsp nbsp yaxk in 8 Mol nbsp nbsp mol 9 Chʼen nbsp nbsp black 15 ik siho m 10 Yax nbsp nbsp green 15 yaxsiho m 11 Sak nbsp nbsp white 15 saksiho m 12 Keh nbsp nbsp red 15 chaksiho m 13 Mak nbsp nbsp mak 14 Kʼankʼin nbsp nbsp uniiw 15 Muwan nbsp nbsp muwaan 16 Pax nbsp nbsp paxiil 17 Kʼayab nbsp nbsp k anasiiy 18 Kumkʼu nbsp nbsp ohl 19 Wayebʼ nbsp nbsp five unlucky days wayhaab Main article Haabʼ The Haabʼ was made up of eighteen months of twenty days each plus a period of five days nameless days at the end of the year known as Wayeb or Uayeb in 16th century orthography The five days of Wayebʼ were thought to be a dangerous time Foster 2002 writes During Wayeb portals between the mortal realm and the Underworld dissolved No boundaries prevented the ill intending deities from causing disasters To ward off these evil spirits the Maya had customs and rituals they practiced during Wayebʼ For example people avoided leaving their houses and washing or combing their hair Bricker 1982 estimates that the Haabʼ was first used around 550 BC with a starting point of the winter solstice 16 The Haabʼ month names are known today by their corresponding names in colonial era Yukatek Maya as transcribed by 16th century sources in particular Diego de Landa and books such as the Chilam Balam of Chumayel Phonemic analyses of Haabʼ glyph names in pre Columbian Maya inscriptions have demonstrated that the names for these twenty day periods varied considerably from region to region and from period to period reflecting differences in the base language s and usage in the Classic and Postclassic eras predating their recording by Spanish sources 17 Each day in the Haabʼ calendar was identified by a day number in the month followed by the name of the month Day numbers began with a glyph translated as the seating of a named month which is usually regarded as day 0 of that month although a minority treat it as day 20 of the month preceding the named month In the latter case the seating of Pop is day 5 of Wayebʼ For the majority the first day of the year was 0 Pop the seating of Pop This was followed by 1 Pop 2 Pop as far as 19 Pop then 0 Wo 1 Wo and so on Because the Haabʼ had 365 days and the tropical year is 365 2422 days the days of the Haabʼ did not coincide with the tropical year Calendar Round editA Calendar Round date is a date that gives both the Tzolkʼin and Haabʼ This date will repeat after 52 Haabʼ years or 18 980 days a Calendar Round For example the current creation started on 4 Ahau 8 Kumkʼu When this date recurs it is known as a Calendar Round completion Arithmetically the duration of the Calendar Round is the least common multiple of 260 and 365 18 980 is 73 260 Tzolkʼin days and 52 365 Haabʼ days 18 Not every possible combination of Tzolkʼin and Haabʼ can occur For Tzolkʼin days Imix Kimi Chuwen and Kibʼ the Haabʼ day can only be 4 9 14 or 19 for Ikʼ Manikʼ Ebʼ and Kabʼan the Haabʼ day can only be 0 5 10 or 15 for Akbʼalʼ Lamat Bʼen and Etzʼnabʼ the Haabʼ day can only be 1 6 11 or 16 for Kʼan Muluk Ix and Kawak the Haabʼ day can only be 2 7 12 or 17 and for Chikchan Ok Men and Ajaw the Haabʼ day can only be 3 8 13 or 18 19 Year Bearer edit A Year Bearer is a Tzolkʼin day name that occurs on 0 Pop the first day of the Haabʼ Since there are 20 Tzolkʼin day names 365 days in the Haabʼ and the remainder of 365 divided by 20 is 5 365 18 20 5 the Tzolkʼin day name for each successive 0 Pop will be 5 later in the cycle of Tzolk in day names Similarly since there are 13 Tzolk in day numbers and the remainder of 365 divided by 13 is 1 365 28 13 1 the Tzolk in day number for each successive 0 Pop will be 1 greater than before As such the sequence of Tzolk in dates corresponding to the Haab date 0 Pop are as follows 1 Ikʼ2 Manikʼ3 Ebʼ4 Kabʼan5 Ikʼ 19 Eb 20 Kab an1 Ik Thus