fbpx
Wikipedia

Lemniscate elliptic functions

In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.[1]

The lemniscate sine (red) and lemniscate cosine (purple) applied to a real argument, in comparison with the trigonometric sine y = sin(πx/ϖ) (pale dashed red).

The lemniscate sine and lemniscate cosine functions, usually written with the symbols sl and cl (sometimes the symbols sinlem and coslem or sin lemn and cos lemn are used instead),[2] are analogous to the trigonometric functions sine and cosine. While the trigonometric sine relates the arc length to the chord length in a unit-diameter circle [3] the lemniscate sine relates the arc length to the chord length of a lemniscate

The lemniscate functions have periods related to a number 2.622057... called the lemniscate constant, the ratio of a lemniscate's perimeter to its diameter. This number is a quartic analog of the (quadratic) 3.141592..., ratio of perimeter to diameter of a circle.

As complex functions, sl and cl have a square period lattice (a multiple of the Gaussian integers) with fundamental periods [4] and are a special case of two Jacobi elliptic functions on that lattice, .

Similarly, the hyperbolic lemniscate sine slh and hyperbolic lemniscate cosine clh have a square period lattice with fundamental periods

The lemniscate functions and the hyperbolic lemniscate functions are related to the Weierstrass elliptic function .

Lemniscate sine and cosine functions edit

Definitions edit

The lemniscate functions sl and cl can be defined as the solution to the initial value problem:[5]

 

or equivalently as the inverses of an elliptic integral, the Schwarz–Christoffel map from the complex unit disk to a square with corners  [6]

 

Beyond that square, the functions can be analytically continued to the whole complex plane by a series of reflections.

By comparison, the circular sine and cosine can be defined as the solution to the initial value problem:

 

or as inverses of a map from the upper half-plane to a half-infinite strip with real part between   and positive imaginary part:

 

Relation to the lemniscate constant edit

 
The lemniscate sine function and hyperbolic lemniscate sine functions are defined as inverses of elliptic integrals. The complete integrals are related to the lemniscate constant ϖ.

The lemniscate functions have minimal real period 2ϖ, minimal imaginary period 2ϖi and fundamental complex periods   and   for a constant ϖ called the lemniscate constant,[7]

 

The lemniscate functions satisfy the basic relation   analogous to the relation  

The lemniscate constant ϖ is a close analog of the circle constant π, and many identities involving π have analogues involving ϖ, as identities involving the trigonometric functions have analogues involving the lemniscate functions. For example, Viète's formula for π can be written:

 

An analogous formula for ϖ is:[8]

 

The Machin formula for π is   and several similar formulas for π can be developed using trigonometric angle sum identities, e.g. Euler's formula  . Analogous formulas can be developed for ϖ, including the following found by Gauss:  [9]

The lemniscate and circle constants were found by Gauss to be related to each-other by the arithmetic-geometric mean M:[10]

 

Argument identities edit

Zeros, poles and symmetries edit

 
  in the complex plane.[11] In the picture, it can be seen that the fundamental periods   and   are "minimal" in the sense that they have the smallest absolute value of all periods whose real part is non-negative.

The lemniscate functions cl and sl are even and odd functions, respectively,

 

At translations of   cl and sl are exchanged, and at translations of   they are additionally rotated and reciprocated:[12]

 

Doubling these to translations by a unit-Gaussian-integer multiple of   (that is,   or  ), negates each function, an involution:

 

As a result, both functions are invariant under translation by an even-Gaussian-integer multiple of  .[13] That is, a displacement   with   for integers a, b, and k.

 

This makes them elliptic functions (doubly periodic meromorphic functions in the complex plane) with a diagonal square period lattice of fundamental periods   and  .[14] Elliptic functions with a square period lattice are more symmetrical than arbitrary elliptic functions, following the symmetries of the square.

Reflections and quarter-turn rotations of lemniscate function arguments have simple expressions:

 

The sl function has simple zeros at Gaussian integer multiples of ϖ, complex numbers of the form   for integers a and b. It has simple poles at Gaussian half-integer multiples of ϖ, complex numbers of the form  , with residues  . The cl function is reflected and offset from the sl function,  . It has zeros for arguments   and poles for arguments   with residues  

Also

 

for some   and

 

The last formula is a special case of complex multiplication. Analogous formulas can be given for   where   is any Gaussian integer – the function   has complex multiplication by  .[15]

There are also infinite series reflecting the distribution of the zeros and poles of sl:[16][17]

 
 

Pythagorean-like identity edit

 
Curves x² ⊕ y² = a for various values of a. Negative a in green, positive a in blue, a = ±1 in red, a = ∞ in black.

The lemniscate functions satisfy a Pythagorean-like identity:

 

As a result, the parametric equation   parametrizes the quartic curve  

This identity can alternately be rewritten:[18]

 
 

Defining a tangent-sum operator as   gives:

 

The functions   and   satisfy another Pythagorean-like identity:

 

Derivatives and integrals edit

The derivatives are as follows:

 
 

The second derivatives of lemniscate sine and lemniscate cosine are their negative duplicated cubes:

 
 

The lemniscate functions can be integrated using the inverse tangent function:

 

Argument sum and multiple identities edit

Like the trigonometric functions, the lemniscate functions satisfy argument sum and difference identities. The original identity used by Fagnano for bisection of the lemniscate was:[19]

 

The derivative and Pythagorean-like identities can be used to rework the identity used by Fagano in terms of sl and cl. Defining a tangent-sum operator   and tangent-difference operator   the argument sum and difference identities can be expressed as:[20]

 

These resemble their trigonometric analogs:

 

In particular, to compute the complex-valued functions in real components,

 

Bisection formulas:

 
 

Duplication formulas:[21]

 
 

Triplication formulas:[21]

 
 

Note the "reverse symmetry" of the coefficients of numerator and denominator of  . This phenomenon can be observed in multiplication formulas for   where   whenever   and   is odd.[15]

Lemnatomic polynomials edit

Let   be the lattice

 

