fbpx
Wikipedia

Isotopes of osmium

Osmium (76Os) has seven naturally occurring isotopes, five of which are stable: 187Os, 188Os, 189Os, 190Os, and (most abundant) 192Os. The other natural isotopes, 184Os, and 186Os, have extremely long half-life (1.12×1013 years and 2×1015 years, respectively) and for practical purposes can be considered to be stable as well. 187Os is the daughter of 187Re (half-life 4.12×1010 years) and is most often measured in an 187Os/188Os ratio. This ratio, as well as the 187Re/188Os ratio, have been used extensively in dating terrestrial as well as meteoric rocks. It has also been used to measure the intensity of continental weathering over geologic time and to fix minimum ages for stabilization of the mantle roots of continental cratons. However, the most notable application of Os in dating has been in conjunction with iridium, to analyze the layer of shocked quartz along the Cretaceous–Paleogene boundary that marks the extinction of the dinosaurs 66 million years ago.

Isotopes of osmium (76Os)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
184Os 0.02% 1.12×1013 y[2] α 180W
185Os synth 92.95 d ε 185Re
186Os 1.59% 2.0×1015 y α 182W
187Os 1.96% stable
188Os 13.2% stable
189Os 16.1% stable
190Os 26.3% stable
191Os synth 14.99 d β 191Ir
192Os 40.8% stable
193Os synth 29.83 h β 193Ir
194Os synth 6 y β 194Ir
Standard atomic weight Ar°(Os)

There are also 31 artificial radioisotopes,[5] the longest-lived of which is 194Os with a half-life of six years; all others have half-lives under 93 days. There are also ten known nuclear isomers, the longest-lived of which is 191mOs with a half-life of 13.10 hours. All isotopes and nuclear isomers of osmium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Uses of osmium isotopes edit

The isotopic ratio of osmium-187 and osmium-188 (187Os/188Os) can be used as a window into geochemical changes throughout the ocean's history.[6] The average marine 187Os/188Os ratio in oceans is 1.06.[6] This value represents a balance of the continental derived riverine inputs of Os with a 187Os/188Os ratio of ~1.3, and the mantle/extraterrestrial inputs with a 187Os/188Os ratio of ~0.13.[6] Being a descendant of 187Re, 187Os can be radiogenically formed by beta decay.[7] This decay has actually pushed the 187Os/188Os ratio of the Bulk silicate earth (Earth minus the core) by 33%.[8] This is what drives the difference in the 187Os/188Os ratio we see between continental materials and mantle material. Crustal rocks have a much higher level of Re, which slowly degrades into 187Os driving up the ratio.[7] Within the mantle however, the uneven response of Re and Os results in these mantle, and melted materials being depleted in Re, and do not allow for them to accumulate 187Os like the continental material.[7] The input of both materials in the marine environment results in the observed 187Os/188Os of the oceans and has fluctuated greatly over the history of our planet. These changes in the isotopic values of marine Os can be observed in the marine sediment that is deposited, and eventually lithified in that time period.[9] This allows for researchers to make estimates on weathering fluxes, identifying flood basalt volcanism, and impact events that may have caused some of our largest mass extinctions. The marine sediment Os isotope record has been used to identify and corroborate the impact of the K-T boundary for example.[10] The impact of this ~10 km asteroid massively altered the 187Os/188Os signature of marine sediments at that time. With the average extraterrestrial 187Os/188Os of ~0.13 and the huge amount of Os this impact contributed (equivalent to 600,000 years of present-day riverine inputs) lowered the global marine 187Os/188Os value of ~0.45 to ~0.2.[6]

Os isotope ratios may also be used as a signal of anthropogenic impact.[11] The same 187Os/188Os ratios that are common in geological settings may be used to gauge the addition of anthropogenic Os through things like catalytic converters.[11] While catalytic converters have been shown to drastically reduce the emission of NOx and CO2, they are introducing platinum group elements (PGE) such as Os, to the environment.[11] Other sources of anthropogenic Os include combustion of fossil fuels, smelting chromium ore, and smelting of some sulfide ores. In one study, the effect of automobile exhaust on the marine Os system was evaluated. Automobile exhaust 187Os/188Os has been recorded to be ~0.2 (similar to extraterrestrial and mantle derived inputs) which is heavily depleted (3, 7). The effect of anthropogenic Os can be seen best by comparing aquatic Os ratios and local sediments or deeper waters. Impacted surface waters tend to have depleted values compared to deep ocean and sediments beyond the limit of what is expected from cosmic inputs.[11] This increase in effect is thought to be due to the introduction of anthropogenic airborne Os into precipitation.