the Year Bearers are the four Tzolkʼin day names that appear in this sequence Ik Manik Eb and Kab an Year Bearer literally translates a Mayan concept 20 Its importance resides in two facts For one the four years headed by the Year Bearers are named after them and share their characteristics therefore they also have their own prognostications and patron deities 21 Moreover since the Year Bearers are geographically identified with boundary markers or mountains they help define the local community 22 The classic system of Year Bearers described above is found at Tikal and in the Dresden Codex During the Late Classic period a different set of Year Bearers was in use in Campeche In this system the Year Bearers were the Tzolkʼin that coincided with 1 Pop These were Akʼbʼal Lamat Bʼen and Edznab During the Post Classic period in Yucatan a third system was in use In this system the Year Bearers were the days that coincided with 2 Pop Kʼan Muluc Ix and Kawak This system is found in the Chronicle of Oxkutzcab In addition just before the Spanish conquest in Mayapan the Maya began to number the days of the Haabʼ from 1 to 20 In this system the Year Bearers are the same as in the 1 Pop Campeche system The Classic Year Bearer system is still in use in the Guatemalan highlands 23 and in Veracruz Oaxaca and Chiapas Mexico 24 Long Count edit nbsp East side of Stela C Quirigua with the mythical creation date of 13 baktuns 0 katuns 0 tuns 0 uinals 0 kins 4 Ahau 8 Cumku August 11 3114 BC in the proleptic Gregorian calendar Main article Mesoamerican Long Count calendar Since Calendar Round dates repeat every 18 980 days approximately 52 solar years the cycle repeats roughly once each lifetime so a more refined method of dating was needed if history was to be recorded accurately To specify dates over periods longer than 52 years Mesoamericans used the Long Count calendar The Maya name for a day was kʼin Twenty of these kʼins are known as a winal or uinal Eighteen winals make one tun Twenty tuns are known as a kʼatun Twenty kʼatuns make a bʼakʼtun The Long Count calendar identifies a date by counting the number of days from the Mayan creation date 4 Ahaw 8 Kumkʼu August 11 3114 BC in the proleptic Gregorian calendar or September 6 in the Julian calendar 3113 astronomical dating But instead of using a base 10 decimal scheme the Long Count days were tallied in a modified base 20 scheme Thus 0 0 0 1 5 is equal to 25 and 0 0 0 2 0 is equal to 40 As the winal unit resets after only counting to 18 the Long Count consistently uses base 20 only if the tun is considered the primary unit of measurement not the kʼin with the kʼin and winal units being the number of days in the tun The Long Count 0 0 1 0 0 represents 360 days rather than the 400 in a purely base 20 vigesimal count There are also four rarely used higher order cycles piktun kalabtun kʼinchiltun and alautun Since the Long Count dates are unambiguous the Long Count was particularly well suited to use on monuments The monumental inscriptions would not only include the 5 digits of the Long Count but would also include the two tzolkʼin characters followed by the two haabʼ characters Misinterpretation of the Mesoamerican Long Count calendar was the basis for a popular belief that a cataclysm would take place on December 21 2012 December 21 2012 was simply the day that the calendar went to the next bʼakʼtun at Long Count 13 0 0 0 0 The date of the start of the next b ak tun Long Count 14 0 0 0 0 is March 26 2407 The date of the start of the next piktun a complete series of 20 bʼakʼtuns at Long Count 1 0 0 0 0 0 is October 13 4772 Table of Long Count units Long Count unit Long Count period Days Approximate Solar Years 1 Kʼin 1 1 Winal 20 Kʼin 20 1 Tun 18 Winal 360 1 1 Kʼatun 20 Tun 7 200 20 1 Bʼakʼtun 20 Kʼatun 144 000 