Furthermore, let  ,  ,  ,  ,   (where  ),   be odd,   be odd,   and  . Then

 

for some coprime polynomials   and some  [22] where

 

and

 

where   is any  -torsion generator (i.e.   and   generates   as an  -module). Examples of  -torsion generators include   and  . The polynomial   is called the  -th lemnatomic polynomial. It is monic and is irreducible over  . The lemnatomic polynomials are the "lemniscate analogs" of the cyclotomic polynomials,[23]

 

The  -th lemnatomic polynomial   is the minimal polynomial of   in  . For convenience, let   and  . So for example, the minimal polynomial of   (and also of  ) in   is

 

and[24]

 
 [25]

(an equivalent expression is given in the table below). Another example is[23]

 

which is the minimal polynomial of   (and also of  ) in  

If   is prime and   is positive and odd,[26] then[27]

 

which can be compared to the cyclotomic analog

 

Specific values edit

Just as for the trigonometric functions, values of the lemniscate functions can be computed for divisions of the lemniscate into n parts of equal length, using only basic arithmetic and square roots, if and only if n is of the form   where k is a non-negative integer and each pi (if any) is a distinct Fermat prime.[28]

     
     
     
     
     
     
     
     
     

Further values edit

     
   
     
     
     
   
     
   
   
     
   
     
     
     
   

Relation to geometric shapes edit

Arc length of Bernoulli's lemniscate edit

 
The lemniscate sine and cosine relate the arc length of an arc of the lemniscate to the distance of one endpoint from the origin.
 
The trigonometric sine and cosine analogously relate the arc length of an arc of a unit-diameter circle to the distance of one endpoint from the origin.

 , the lemniscate of Bernoulli with unit distance from its center to its furthest point (i.e. with unit "half-width"), is essential in the theory of the lemniscate elliptic functions. It can be characterized in at least three ways:

Angular characterization: Given two points   and   which are unit distance apart, let   be the reflection of   about  . Then   is the closure of the locus of the points   such that   is a right angle.[29]

Focal characterization:   is the locus of points in the plane such that the product of their distances from the two focal points   and   is the constant  .

Explicit coordinate characterization:   is a quartic curve satisfying the polar equation   or the Cartesian equation  

The perimeter of   is  .

The points on   at distance   from the origin are the intersections of the circle   and the hyperbola  . The intersection in the positive quadrant has Cartesian coordinates:

 