The long half-life of 184Os with respect to alpha decay to 180W has been proposed as a radiometric dating method for osmium-rich rocks or for differentiation of a planetary core.[2][12][13]

List of isotopes edit

Nuclide
[n 1]
Z N Isotopic mass (Da)[14]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity[1]
[n 8][n 9]
Natural abundance (mole fraction)
Excitation energy Normal proportion[1] Range of variation
160Os[15] 76 84 97+97
−32
 μs
α 156W 0+
160mOs[15] 1844(18) keV 41+15
−9
 μs
α 156W 8+
161Os 76 85 160.98905(43)# 0.64(6) ms α 157W (7/2–)
162Os 76 86 161.98443(32)# 2.1(1) ms α 158W 0+
163Os 76 87 162.98246(32)# 5.7(5) ms α 159W 7/2–
β+ ? 163Re
164Os 76 88 163.97807(16) 21(1) ms α (96%) 160W 0+
β+ (4%) 164Re
165Os 76 89 164.97665(22)# 71(3) ms α (90%) 161W (7/2–)
β+ (10%) 165Re
166Os 76 90 165.972698(19) 213(5) ms α (83%) 162W 0+
β+ (17%) 166Re
167Os 76 91 166.971552(87) 839(5) ms α (51%) 163W 7/2–
β+ (49%) 167Re
167mOs 434.3(11) keV 0.672(7) μs IT 167Os 13/2+
168Os 76 92 167.967799(11) 2.1(1) s β+ (57%) 168Re 0+
α (43%) 164W
169Os 76 93 168.967018(28) 3.46(11) s β+ (86.3%) 169Re (5/2–)
α (13.7%) 165W
170Os 76 94 169.963579(10) 7.37(18) s β+ (90.5%) 170Re 0+
α (9.5%) 166W
171Os 76 95 170.963180(20) 8.3(2) s β+ (98.20%) 171Re (5/2−)
α (1.80%) 167W
172Os 76 96 171.960017(14) 19.2(9) s β+ (98.81%) 172Re 0+
α (1.19%) 168W
173Os 76 97 172.959808(16) 22.4(9) s β+ (99.6%) 173Re 5/2–
α (0.4%) 169W
174Os 76 98 173.957063(11) 44(4) s β+ (99.98%) 174Re 0+
α (.024%) 170W
175Os 76 99 174.956945(13) 1.4(1) min β+ 175Re (5/2−)
176Os 76 100 175.954770(12) 3.6(5) min β+ 176Re 0+
177Os 76 101 176.954958(16) 3.0(2) min β+ 177Re 1/2−
178Os 76 102 177.953253(15) 5.0(4) min β+ 178Re 0+
179Os 76 103 178.953816(17) 6.5(3) min β+ 179Re 1/2–
179m1Os 145.41(12) keV ~500 ns IT 179Os (7/2)–
179m2Os 243.0(8) keV 783(14) ns IT 179Os (9/2)+
180Os 76 104 179.952382(17) 21.5(4) min β+ 180Re 0+
181Os 76 105 180.953247(27) 105(3) min β+ 181Re 1/2−
181m1Os 49.20(14) keV 2.7(1) min β+ 181Re 7/2−
181m2Os 156.91(15) keV 262(6) ns IT 181Os 9/2+
182Os 76 106 181.952110(23) 21.84(20) h EC 182Re 0+
182m1Os 1831.4(3) keV 780(70) μs IT 182Os 8–
182m2Os 7049.5(4) keV 150(10) ns IT 182Os 25+
183Os 76 107 182.953125(53) 13.0(5) h β+ 183Re 9/2+
183mOs 170.73(7) keV 9.9(3) h β+ (85%) 183Re 1/2−
IT (15%) 183Os
184Os[n 10] 76 108 183.95249292(89) 1.12(23)×1013 y α[n 11] 180W 0+ 2(2)×10−4