394 1 Piktun 20 Bʼakʼtun 2 880 000 7 885 1 Kalabtun 20 Piktun 57 600 000 157 704 1 Kʼinchiltun 20 Kalabtun 1 152 000 000 3 154 071 1 Alautun 20 Kʼinchiltun 23 040 000 000 63 081 429Supplementary Series editMany Classic period inscriptions include a series of glyphs known as the Supplementary Series The operation of this series was largely worked out by John E Teeple The Supplementary Series most commonly consists of the following elements Lords of the Night edit Main article Lords of the Night Each night was ruled by one of the nine lords of the underworld This nine day cycle was usually written as two glyphs a glyph that referred to the Nine Lords as a group followed by a glyph for the lord that would rule the next night Lunar Series edit A lunar series generally is written as five glyphs that provide information about the current lunation the number of the lunation in a series of six the current ruling lunar deity and the length of the current lunation Moon age edit The Maya counted the number of days in the current lunation They used two systems for the zero date of the lunar cycle either the first night they could see the thin crescent moon or the first morning when they could not see the waning moon 25 The age of the moon was depicted by a set of glyphs that mayanists coined glyphs D and E A new moon glyph was used for day zero in the lunar cycle D glyphs were used for lunar ages for days 1 through 19 with the number of days that had passed from the new moon For lunar ages 20 to 30 an E glyph was used with the number of days from 20 Count of Lunations edit The Maya counted the lunations This cycle appears in the lunar series as two glyphs that modern scholars call the C and X glyphs The C glyph could be prefixed with a number indicating the lunation No prefixing number meant one whereas the numbers two through six indicated the other lunations 26 27 There was also a part of the C glyph that indicated where this fell in a larger cycle of 18 lunations Accompanying the C glyph was the X glyph that showed a similar pattern of 18 lunations 28 29 Lunation length edit The present era lunar synodic period is about 29 5305877 mean solar days or about 29 days 12 hours 44 minutes and 2 7 9 seconds As a whole number the number of days per lunation will be either 29 or 30 days with the 30 day intervals necessarily occurring slightly more frequently than the 29 day intervals The Maya wrote whether the lunar month was 29 or 30 days as two glyphs a glyph for lunation length followed by either a glyph made up of a moon glyph over a bundle with a suffix of 9 for a 29 day lunation or a moon glyph with a suffix of 10 for a 30 day lunation Since the Maya didn t use fractions lunations were approximated by using the formula that there were 149 lunations completed in 4400 days which yielded a rather short mean month of exactly 4400 149 29 79 149 days 29 days 12 hours 43 minutes and 29 59 149 seconds or about 29 5302 days 30 819 day count editSome Mayan monuments include glyphs that record an 819 day count in their Initial Series These can also be found in the Dresden codex 31 This is described in Thompson 32 More examples of this can be found in Kelley 33 Each group of 819 days was associated with one of four colors and the cardinal direction with which it was associated black corresponded to west red to east white to north and yellow to south The 819 day count can be described several ways Most of these are referred to using a Y glyph and a number Many also have a glyph for Kʼawill the god with a smoking mirror in his head Kʼawill has been suggested as having a link to Jupiter 34 In the Dresden codex almanac 59 there are Chaacs of the four colors The accompanying texts begin with a directional glyph and a verb for 819 day count phrases Anderson 35 provides a