Using this parametrization with

lemniscate, elliptic, functions, mathematics, lemniscate, elliptic, functions, elliptic, functions, related, length, lemniscate, bernoulli, they, were, first, studied, giulio, fagnano, 1718, later, leonhard, euler, carl, friedrich, gauss, among, others, lemnis. In mathematics the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss among others 1 The lemniscate sine red and lemniscate cosine purple applied to a real argument in comparison with the trigonometric sine y sin px ϖ pale dashed red The lemniscate sine and lemniscate cosine functions usually written with the symbols sl and cl sometimes the symbols sinlem and coslem or sin lemn and cos lemn are used instead 2 are analogous to the trigonometric functions sine and cosine While the trigonometric sine relates the arc length to the chord length in a unit diameter circle x 2 y 2 x displaystyle x 2 y 2 x 3 the lemniscate sine relates the arc length to the chord length of a lemniscate x 2 y 2 2 x 2 y 2 displaystyle bigl x 2 y 2 bigr 2 x 2 y 2 The lemniscate functions have periods related to a number ϖ displaystyle varpi 2 622057 called the lemniscate constant the ratio of a lemniscate s perimeter to its diameter This number is a quartic analog of the quadratic p displaystyle pi 3 141592 ratio of perimeter to diameter of a circle As complex functions sl and cl have a square period lattice a multiple of the Gaussian integers with fundamental periods 1 i ϖ 1 i ϖ displaystyle 1 i varpi 1 i varpi 4 and are a special case of two Jacobi elliptic functions on that lattice sl z sn z i displaystyle operatorname sl z operatorname sn z i cl z cd z i displaystyle operatorname cl z operatorname cd z i Similarly the hyperbolic lemniscate sine slh and hyperbolic lemniscate cosine clh have a square period lattice with fundamental periods 2 ϖ 2 ϖ i displaystyle bigl sqrt 2 varpi sqrt 2 varpi i bigr The lemniscate functions and the hyperbolic lemniscate functions are related to the Weierstrass elliptic function z a 0 displaystyle wp z a 0 Contents 1 Lemniscate sine and cosine functions 1 1 Definitions 1 2 Relation to the lemniscate constant 2 Argument identities 2 1 Zeros poles and symmetries 2 2 Pythagorean like identity 2 3 Derivatives and integrals 2 4 Argument sum and multiple identities 2 5 Lemnatomic polynomials 2 6 Specific values 2 6 1 Further values 3 Relation to geometric shapes 3 1 Arc length of Bernoulli s lemniscate 3 2 Arc length of rectangular elastica 3 3 Elliptic characterization 4 Series Identities 4 1 Power series 4 2 Ramanujan s cos cosh identity 4 3 Continued fractions 4 4 Methods of computation 4 5 The lemniscate functions as a ratio of entire functions 5 Relation to other functions 5 1 Relation to Weierstrass and Jacobi elliptic functions 5 2 Relation to the modular lambda function 6 Inverse functions 6 1 Expression using elliptic integrals 6 2 Use in integration 7 Hyperbolic lemniscate functions 7 1 Fundamental information 7 2 Relation to quartic Fermat curve 7 2 1 Hyperbolic Lemniscate Tangent and Cotangent 7 2 2 Derivation of the Hyperbolic Lemniscate functions 7 2 3 First proof comparison with the derivative of the arctangent 7 2 4 Second proof integral formation and area subtraction 7 3 Specific values 7 4 Combination and halving theorems 7 5 Coordinate Transformations 8 Number theory 8 1 Hurwitz numbers 8 1 1 Appearances in Laurent series 8 2 A quartic analog of the Legendre symbol 9 World map projections 10 See also 11 Notes 12 External links 13 ReferencesLemniscate sine and cosine functions editDefinitions edit The lemniscate functions sl and cl can be defined as the solution to the initial value problem 5 d d z sl z 1 sl 2 z cl z d d z cl z 1 cl 2 z sl z sl 0 0 cl 0 1 displaystyle frac mathrm d mathrm d z operatorname sl z bigl 1 operatorname sl 2 z bigr operatorname cl z frac mathrm d mathrm d z operatorname cl z bigl 1 operatorname cl 2 z bigr operatorname sl z operatorname sl 0 0 operatorname cl 0 1 nbsp or equivalently as the inverses of an elliptic integral the Schwarz Christoffel map from the complex unit disk to a square with corners 1 2 ϖ 1 2 ϖ i 1 2 ϖ 1 2 ϖ i displaystyle big tfrac 1 2 varpi tfrac 1 2 varpi i tfrac 1 2 varpi tfrac 1 2 varpi i big colon nbsp 6 z 0 sl z d t 1 t 4 cl z 1 d t 1 t 4 displaystyle z int 0 operatorname sl z frac mathrm d t sqrt 1 t 4 int operatorname cl z 1 frac mathrm d t sqrt 1 t 4 nbsp Beyond that square the functions can be analytically continued to the whole complex plane by a series of reflections By comparison the circular sine and cosine can be defined as the solution to the initial value problem d d z sin z cos z d d z cos z sin z sin 0 0 cos 0 1 displaystyle frac mathrm d mathrm d z sin z cos z frac mathrm d mathrm d z cos z sin z sin 0 0 cos 0 1 nbsp or as inverses of a map from the upper half plane to a half infinite strip with real part between 1 2 p 1 2 p displaystyle tfrac 1 2 pi tfrac 1 2 pi nbsp and positive imaginary part z 0 sin z d t 1 t 2 cos z 1 d t 1 t 2 displaystyle z int 0 sin z frac mathrm d t sqrt 1 t 2 int cos z 1 frac mathrm d t sqrt 1 t 2 nbsp Relation to the lemniscate constant edit Main article Lemniscate constant nbsp The lemniscate sine function and hyperbolic lemniscate sine functions