185Os 76 109 184.95404597(89) 92.95(9) d EC 185Re 1/2−
185m1Os 102.37(11) keV 3.0(4) μs IT 185Os 7/2−
185m2Os 275.53(12) keV 0.78(5) μs IT 185Os 11/2+
186Os[n 10] 76 110 185.95383757(82) 2.0(11)×1015 y α 182W 0+ 0.0159(64)
187Os[n 12] 76 111 186.95574957(79) Observationally Stable[n 13] 1/2− 0.0196(17)
187m1Os 100.45(4) keV 112(6) ns IT 187Os 7/2−
187m2Os 257.10(7) keV 231(2) μs IT 187Os 11/2+
188Os[n 12] 76 112 187.95583729(79) Observationally Stable[n 14] 0+ 0.1324(27)
189Os 76 113 188.95814595(72) Observationally Stable[n 15] 3/2− 0.1615(23)
189mOs 30.82(2) keV 5.81(10) h IT 189Os 9/2−
β 189Ir
190Os 76 114 189.95844544(70) Observationally Stable[n 16] 0+ 0.2626(20)
190mOs 1705.7(1) keV 9.86(3) min IT 190Os 10−
191Os 76 115 190.96092811(71) 14.99(2) d β 191Ir 9/2−
191mOs 74.382(3) keV 13.10(5) h IT 191Os 3/2−
192Os 76 116 191.9614788(25) Observationally Stable[n 17] 0+ 0.4078(32)
192m1Os 2015.40(11) keV 5.94(9) s IT 192Os 10−
β? 192Ir
192m2Os 4580.3(10) keV 205(7) ns IT 192Os (20+)
193Os 76 117 192.9641496(25) 29.830(18) h β 193Ir 3/2−
193mOs 315.6(3) keV 121(28) ns IT 192Os (9/2−)
194Os 76 118 193.9651794(26) 6.0(2) y β 194Ir 0+
195Os 76 119 194.968318(60) 6.5(11) min β 195Ir (3/2−)
195mOs 427.8(3) keV 47(3) s IT 195Os (13/2+)
β? 195Ir
196Os 76 120 195.969643(43) 34.9(2) min β 196Ir 0+
197Os 76 121 196.97308(22)# 93(7) s β 197Ir 5/2−#
198Os 76 122 197.97466(22)# 125(28) s β 198Ir 0+
199Os 76 123 198.97824(22)# 6(3) s β 199Ir 5/2−#
200Os 76 124 199.98009(32)# 7(4) s β 200Ir 0+
201Os 76 125 200.98407(32)# 3# s [>300ns] β? 201Ir 1/2−#
202Os 76 126 201.98655(43)# 2# s [>300ns] β? 202Ir 0+
203Os 76 127 202.99220(43)# 300# ms [>300ns] β? 203Ir 9/2+#
β n? 202Ir
This table header & footer:
  1. ^ mOs – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ Modes of decay:
  6. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  10. ^ a b primordial radionuclide
  11. ^ Possibly undergoing β+β+ decay to 184W[1]
  12. ^ a b Used in rhenium-osmium dating
  13. ^ Believed to undergo α decay to 183W with a half-life over 3.2×1015 years
  14. ^ Believed to undergo α decay to 184W with a half-life over 3.3×1018 years
  15. ^ Believed to undergo α decay to 185W with a half-life over 3.3×1015 years
  16. ^ Believed to undergo α decay to 186W with a half-life over 1.2×1019 years
  17. ^ Believed to undergo α decay to 188W or ββ decay to 192Pt with a half-life over 5.3×1019 years

References edit

  1. ^ a b c d e f Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ a b Peters, Stefan T.M.; Münker, Carsten; Becker, Harry; Schulz, Toni (April 2014). "Alpha-decay of 184Os revealed by radiogenic 180W in meteorites: Half life determination and viability as geochronometer". Earth and Planetary Science Letters. 391: 69–76. doi:10.1016/j.epsl.2014.01.030.
  3. ^ "Standard Atomic Weights: Osmium". CIAAW. 1991.
  4. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  5. ^ Flegenheimer, Juan (2014). "The mystery of the disappearing isotope". Revista Virtual de Química. 6 (4): 1139–1142. doi:10.5935/1984-6835.20140073.
  6. ^ a b c d Peucker-Ehrenbrink, B.; Ravizza, G. (2000). "The marine osmium isotope record". Terra Nova. 12 (5): 205–219. Bibcode:2000TeNov..12..205P. doi:10.1046/j.1365-3121.2000.00295.x. S2CID 12486288.
  7. ^ a b c Esser, Bradley K.; Turekian, Karl K. (1993). "The osmium isotopic composition of the continental crust". Geochimica et Cosmochimica Acta. 57 (13): 3093–3104. Bibcode:1993GeCoA..57.3093E. doi:10.1016/0016-7037(93)90296-9.
  8. ^ Hauri, Erik H. (2002). "Osmium Isotopes and Mantle Convection" (PDF). Philosophical Transactions: Mathematical, Physical and Engineering Sciences. 360 (1800): 2371–2382. Bibcode:2002RSPTA.360.2371H. doi:10.1098/rsta.2002.1073. JSTOR 3558902. PMID 12460472. S2CID 18451805.
  9. ^ Lowery, Chistopher; Morgan, Joanna; Gulick, Sean; Bralower, Timothy; Christeson, Gail (2019). "Ocean Drilling Perspectives on Meteorite Impacts". Oceanography. 32: 120–134. doi:10.5670/oceanog.2019.133.
  10. ^ Selby, D.; Creaser, R. A. (2005). "Direct Radiometric Dating of Hydrocarbon Deposits Using Rhenium-Osmium Isotopes". Science. 308 (5726): 1293–1295. Bibcode:2005Sci...308.1293S. doi:10.1126/science.1111081. PMID 15919988. S2CID 41419594.
  11. ^ a b c d Chen, C.; Sedwick, P. N.; Sharma, M. (2009). "Anthropogenic osmium in rain and snow reveals global-scale atmospheric contamination". Proceedings of the National Academy of Sciences. 106 (19): 7724–7728. Bibcode:2009PNAS..106.7724C. doi:10.1073/pnas.0811803106. PMC 2683094. PMID 19416862.
  12. ^ Cook, David L.; Kruijer, Thomas S.; Leya, Ingo; Kleine, Thorsten (September 2014). "Cosmogenic 180W variations in meteorites and re-assessment of a possible 184Os–180W decay system". Geochimica et Cosmochimica Acta. 140: 160–176. doi:10.1016/j.gca.2014.05.013.
  13. ^ Cook, David L.; Smith, Thomas; Leya, Ingo; Hilton, Connor D.; Walker, Richard J.; Schönbächler, Maria (September 2018). "Excess 180W in IIAB iron meteorites: Identification of cosmogenic, radiogenic, and nucleosynthetic components". Earth Planet Sci Lett. 503: 29–36. doi:10.1016/j.epsl.2018.09.021. PMC 6398611.
  14. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  15. ^ a b Briscoe, A. D.; Page, R. D.; Uusitalo, J.; et al. (2023). "Decay spectroscopy at the two-proton drip line: Radioactivity of the new nuclides 160Os and 156W". Physics Letters B. 47 (138310). doi:10.1016/j.physletb.2023.138310.
  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.