detailed description of the 819 day count Synodic periods of the classical planets edit Moon 1 x 819 8 days 28 synodic 29 53 d 28 months Moon 4 x 819 2 days 111 synodic 29 53 d 111 months Moon 15 x 819 0 3 days 416 synodic 29 53 d 416 months Draconic 31 x 819 days 933 draconic 27 21 d nodal months Mercury 1 x 819 8 days 7 synodic 115 88 d Mercury 15 x 819 2 days 106 synodic 115 88 d Venus 5 x 819 8 days 7 synodic 583 9 d Sun 4 x 819 11 days 9 synodic 365 24 d 9 years Sun 33 x 819 1 days 74 synodic 365 24 d 74 years Mars 20 x 819 2 days 21 synodic 779 9 d Jupiter 1 x 819 21 days 2 synodic 398 88 d Jupiter 19 x 819 5 days 39 synodic 398 88 d Saturn 6 x 819 1 days 13 synod 378 09 d 36 Short count editDuring the late Classic period the Maya began to use an abbreviated short count instead of the Long Count An example of this can be found on altar 14 at Tikal 37 In the kingdoms of Postclassic Yucatan the Short Count was used instead of the Long Count The cyclical Short Count is a count of 13 kʼatuns or 260 tuns in which each kʼatun was named after its concluding day Ahau Lord 1 Imix was selected as the recurrent first day of the cycle corresponding to 1 Cipactli in the Aztec day count The cycle was counted from katun 11 Ahau to katun 13 Ahau Since a katun is 20 360 7200 days long and the remainder of 7200 divided by 13 is 11 7200 553 13 11 the day number of the concluding day of each successive katun is 9 greater than before wrapping around at 13 since only 13 day numbers are used That is starting with the katun that begins with 1 Imix the sequence of concluding day numbers is 11 9 7 5 3 1 12 10 8 6 4 2 13 11 all named Ahau The concluding day 13 Ahau was followed by the re entering first day 1 Imix This is the system as found in the colonial Books of Chilam Balam In characteristic Mesoamerican fashion these books project the cycle onto the landscape with 13 Ahauob Lordships dividing the land of Yucatan into 13 kingdoms 38 See also edit2012 phenomenon Maya religion Mayanism Tres Zapotes Stela C Maya Astronomy Aztec calendarNotes edit Tedlock Barbara Time and the Highland Maya Revised edition 1992 Page 1 Scores of indigenous Guatemalan communities principally those speaking the Mayan languages known as Ixil Mam Pokomchi and Quiche keep the 260 day cycle and in many cases the ancient solar cycle as well chapter 4 Miles Susanna W An Analysis of the Modern Middle American Calendars A Study in Conservation In Acculturation in the Americas Edited by Sol Tax p 273 Chicago University of Chicago Press 1952 Maya Calendar Origins Monuments Mythistory and the Materialization of Time See entry on Itzamna in Miller and Taube 1993 pp 99 100 a b Academia de las Lenguas Mayas de Guatemala 1988 Lenguas Mayas de Guatemala Documento de referencia para la pronunciacion de los nuevos alfabetos oficiales Guatemala City Instituto Indigenista Nacional For details and notes on adoption among the Mayanist community see Kettunen amp Helmke 2020 p 7 Tedlock 1992 p 1 Mythological in the sense that when the Long Count was first devised sometime in the Mid to Late Preclassic long after this date see e g Miller and Taube 1993 p 50 Voss 2006 p 138 See separate brief Wikipedia article Lords of the Night Stuart David 2024 04 19 Day Sign Notes Men Tz ikin Maya Decipherment Retrieved 2024 05 01 Classic era reconstructions are as per Kettunen and Helmke 2020 pp 56 57 Edmonson Munro S 1988 The Book of the Year MIDDLE AMERICAN CALENDRICAL SYSTEMS Salt Lake City University of Utah Press p 20 ISBN 0 87480 288 1 Kettunen and Helmke 2020 pp 58 59 These names come from de Landa s description of the calendar and they are commonly used by Mayanists but the Classic Maya did not use these actual names for the day signs The original names are unknown See Coe Michael D Mark L Van Stone 2005 Reading the Maya