are defined as inverses of elliptic integrals The complete integrals are related to the lemniscate constant ϖ The lemniscate functions have minimal real period 2ϖ minimal imaginary period 2ϖi and fundamental complex periods 1 i ϖ displaystyle 1 i varpi nbsp and 1 i ϖ displaystyle 1 i varpi nbsp for a constant ϖ called the lemniscate constant 7 ϖ 2 0 1 d t 1 t 4 2 62205 displaystyle varpi 2 int 0 1 frac mathrm d t sqrt 1 t 4 2 62205 ldots nbsp The lemniscate functions satisfy the basic relation cl z sl 1 2 ϖ z displaystyle operatorname cl z operatorname sl bigl tfrac 1 2 varpi z bigr nbsp analogous to the relation cos z sin 1 2 p z displaystyle cos z sin bigl tfrac 1 2 pi z bigr nbsp The lemniscate constant ϖ is a close analog of the circle constant p and many identities involving p have analogues involving ϖ as identities involving the trigonometric functions have analogues involving the lemniscate functions For example Viete s formula for p can be written 2 p 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 displaystyle frac 2 pi sqrt frac 1 2 cdot sqrt frac 1 2 frac 1 2 sqrt frac 1 2 cdot sqrt frac 1 2 frac 1 2 sqrt frac 1 2 frac 1 2 sqrt frac 1 2 cdots nbsp An analogous formula for ϖ is 8 2 ϖ 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 displaystyle frac 2 varpi sqrt frac 1 2 cdot sqrt frac 1 2 frac 1 2 bigg sqrt frac 1 2 cdot sqrt frac 1 2 frac 1 2 Bigg sqrt frac 1 2 frac 1 2 bigg sqrt frac 1 2 cdots nbsp The Machin formula for p is 1 4 p 4 arctan 1 5 arctan 1 239 textstyle tfrac 1 4 pi 4 arctan tfrac 1 5 arctan tfrac 1 239 nbsp and several similar formulas for p can be developed using trigonometric angle sum identities e g Euler s formula 1 4 p arctan 1 2 arctan 1 3 textstyle tfrac 1 4 pi arctan tfrac 1 2 arctan tfrac 1 3 nbsp Analogous formulas can be developed for ϖ including the following found by Gauss 1 2 ϖ 2 arcsl 1 2 arcsl 7 23 displaystyle tfrac 1 2 varpi 2 operatorname arcsl tfrac 1 2 operatorname arcsl tfrac 7 23 nbsp 9 The lemniscate and circle constants were found by Gauss to be related to each other by the arithmetic geometric mean M 10 p ϖ M 1 2 displaystyle frac pi varpi M left 1 sqrt 2 right nbsp Argument identities editZeros poles and symmetries edit nbsp sl displaystyle operatorname sl nbsp in the complex plane 11 In the picture it can be seen that the fundamental periods 1 i ϖ displaystyle 1 i varpi nbsp and 1 i ϖ displaystyle 1 i varpi nbsp are minimal in the sense that they have the smallest absolute value of all periods whose real part is non negative The lemniscate functions cl and sl are even and odd functions respectively cl z cl z sl z sl z displaystyle begin aligned operatorname cl z amp operatorname cl z 6mu operatorname sl z amp operatorname sl z end aligned nbsp At translations of 1 2 ϖ displaystyle tfrac 1 2 varpi nbsp cl and sl are exchanged and at translations of 1 2 i ϖ displaystyle tfrac 1 2 i varpi nbsp they are additionally rotated and reciprocated 12 cl z 1 2 ϖ sl z cl z 1 2 i ϖ i sl z sl z 1 2 ϖ cl z sl z 1 2 i ϖ i cl z displaystyle begin aligned operatorname cl bigl z pm tfrac 1 2 varpi bigr amp mp operatorname sl z amp operatorname cl bigl z pm tfrac 1 2 i varpi bigr amp frac mp i operatorname sl z 6mu operatorname sl bigl z pm tfrac 1 2 varpi bigr amp pm operatorname cl z amp operatorname sl bigl z pm tfrac 1 2 i varpi bigr amp frac pm i operatorname cl z end aligned nbsp Doubling these to translations by a unit Gaussian integer multiple of ϖ displaystyle varpi nbsp that is ϖ displaystyle pm varpi nbsp or i ϖ displaystyle pm i varpi nbsp negates each function an involution cl z ϖ cl z i ϖ cl z sl z ϖ sl z i ϖ sl z displaystyle begin aligned operatorname cl z varpi amp operatorname cl z i varpi operatorname cl z 4mu operatorname sl z varpi amp operatorname sl z i varpi operatorname sl z end aligned nbsp As a result both functions are invariant under translation by an even Gaussian integer multiple of ϖ displaystyle varpi nbsp 13 That is a displacement a b i ϖ displaystyle a bi varpi nbsp with a b 2 k displaystyle a b 2k nbsp for integers a b and k cl z 1 i ϖ cl z 1 i ϖ cl z sl z 1 i ϖ sl z 1 i ϖ sl z displaystyle begin aligned operatorname cl bigl z 1 i varpi bigr amp operatorname cl bigl z 1 i varpi bigr operatorname cl z 4mu operatorname sl bigl z 1 i varpi bigr amp operatorname sl bigl z 1 i varpi bigr operatorname sl z end aligned nbsp This makes them elliptic functions doubly periodic meromorphic functions in the complex plane with a diagonal square period lattice of fundamental periods 1 i ϖ displaystyle 1 i varpi nbsp and 1 i ϖ displaystyle 1 i varpi nbsp 14 Elliptic functions with a square period lattice are more symmetrical than arbitrary elliptic functions following the symmetries of the square Reflections and quarter turn rotations of lemniscate function arguments have simple expressions cl z cl z sl z sl z cl i z 1 cl z sl i z i sl z displaystyle begin aligned operatorname cl bar z amp overline operatorname cl z 6mu operatorname sl bar z amp overline operatorname sl z 4mu operatorname cl iz amp frac 1 operatorname cl z 6mu operatorname sl iz amp i operatorname sl z end aligned nbsp The sl function has simple zeros at Gaussian integer multiples of ϖ complex numbers of the form a ϖ b ϖ i displaystyle a varpi b varpi i nbsp for integers a and b It has simple poles at Gaussian half integer multiples of ϖ complex numbers of the form a 1 2 ϖ b 1 2 ϖ i displaystyle bigl a tfrac 1 2 bigr varpi bigl b tfrac 1 2 bigr varpi i nbsp with residues 1 a b 1 i displaystyle 1 a b 1 i nbsp The cl function is reflected and offset from the sl function cl z sl 1 2 ϖ z displaystyle operatorname cl z operatorname sl bigl tfrac 1 2 varpi z bigr nbsp It has zeros for arguments a 1 2 ϖ b ϖ i displaystyle bigl a tfrac 1 2 bigr varpi b varpi i nbsp and poles for arguments a ϖ b 1 2 ϖ i displaystyle a varpi bigl b tfrac 1 2 bigr varpi i nbsp with residues 1 a b i displaystyle 1 a b i nbsp Also sl z sl w z 1 m n w m n i ϖ displaystyle operatorname sl z operatorname sl w leftrightarrow z 1 m n w m ni varpi nbsp for some m n Z displaystyle m n in mathbb Z nbsp and sl 1 i z 1 i sl z sl z displaystyle operatorname sl 1 pm i z 1 pm i frac operatorname sl z operatorname sl z nbsp The last formula is a special case of complex multiplication Analogous formulas can be given for sl n m i z displaystyle operatorname sl n mi z nbsp where n m i displaystyle n mi nbsp is any Gaussian integer the function sl displaystyle operatorname sl nbsp has complex multiplication by Z i displaystyle mathbb Z i nbsp 15 There are also infinite series reflecting the distribution of the zeros and poles of sl 16 17 1 sl z n k Z 2 1 n k z n ϖ k ϖ i displaystyle frac 1 operatorname sl z sum n k in mathbb Z 2 frac 1 n k z n varpi k varpi i nbsp sl z i n k Z 2 1 n k z n 1 2 ϖ k 1 2 ϖ i displaystyle operatorname sl z i sum n k in mathbb Z 2 frac 1 n k z n 1 2 varpi k 1 2 varpi i nbsp Pythagorean like identity edit nbsp Curves x y a for various values of a Negative a in green positive a in blue a 1 in red a in black The lemniscate functions satisfy a Pythagorean like identity c l 2 z s l 2 z c l 2 z s l 2 z 1 displaystyle operatorname cl 2 z operatorname sl 2 z operatorname cl 2 z operatorname sl 2 z 1 nbsp As a result the parametric equation x y cl t sl t displaystyle x y operatorname cl t operatorname sl t nbsp parametrizes the quartic curve x 2 y 2 x 2 y 2 1 displaystyle x 2 y 2 x 2 y 2 1 nbsp This identity can alternately be rewritten 18 1 c l 2 z 1 s l 2 z 2 displaystyle bigl 1 operatorname cl 2 z bigr bigl 1 operatorname sl 2 z bigr 2 nbsp c l 2 z 1 s l 2 z 1 s l 2 z s l 2 z 1 c l 2 z 1 c l 2 z displaystyle operatorname cl 2 z frac 1 operatorname sl 2 z 1 operatorname sl 2 z quad operatorname sl 2 z frac 1 operatorname cl 2 z 1 operatorname cl 2 z nbsp Defining a tangent sum operator as a b tan arctan a arctan b displaystyle a oplus b mathrel tan arctan a arctan b nbsp gives c l 2 z s l 2 z 1 displaystyle operatorname cl 2 z oplus operatorname sl 2 z 1 nbsp The functions cl displaystyle tilde operatorname cl nbsp and sl displaystyle tilde operatorname sl nbsp satisfy another Pythagorean like identity 0 x cl t d t 2 1 0 x sl t d t 2 1 displaystyle left int 0 x tilde operatorname cl t mathrm d t right 2 left 1 int 0 x tilde operatorname sl t mathrm d t right 2 1 nbsp Derivatives and integrals edit The derivatives are as follows d d z cl z c l z 1 c l 2 z sl z 2 sl z sl 2 z 1 c l 2 z 1 c l 4 z d d z sl z s l z 1 s l 2 z cl z 2 cl z cl 2 z 1 s l 2 z 1 s l 4 z displaystyle begin aligned frac mathrm d mathrm d z operatorname cl z operatorname cl z amp bigl 1 operatorname cl 2 z bigr operatorname sl z frac 2 operatorname sl z operatorname sl 2 z 1 operatorname cl 2 z amp 1 operatorname cl 4 z 5mu frac mathrm d mathrm d z operatorname sl z operatorname sl z amp bigl 1 operatorname sl 2 z bigr operatorname cl z frac 2 operatorname cl z operatorname cl 2 z 1 operatorname sl 2 z amp 1 operatorname sl 4 z end aligned nbsp d d z cl z sl z cl z 2 sl z cl 3 z cl 3 z d d z sl z 2 cl z cl z cl z cl z displaystyle begin aligned frac mathrm d mathrm d z tilde operatorname cl z amp tilde operatorname sl z operatorname cl z frac 2 operatorname sl z tilde operatorname cl 3 z operatorname cl 3 z frac mathrm d mathrm d z tilde operatorname sl z amp 2 tilde operatorname cl z operatorname cl z frac tilde operatorname cl z operatorname cl z end aligned nbsp The second derivatives of lemniscate sine and lemniscate cosine are their negative duplicated cubes d 2 d z 2 cl z 2 c l 3 z displaystyle frac mathrm d 2 mathrm d z 2 operatorname cl z 2 operatorname cl 3 z nbsp d 2 d z 2 sl z 2 s l 3 z displaystyle frac mathrm d 2 mathrm d z 2 operatorname sl z 2 operatorname sl 3 z nbsp The lemniscate functions can be integrated using the inverse tangent function cl z d z arctan sl z C sl z d z arctan cl z C cl z d z sl z cl z cl z C sl z d z cl z cl z C displaystyle begin aligned int operatorname cl z mathop mathrm d z amp arctan operatorname sl z C int operatorname sl z mathop mathrm d z amp arctan operatorname cl z C int tilde operatorname cl z mathrm d z amp frac operatorname sl z tilde operatorname cl z operatorname cl z C int tilde operatorname sl z mathrm d z amp frac tilde operatorname cl z operatorname cl z C end aligned nbsp Argument sum and multiple identities edit Like the trigonometric functions the lemniscate functions satisfy argument sum and difference identities The original identity used by Fagnano for bisection