isotopes, osmium, osmium, 76os, seven, naturally, occurring, isotopes, five, which, stable, 187os, 188os, 189os, 190os, most, abundant, 192os, other, natural, isotopes, 184os, 186os, have, extremely, long, half, life, 1013, years, 1015, years, respectively, pr. Osmium 76Os has seven naturally occurring isotopes five of which are stable 187Os 188Os 189Os 190Os and most abundant 192Os The other natural isotopes 184Os and 186Os have extremely long half life 1 12 1013 years and 2 1015 years respectively and for practical purposes can be considered to be stable as well 187Os is the daughter of 187Re half life 4 12 1010 years and is most often measured in an 187Os 188Os ratio This ratio as well as the 187Re 188Os ratio have been used extensively in dating terrestrial as well as meteoric rocks It has also been used to measure the intensity of continental weathering over geologic time and to fix minimum ages for stabilization of the mantle roots of continental cratons However the most notable application of Os in dating has been in conjunction with iridium to analyze the layer of shocked quartz along the Cretaceous Paleogene boundary that marks the extinction of the dinosaurs 66 million years ago Isotopes of osmium 76Os Main isotopes 1 Decay abun dance half life t1 2 mode pro duct 184Os 0 02 1 12 1013 y 2 a 180W 185Os synth 92 95 d e 185Re 186Os 1 59 2 0 1015 y a 182W 187Os 1 96 stable 188Os 13 2 stable 189Os 16 1 stable 190Os 26 3 stable 191Os synth 14 99 d b 191Ir 192Os 40 8 stable 193Os synth 29 83 h b 193Ir 194Os synth 6 y b 194IrStandard atomic weight Ar Os 190 23 0 03 3 190 23 0 03 abridged 4 viewtalkedit There are also 31 artificial radioisotopes 5 the longest lived of which is 194Os with a half life of six years all others have half lives under 93 days There are also ten known nuclear isomers the longest lived of which is 191mOs with a half life of 13 10 hours All isotopes and nuclear isomers of osmium are either radioactive or observationally stable meaning that they are predicted to be radioactive but no actual decay has been observed Uses of osmium isotopes editThe isotopic ratio of osmium 187 and osmium 188 187Os 188Os can be used as a window into geochemical changes throughout the ocean s history 6 The average marine 187Os 188Os ratio in oceans is 1 06 6 This value represents a balance of the continental derived riverine inputs of Os with a 187Os 188Os ratio of 1 3 and the mantle extraterrestrial inputs with a 187Os 188Os ratio of 0 13 6 Being a descendant of 187Re 187Os can be radiogenically formed by beta decay 7 This decay has actually pushed the 187Os 188Os ratio of the Bulk silicate earth Earth minus the core by 33 8 This is what drives the difference in the 187Os 188Os ratio we see between continental materials and mantle material Crustal rocks have a much higher level of Re which slowly degrades into 187Os driving up the ratio 7 Within the mantle however the uneven response of Re and Os results in these mantle and melted materials being depleted in Re and do not allow for them to accumulate 187Os like the continental material 7 The input of both materials in the marine environment results in the observed 187Os 188Os of the oceans and has fluctuated greatly over the history of our planet These changes in the isotopic values of marine Os can be observed in the marine sediment that is deposited and eventually lithified in that time period 9 This allows for researchers to make estimates on weathering fluxes identifying flood basalt volcanism and impact events that may have caused some of our largest mass extinctions The marine sediment Os isotope record has been used to identify and corroborate the impact of the K T boundary for example 10 The impact of this 10 km asteroid massively altered the 187Os 188Os signature of marine sediments at that time With the average extraterrestrial 187Os 188Os of 0 13 and the huge amount of Os this impact contributed equivalent to 600 000 years of present day riverine inputs lowered the global marine 187Os 188Os value of 0 45 to 0 2 6 Os isotope ratios may also be used as a signal of anthropogenic impact 11 The same 187Os 188Os ratios that are common in geological settings may be used to gauge the addition of