Glyphs London Thames amp Hudson p 43 ISBN 978 0 500 28553 4 a b c d Coe Michael D Mark L Van Stone 2005 Reading the Maya Glyphs London Thames amp Hudson p 43 ISBN 978 0 500 28553 4 Zero Pop actually fell on the same day as the solstice on 12 27 575 12 27 574 12 27 573 and 12 26 572 astronomical year numbering Universal Time if you don t account for the fact that the Maya region is in roughly time zone UT 6 See IMCCE seasons Archived August 23 2012 at the Wayback Machine Boot 2002 pp 111 114 For further details see Thompson 1966 123 124 Kettunen and Helmke 2020 p 51 Thompson 1966 124 For a thorough treatment of the Year Bearers see Tedlock 1992 89 90 99 104 and Thompson 1966 See Coe 1965 Tedlock 1992 92 Miles Susanna W An Analysis of the Modern Middle American Calendars A Study in Conservation In Acculturation in the Americas Edited by Sol Tax pp 273 84 Chicago University of Chicago Press 1952 Thompson J Eric S Maya Hieroglyphic Writing 1950 Page 236 Teeple 1931 53 Thompson Maya Hieroglyphic Writing 1950 240 Linden 1996 343 356 Schele Grube Fahsen 1992 Teeple 1931 67 Grofe Michael John 2007 The Serpent Series Precession in the Maya Dresden Codex page 55 p 206 Maya Hieroglyphic Writing 1961 pp 212 217 Decipherment of Maya Script David Kelley 1973 pp 56 57 Star Gods of the Maya Susan Milbrath 1999 University of Texas Press Lloyd B Anderson The Mayan 819 day Count and the Y Glyph A Probable association with Jupiter Traditional High Cultures Home Page Archived from the original on May 6 2015 Retrieved March 30 2015 2023 John H Linden Victoria R Bricker The Maya 819 Day Count and Planetary Astronomy https doi org 10 1017 S0956536122000323 Coe William R TIKAL a handbook of the ancient Maya Ruins The University Museum of the University of Pennsylvania Philadelphia Pa 1967 p 114 Roys 1967 132 184 185References editAveni Anthony F 2001 Skywatchers originally published as Skywatchers of Ancient Mexico 1980 revised and updated ed Austin University of Texas Press ISBN 0 292 70504 2 OCLC 45195586 Boot Erik 2002 A Preliminary Classic Maya English English Classic Maya Vocabulary of Hieroglyphic Readings PDF Mesoweb Retrieved 2006 11 10 Bricker Victoria R February 1982 The Origin of the Maya Solar Calendar Current Anthropology 23 1 Chicago IL University of Chicago Press sponsored by Wenner Gren Foundation for Anthropological Research 101 103 doi 10 1086 202782 ISSN 0011 3204 OCLC 62217742 S2CID 143962107 Chambers David Wade 1965 Did the Maya Know the Metonic Cycle Isis 56 3 348 351 doi 10 1086 350004 S2CID 145711182 Coe Michael D 1965 A Model of Ancient Maya Community Structure in the Maya Lowlands Southwestern Journal of Anthropology 21 doi 10 1086 soutjanth 21 2 3629386 S2CID 130245359 Coe Michael D 1987 The Maya 4th revised ed London and New York Thames amp Hudson ISBN 0 500 27455 X OCLC 15895415 Coe Michael D 1992 Breaking the Maya Code London Thames amp Hudson ISBN 0 500 05061 9 OCLC 26605966 Foster Lynn V 2002 Handbook to Life in the Ancient Maya World with Foreword by Peter Mathews New York Facts on File ISBN 0 8160 4148 2 OCLC 50676955 Ivanoff Pierre 1971 Mayan Enigma The Search for a Lost Civilization Elaine P Halperin trans translation of Decouvertes chez les Mayas English ed New York Delacorte Press ISBN 0 440 05528 8 OCLC 150172 Jones Christopher 1984 Deciphering Maya Hieroglyphs Carl P Beetz illus prepared for Weekend Workshop April 7 and 8 1984 2nd ed Philadelphia University Museum University of Pennsylvania OCLC 11641566 Kettunen Harri Christophe Helmke 2020 Introduction to Maya Hieroglyphs 17th edition PDF Couvin Belgium Wayeb Retrieved 2020 10 06 Linden John H 1996 The Deity Head Variants of the C Glyph The Eight Palenque Round Table 1993 pp 343 356 MacDonald G Jeffrey 27 March 2007 Does Maya calendar predict 2012 apocalypse USA Today McLean