of the lemniscate was 19 sl u v sl u s l v sl v s l u 1 s l 2 u s l 2 v displaystyle operatorname sl u v frac operatorname sl u operatorname sl v operatorname sl v operatorname sl u 1 operatorname sl 2 u operatorname sl 2 v nbsp The derivative and Pythagorean like identities can be used to rework the identity used by Fagano in terms of sl and cl Defining a tangent sum operator a b tan arctan a arctan b displaystyle a oplus b mathrel tan arctan a arctan b nbsp and tangent difference operator a b a b displaystyle a ominus b mathrel a oplus b nbsp the argument sum and difference identities can be expressed as 20 cl u v cl u cl v sl u sl v cl u cl v sl u sl v 1 sl u cl u sl v cl v cl u v cl u cl v sl u sl v sl u v sl u cl v cl u sl v sl u cl v cl u sl v 1 sl u cl u sl v cl v sl u v sl u cl v cl u sl v displaystyle begin aligned operatorname cl u v amp operatorname cl u operatorname cl v ominus operatorname sl u operatorname sl v frac operatorname cl u operatorname cl v operatorname sl u operatorname sl v 1 operatorname sl u operatorname cl u operatorname sl v operatorname cl v 2mu operatorname cl u v amp operatorname cl u operatorname cl v oplus operatorname sl u operatorname sl v 2mu operatorname sl u v amp operatorname sl u operatorname cl v oplus operatorname cl u operatorname sl v frac operatorname sl u operatorname cl v operatorname cl u operatorname sl v 1 operatorname sl u operatorname cl u operatorname sl v operatorname cl v 2mu operatorname sl u v amp operatorname sl u operatorname cl v ominus operatorname cl u operatorname sl v end aligned nbsp These resemble their trigonometric analogs cos u v cos u cos v sin u sin v sin u v sin u cos v cos u sin v displaystyle begin aligned cos u pm v amp cos u cos v mp sin u sin v 6mu sin u pm v amp sin u cos v pm cos u sin v end aligned nbsp In particular to compute the complex valued functions in real components cl x i y cl x i sl x sl y cl y cl y i sl x cl x sl y cl x cl y 1 sl 2 x sl 2 y cl 2 y sl 2 x cl 2 x sl 2 y i sl x sl y cl 2 x cl 2 y cl 2 y sl 2 x cl 2 x sl 2 y sl x i y sl x i cl x sl y cl y cl y i sl x cl x sl y sl x cl y 1 cl 2 x sl 2 y cl 2 y sl 2 x cl 2 x sl 2 y i cl x sl y sl 2 x cl 2 y cl 2 y sl 2 x cl 2 x sl 2 y displaystyle begin aligned operatorname cl x iy amp frac operatorname cl x i operatorname sl x operatorname sl y operatorname cl y operatorname cl y i operatorname sl x operatorname cl x operatorname sl y 4mu amp frac operatorname cl x operatorname cl y left 1 operatorname sl 2 x operatorname sl 2 y right operatorname cl 2 y operatorname sl 2 x operatorname cl 2 x operatorname sl 2 y i frac operatorname sl x operatorname sl y left operatorname cl 2 x operatorname cl 2 y right operatorname cl 2 y operatorname sl 2 x operatorname cl 2 x operatorname sl 2 y 12mu operatorname sl x iy amp frac operatorname sl x i operatorname cl x operatorname sl y operatorname cl y operatorname cl y i operatorname sl x operatorname cl x operatorname sl y 4mu amp frac operatorname sl x operatorname cl y left 1 operatorname cl 2 x operatorname sl 2 y right operatorname cl 2 y operatorname sl 2 x operatorname cl 2 x operatorname sl 2 y i frac operatorname cl x operatorname sl y left operatorname sl 2 x operatorname cl 2 y right operatorname cl 2 y operatorname sl 2 x operatorname cl 2 x operatorname sl 2 y end aligned nbsp Bisection formulas cl 2 1 2 x 1 cl x 1 sl 2 x 1 sl 2 x 1 displaystyle operatorname cl 2 tfrac 1 2 x frac 1 operatorname cl x sqrt 1 operatorname sl 2 x sqrt 1 operatorname sl 2 x 1 nbsp sl 2 1 2 x 1 cl x 1 sl 2 x 1 sl 2 x 1 displaystyle operatorname sl 2 tfrac 1 2 x frac 1 operatorname cl x sqrt 1 operatorname sl 2 x sqrt 1 operatorname sl 2 x 1 nbsp Duplication formulas 21 cl 2 x 1 2 cl 2 x cl 4 x 1 2 cl 2 x cl 4 x displaystyle operatorname cl 2x frac 1 2 operatorname cl 2 x operatorname cl 4 x 1 2 operatorname cl 2 x operatorname cl 4 x nbsp sl 2 x 2 sl x cl x 1 sl 2 x 1 sl 4 x displaystyle operatorname sl 2x 2 operatorname sl x operatorname cl x frac 1 operatorname sl 2 x 1 operatorname sl 4 x nbsp Triplication formulas 21 cl 3 x 3 cl x 6 cl 5 x cl 9 x 1 6 cl 4 x 3 cl 8 x displaystyle operatorname cl 3x frac 3 operatorname cl x 6 operatorname cl 5 x operatorname cl 9 x 1 6 operatorname cl 4 x 3 operatorname cl 8 x nbsp sl 3 x 3 sl x 6 sl 5 x 1 sl 9 x 1 6 sl 4 x 3 sl 8 x displaystyle operatorname sl 3x frac color red 3 color black operatorname sl x color green 6 color black operatorname sl 5 x color blue 1 color black operatorname sl 9 x color blue 1 color black color green 6 color black operatorname sl 4 x color red 3 color black operatorname sl 8 x nbsp Note the reverse symmetry of the coefficients of numerator and denominator of sl 3 x displaystyle operatorname sl 3x nbsp This phenomenon can be observed in multiplication formulas for sl b x displaystyle operatorname sl beta x nbsp where b m n i displaystyle beta m ni nbsp whenever m n Z displaystyle m n in mathbb Z nbsp and m n displaystyle m n nbsp is odd 15 Lemnatomic polynomials edit Let L displaystyle L nbsp be the lattice L Z 1 i ϖ Z 1 i ϖ displaystyle L mathbb Z 1 i varpi mathbb Z 1 i varpi nbsp Furthermore let K Q i displaystyle K mathbb Q i nbsp O Z i displaystyle mathcal O mathbb Z i nbsp z C displaystyle z in mathbb C nbsp