VA Gannett Company ISSN 0734 7456 Archived from the original on 2008 03 16 Retrieved 2009 05 28 Milbrath Susan 1999 Star Gods of the Maya Astronomy in Art Folklore and Calendars The Linda Schele series in Maya and pre Columbian studies Austin University of Texas Press ISBN 0 292 75225 3 OCLC 40848420 Miller Mary Karl Taube 1993 The Gods and Symbols of Ancient Mexico and the Maya An Illustrated Dictionary of Mesoamerican Religion London Thames and Hudson ISBN 0 500 05068 6 OCLC 27667317 Rice Prudence M Maya Calendar Origins Monuments Mythistory and the Materialization of Time Austin TX University of Texas Press 2007 Robinson Andrew 2000 The Story of Writing Alphabets Hieroglyphs and Pictograms London and New York Thames amp Hudson ISBN 0 500 28156 4 OCLC 59432784 Roys Ralph L 1967 The Book of Chilam Balam of Chumayel Norman University of Oklahoma Press Schele Linda David Freidel 1992 A Forest of Kings The Untold Story of the Ancient Maya originally published New York Morrow 1990 pbk reprint ed New York Harper Perennial ISBN 0 688 11204 8 OCLC 145324300 Schele Linda Nickolai Grube Federico Fahsen October 1992 The Lunar Series in Classic Maya Inscriptions New Observation and Interpretations Texas Notes on Precolumbian Art Writing and Culture 29 Taub Ben 2023 04 19 We Finally Know How The Maya Calendar Matches Up With The Planets IFLScience Tedlock Barbara 1992 Time and the Highland Maya rev ed Albuquerque University of New Mexico Press ISBN 0 8263 0577 6 OCLC 7653289 Teeple John E November 1931 Maya Astronomy PDF Contributions to American Archaeology Vol I Pub 403 ed Washington D C Carnegie Institution of Washington pp 29 116 Tedlock Dennis ed 1985 Popol Vuh The Definitive Edition of the Mayan Book of the Dawn of Life and the Glories of Gods and Kings Translated by Tedlock Dennis with commentary based on the ancient knowledge of the modern Quiche Maya New York Simon amp Schuster ISBN 0 671 45241 X OCLC 11467786 Thomas Cyrus 1897 Day Symbols of the Maya Year In J W Powell ed Sixteenth Annual Report of the Bureau of American Ethnology to the Secretary of the Smithsonian Institution 1894 1895 EBook online reproduction Washington DC Bureau of American Ethnology Smithsonian Institution U S Government Printing Office pp 199 266 OCLC 14963920 Archived from the original on January 22 2007 via Project Gutenberg Thompson J Eric S 1971 Maya Hieroglyphic Writing An Introduction 3rd Edition Civilization of the American Indian Series No 56 3rd ed Norman University of Oklahoma Press ISBN 0 8061 0447 3 OCLC 275252 Tozzer Alfred M ed 1941 Landa s Relacion de las cosas de Yucatan a translation Papers of the Peabody Museum of American Archaeology and Ethnology Harvard University vol 18 Translated by Tozzer Alfred M Charles P Bowditch and Ralph L Roys additional trans translation of Diego de Landa s Relacion de las cosas de Yucatan original c 1566 with notes commentary and appendices incorporating translated excerpts of works by Gaspar Antonio Chi Tomas Lopez Medel Francisco Cervantes de Salazar and Antonio de Herrera y Tordesillas English ed Cambridge MA Peabody Museum of Archaeology and Ethnology OCLC 625693 Voss Alexander 2006 Astronomy and Mathematics In Nikolai Grube ed Maya Divine Kings of the Rain Forest Eva Eggebrecht and Matthias Seidel assistant eds Cologne Germany Konemann pp 130 143 ISBN 978 3 8331 1957 6 OCLC 71165439 External links edit nbsp Wikimedia Commons has media related to Maya calendar Day Symbols of the Maya Year at Project Gutenberg 1897 text by Cyrus Thomas date converter at FAMSI This converter uses the Julian Gregorian calendar and includes the 819 day cycle and lunar age Interactive Maya Calendars Retrieved from https en wikipedia org w index php title Maya calendar amp oldid 1223747971, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.