b m i n displaystyle beta m in nbsp g m i n displaystyle gamma m in nbsp where m n m n Z displaystyle m n m n in mathbb Z nbsp m n displaystyle m n nbsp be odd m n displaystyle m n nbsp be odd g 1 mod 2 1 i displaystyle gamma equiv 1 operatorname mod 2 1 i nbsp and sl b z M b sl z displaystyle operatorname sl beta z M beta operatorname sl z nbsp Then M b x i e x P b x 4 Q b x 4 displaystyle M beta x i varepsilon x frac P beta x 4 Q beta x 4 nbsp for some coprime polynomials P b x Q b x O x displaystyle P beta x Q beta x in mathcal O x nbsp and some e 0 1 2 3 displaystyle varepsilon in 0 1 2 3 nbsp 22 where x P b x 4 g b L g x displaystyle xP beta x 4 prod gamma beta Lambda gamma x nbsp and L b x a O b O x sl a d b displaystyle Lambda beta x prod alpha in mathcal O beta mathcal O times x operatorname sl alpha delta beta nbsp where d b displaystyle delta beta nbsp is any b displaystyle beta nbsp torsion generator i e d b 1 b L displaystyle delta beta in 1 beta L nbsp and d b 1 b L L displaystyle delta beta in 1 beta L L nbsp generates 1 b L L displaystyle 1 beta L L nbsp as an O displaystyle mathcal O nbsp module Examples of b displaystyle beta nbsp torsion generators include 2 ϖ b displaystyle 2 varpi beta nbsp and 1 i ϖ b displaystyle 1 i varpi beta nbsp The polynomial L b x O x displaystyle Lambda beta x in mathcal O x nbsp is called the b displaystyle beta nbsp th lemnatomic polynomial It is monic and is irreducible over K displaystyle K nbsp The lemnatomic polynomials are the lemniscate analogs of the cyclotomic polynomials 23 F k x a Z k Z x z k a displaystyle Phi k x prod a in mathbb Z k mathbb Z times x zeta k a nbsp The b displaystyle beta nbsp th lemnatomic polynomial L b x displaystyle Lambda beta x nbsp is the minimal polynomial of sl d b displaystyle operatorname sl delta beta nbsp in K x displaystyle K x nbsp For convenience let w b sl 2 ϖ b displaystyle omega beta operatorname sl 2 varpi beta nbsp and w b sl 1 i ϖ b displaystyle tilde omega beta operatorname sl 1 i varpi beta nbsp So for example the minimal polynomial of w 5 displaystyle omega 5 nbsp and also of w 5 displaystyle tilde omega 5 nbsp in K x displaystyle K x nbsp is L 5 x x 16 52 x 12 26 x 8 12 x 4 1 displaystyle Lambda 5 x x 16 52x 12 26x 8 12x 4 1 nbsp and 24 w 5 13 6 5 2 85 38 5 4 displaystyle omega 5 sqrt 4 13 6 sqrt 5 2 sqrt 85 38 sqrt 5 nbsp w 5 13 6 5 2 85 38 5 4 displaystyle tilde omega 5 sqrt 4 13 6 sqrt 5 2 sqrt 85 38 sqrt 5 nbsp 25 an equivalent expression is given in the table below Another example is 23 L 1 2 i x x 4 1 2 i displaystyle Lambda 1 2i x x 4 1 2i nbsp which is the minimal polynomial of w 1 2 i displaystyle omega 1 2i nbsp and also of w 1 2 i displaystyle tilde omega 1 2i nbsp in K x displaystyle K x nbsp If p displaystyle p nbsp is prime and b displaystyle beta nbsp is positive and odd 26 then 27 deg L b b 2 p b 1 1 p 1 1 p 1 2 p displaystyle operatorname deg Lambda beta beta 2 prod p beta left 1 frac 1 p right left 1 frac 1 p 1 2 p right nbsp which can be compared to the cyclotomic analog deg F k k p k 1 1 p displaystyle operatorname deg Phi k k prod p k left 1 frac 1 p right nbsp Specific values edit Just as for the trigonometric functions values of the lemniscate functions can be computed for divisions of the lemniscate into n parts of equal length using only basic arithmetic and square roots if and only if n is of the form n 2 k p 1 p 2 p m displaystyle n 2 k p 1 p 2 cdots p m nbsp where k is a non negative integer and each pi if any is a distinct Fermat prime 28 n displaystyle n nbsp cl n ϖ displaystyle operatorname cl n varpi nbsp sl n ϖ displaystyle operatorname sl n varpi nbsp 1 displaystyle 1 nbsp 1 displaystyle 1 nbsp 0 displaystyle 0 nbsp 5 6 displaystyle tfrac 5 6 nbsp 2 3 3 4 displaystyle sqrt 4 2 sqrt 3 3 nbsp 1 2 3 1 12 4 displaystyle tfrac 1 2 bigl sqrt 3 1 sqrt 4 12 bigr nbsp 3 4 displaystyle tfrac 3 4 nbsp 2 1 displaystyle sqrt sqrt 2 1 nbsp 2 1 displaystyle sqrt sqrt 2 1 nbsp 2 3 displaystyle tfrac 2 3 nbsp 1 2 3 1 12 4 displaystyle tfrac 1 2 bigl sqrt 3 1 sqrt 4 12 bigr nbsp 2 3 3 4 displaystyle sqrt 4 2 sqrt 3 3 nbsp 1 2 displaystyle tfrac 1 2 nbsp 0 displaystyle 0 nbsp 1 displaystyle 1 nbsp 1 3 displaystyle tfrac 1 3 nbsp 1 2 3 1 12 4 displaystyle tfrac 1 2 bigl sqrt 3 1 sqrt 4 12 bigr nbsp 2 3 3 4 displaystyle sqrt 4 2 sqrt 3 3 nbsp 1 4 displaystyle tfrac 1 4 nbsp 2 1 displaystyle sqrt sqrt 2 1 nbsp 2 1 displaystyle sqrt sqrt 2 1 nbsp 1 6 displaystyle tfrac 1 6 nbsp 2 3 3 4 displaystyle sqrt 4 2 sqrt 3 3 nbsp 1 2 3 1 12 4 displaystyle tfrac 1 2 bigl sqrt 3 1 sqrt 4 12 bigr nbsp Further values edit n displaystyle n nbsp cl n ϖ displaystyle operatorname cl n varpi nbsp sl n ϖ displaystyle operatorname sl n varpi nbsp 3 7 displaystyle tfrac 3 7 nbsp tanh 1 2 arcoth 1 2 2 cos 3 14 p cot 1 28 p cos 1 7 p displaystyle tanh bigl tfrac 1 2 operatorname arcoth bigl tfrac 1 2 sqrt 2 cos tfrac 3 14 pi cot tfrac 1 28 pi cos tfrac 1 7 pi bigr bigr nbsp 5 12 displaystyle tfrac 5 12 nbsp 1 2 8 4 sin 5 24 p 3 4 sin 1 24 p 2 3 3 4 1 displaystyle tfrac 1 2 sqrt 4 8 left sin left tfrac 5 24 pi right sqrt 4 3 sin left tfrac 1 24 pi right right Bigl sqrt 4 2 sqrt 3 3 1 Bigr nbsp 1 2 8 4 sin 5 24 p 3 4 sin 1 24 p 2 3 3 4 1 displaystyle tfrac 1 2 sqrt 4 8 left sin left tfrac 5 24 pi right sqrt 4 3 sin left tfrac 1 24 pi right right Bigl sqrt 4 2 sqrt 3 3 1 Bigr nbsp 2 5 displaystyle tfrac 2 5 nbsp 1 2 5 4 1 5 2 1 displaystyle tfrac 1 2 sqrt 4 5 1 bigl sqrt sqrt 5 2 1 bigr nbsp 2 5 2 4 sin 3 20 p cos 1 20 p displaystyle 2 sqrt 4 sqrt 5 2 sqrt sin tfrac 3 20 pi cos tfrac 1 20 pi nbsp 3 8 displaystyle tfrac 3 8 nbsp 2 4 1 2 1 2 2 displaystyle sqrt bigl sqrt 4 2 1 bigr bigl sqrt 2 1 sqrt 2 sqrt 2 bigr nbsp 2 4 1 2 1 2 2 displaystyle sqrt bigl sqrt 4 2 1 bigr bigl sqrt 2 1 sqrt 2 sqrt 2 bigr nbsp 5 14 displaystyle tfrac 5 14 nbsp tanh 1 2 arcoth 1 2 2 sin 1 7 p cot 3 28 p sin 1 14 p displaystyle tanh bigl tfrac 1 2 operatorname arcoth bigl tfrac 1 2 sqrt 2 sin tfrac 1 7 pi cot tfrac 3 28 pi sin tfrac 1 14 pi bigr bigr nbsp 3 10 displaystyle tfrac 3 10 nbsp 2 5 2 4 sin 1 20 p cos 3 20 p displaystyle 2 sqrt 4 sqrt 5 2 sqrt sin tfrac 1 20 pi cos tfrac 3 20 pi nbsp 1 2 5 4 1 5 2 1 displaystyle tfrac 1 2 bigl sqrt 4 5 1 bigr bigl sqrt sqrt 5 2 1 bigr nbsp 2 7 displaystyle tfrac 2 7 nbsp tanh 1 2 arcoth 1 2 2 cos 1 14 p tan 5 28 p sin 3 14 p displaystyle tanh bigl tfrac 1 2 operatorname arcoth bigl tfrac 1 2 sqrt 2 cos tfrac 1 14 pi tan tfrac 5 28 pi sin tfrac 3 14 pi bigr bigr nbsp 3 14 displaystyle tfrac 3 14 nbsp tanh 1 2 arcoth 1 2 2 cos 1 14 p tan 5 28 p sin 3 14 p displaystyle tanh bigl tfrac 1 2 operatorname arcoth bigl tfrac 1 2 sqrt 2 cos tfrac 1 14 pi tan tfrac 5 28 pi sin tfrac 3 14 pi bigr bigr nbsp 1 5 displaystyle tfrac 1 5 nbsp 1 2 5 4 1 5 2 1 displaystyle tfrac 1 2 bigl sqrt 4 5 1 bigr bigl sqrt sqrt 5 2 1 bigr nbsp 2 5 2 4 sin 1 20 p cos 3 20 p displaystyle 2 sqrt 4 sqrt 5 2 sqrt sin tfrac 1 20 pi cos tfrac 3 20 pi nbsp 1 7 displaystyle tfrac 1 7 nbsp tanh 1 2 arcoth 1 2 2 sin 1 7 p cot 3 28 p sin 1 14 p displaystyle tanh bigl tfrac 1 2 operatorname arcoth bigl tfrac 1 2 sqrt 2 sin tfrac 1 7 pi cot tfrac 3 28 pi sin tfrac 1 14 pi bigr bigr nbsp 1 8 displaystyle tfrac 1 8 nbsp 2 4 1 2 1 2 2 displaystyle sqrt bigl sqrt 4 2 1 bigr bigl sqrt 2 1 sqrt 2 sqrt 2 bigr nbsp 2 4 1 2 1 2 2 displaystyle sqrt bigl sqrt 4 2 1 bigr bigl sqrt 2 1 sqrt 2 sqrt 2 bigr nbsp 1 10 displaystyle tfrac 1 10 nbsp 2 5 2 4 sin 3 20 p cos 1 20 p displaystyle 2 sqrt 4 sqrt 5 2 sqrt sin tfrac 3 20 pi cos tfrac 1 20 pi nbsp 1 2 5 4 1 5 2 1 displaystyle tfrac 1 2 sqrt 4 5 1 bigl sqrt sqrt 5 2 1 bigr nbsp 1 12 displaystyle tfrac 1 12 nbsp 1 2 8 4 sin 5 24 p 3 4 sin 1 24 p 2 3 3 4 1 displaystyle tfrac 1 2 sqrt 4 8 left sin left tfrac 5 24 pi right sqrt 4 3 sin left tfrac 1 24 pi right right Bigl sqrt 4 2 sqrt 3 3 1 Bigr nbsp 1 2 8 4 sin 5 24 p 3 4 sin 1 24 p 2 3 3 4 1 displaystyle tfrac 1 2 sqrt 4 8 left sin left tfrac 5 24 pi right sqrt 4 3 sin left tfrac 1 24 pi right right Bigl sqrt 4 2 sqrt 3 3 1 Bigr nbsp 1 14 displaystyle tfrac 1 14 nbsp tanh 1 2 arcoth 1 2 2 cos 3 14 p cot 1 28 p cos 1 7 p displaystyle tanh bigl tfrac 1 2 operatorname arcoth bigl tfrac 1 2 sqrt 2 cos tfrac 3 14 pi cot tfrac 1 28 pi cos tfrac 1 7 pi bigr bigr nbsp Relation to geometric shapes editArc length of Bernoulli s lemniscate edit nbsp The lemniscate sine and cosine relate the arc length of an arc of the lemniscate to the distance of one endpoint from the origin nbsp The trigonometric sine and cosine analogously relate the arc length of an arc of a unit diameter circle to the distance of one endpoint from the origin L displaystyle mathcal L nbsp the lemniscate of Bernoulli with unit distance from its center to its furthest point i e with unit half width is essential in the theory of the lemniscate elliptic functions It can be characterized in at least three ways Angular characterization Given two points A displaystyle A nbsp and B displaystyle B nbsp which are unit distance apart let B displaystyle B nbsp be the reflection of B displaystyle B nbsp about A displaystyle A nbsp Then L displaystyle mathcal L nbsp is the closure of the locus of the points P displaystyle P nbsp such that A P B A P B displaystyle APB APB nbsp is a right angle 29 Focal characterization L displaystyle mathcal L nbsp is the locus of points in the plane such that the product of their distances from the two focal points F 1 1 2 0 displaystyle F 1 bigl tfrac 1 sqrt 2 0 bigr nbsp and F 2 1 2 0 displaystyle F 2 bigl tfrac 1 sqrt 2 0 bigr nbsp is the constant 1 2 displaystyle tfrac 1 2 nbsp Explicit coordinate characterization L displaystyle mathcal L nbsp is a quartic curve satisfying the polar equation r 2 cos 2 8 displaystyle r 2 cos 2 theta nbsp or the Cartesian equation x 2 y 2 2 x 2 y 2 displaystyle bigl x 2 y 2 bigr 2 x 2 y 2 nbsp The perimeter of L displaystyle mathcal L nbsp is 2 ϖ displaystyle 2 varpi nbsp The points on L displaystyle mathcal L nbsp at distance r displaystyle r nbsp from the origin are the intersections of the circle x 2 y 2 r 2 displaystyle x 2 y 2 r 2 nbsp and the hyperbola x 2 y 2 r 4 displaystyle x 2 y 2 r 4 nbsp The intersection in the positive quadrant has Cartesian coordinates x r y r 1 2 r 2 1 r 2 1 2 r 2 1 r 2 displaystyle big x r y r big biggl sqrt tfrac 1 2 r 2 bigl 1 r 2 bigr sqrt tfrac 1 2 r 2 bigl 1 r 2 bigr biggr nbsp Using this parametrization with r 0 1 displaystyle r in 0 1 img sr, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.