anthropogenic Os through things like catalytic converters 11 While catalytic converters have been shown to drastically reduce the emission of NOx and CO2 they are introducing platinum group elements PGE such as Os to the environment 11 Other sources of anthropogenic Os include combustion of fossil fuels smelting chromium ore and smelting of some sulfide ores In one study the effect of automobile exhaust on the marine Os system was evaluated Automobile exhaust 187Os 188Os has been recorded to be 0 2 similar to extraterrestrial and mantle derived inputs which is heavily depleted 3 7 The effect of anthropogenic Os can be seen best by comparing aquatic Os ratios and local sediments or deeper waters Impacted surface waters tend to have depleted values compared to deep ocean and sediments beyond the limit of what is expected from cosmic inputs 11 This increase in effect is thought to be due to the introduction of anthropogenic airborne Os into precipitation The long half life of 184Os with respect to alpha decay to 180W has been proposed as a radiometric dating method for osmium rich rocks or for differentiation of a planetary core 2 12 13 List of isotopes editNuclide n 1 Z N Isotopic mass Da 14 n 2 n 3 Half life 1 n 4 Decaymode 1 n 5 Daughterisotope n 6 n 7 Spin andparity 1 n 8 n 9 Natural abundance mole fraction Excitation energy Normal proportion 1 Range of variation 160Os 15 76 84 97 97 32 ms a 156W 0 160mOs 15 1844 18 keV 41 15 9 ms a 156W 8 161Os 76 85 160 98905 43 0 64 6 ms a 157W 7 2 162Os 76 86 161 98443 32 2 1 1 ms a 158W 0 163Os 76 87 162 98246 32 5 7 5 ms a 159W 7 2 b 163Re 164Os 76 88 163 97807 16 21 1 ms a 96 160W 0 b 4 164Re 165Os 76 89 164 97665 22 71 3 ms a 90 161W 7 2 b 10 165Re 166Os 76 90 165 972698 19 213 5 ms a 83 162W 0 b 17 166Re 167Os 76 91 166 971552 87 839 5 ms a 51 163W 7 2 b 49 167Re 167mOs 434 3 11 keV 0 672 7 ms IT 167Os 13 2 168Os 76 92 167 967799 11 2 1 1 s b 57 168Re 0 a 43 164W 169Os 76 93 168 967018 28 3 46 11 s b 86 3 169Re 5 2 a 13 7 165W 170Os 76 94 169 963579 10 7 37 18 s b 90 5 170Re 0 a 9 5 166W 171Os 76 95 170 963180 20 8 3 2 s b 98 20 171Re 5 2 a 1 80 167W 172Os 76 96 171 960017 14 19 2 9 s b 98 81 172Re 0 a 1 19 168W 173Os 76 97 172 959808 16 22 4 9 s b 99 6 173Re 5 2 a 0 4 169W 174Os 76 98 173 957063 11 44 4 s b 99 98 174Re 0 a 024 170W 175Os 76 99 174 956945 13 1 4 1 min b 175Re 5 2 176Os 76 100 175 954770 12 3 6 5 min b 176Re 0 177Os 76 101 176 954958 16 3 0 2 min b 177Re 1 2 178Os 76 102 177 953253 15 5 0 4 min b 178Re 0 179Os 76 103 178 953816 17 6 5 3 min b 179Re 1 2 179m1Os 145 41 12 keV 500 ns IT 179Os 7 2 179m2Os 243 0 8 keV 783 14 ns IT 179Os 9 2 180Os 76 104 179 952382 17 21 5 4 min b 180Re 0 181Os 76 105 180 953247 27 105 3 min b 181Re 1 2 181m1Os 49 20 14 keV 2 7 1 min b 181Re 7 2 181m2Os 156 91 15 keV 262 6 ns IT 181Os 9 2 182Os 76 106 181 952110 23 21 84 20 h EC 182Re 0 182m1Os 1831 4 3 keV 780 70 ms IT 182Os 8 182m2Os 7049 5 4 keV 150 10 ns IT 182Os 25 183Os 76 107 182 953125 53 13 0 5 h b 183Re 9 2 183mOs 170 73 7 keV 9 9 3 h b 85 183Re 1 2 IT 15 183Os 184Os n 10 76 108 183 95249292 89 1 12 23 1013 y a n 11 180W 0 2 2 10 4 185Os 76 109 184 95404597 89 92 95 9 d EC 185Re 1 2 185m1Os 102 37 11 keV 3 0 4 ms IT 185Os 7 2 185m2Os 275 53 12 keV 0 78 5 ms IT 185Os 11 2 186Os n 10 76 110 185 95383757 82 2 0 11 1015 y a 182W 0 0 0159 64 187Os n 12 76 111 186 95574957 79 Observationally Stable n 13 1 2 0 0196 17 187m1Os 100 45 4 keV 112 6 ns IT 187Os 7 2 187m2Os 257 10 7 keV 231 2 ms IT 187Os 11 2 188Os n 12 76 112 187 95583729 79 Observationally Stable n 14 0 0 1324 27 189Os 76 113 188 95814595 72 Observationally Stable n 15 3 2 0 1615 23 189mOs 30 82 2 keV 5 81 10 h IT 189Os 9 2 b 189Ir 190Os 76 114 189 95844544 70 Observationally Stable n 16 0 0 2626 20 190mOs 1705 7 1 keV 9 86 3 min IT 190Os 10 191Os 76 115 190 96092811 71 14 99 2 d b 191Ir 9 2 191mOs 74 382 3 keV 13 10 5 h IT 191Os 3 2 192Os 76 116 191 9614788 25 Observationally Stable n 17 0 0 4078 32 192m1Os 2015 40 11 keV 5 94 9 s IT 192Os 10 b 192Ir 192m2Os 4580 3 10 keV 205 7 ns IT 192Os 20 193Os 76 117 192 9641496 25 29 830 18 h b 193Ir 3 2 193mOs 315 6 3 keV 121 28 ns IT 192Os 9 2 194Os 76 118 193 9651794 26 6 0 2 y b 194Ir 0 195Os 76 119 194 968318 60 6 5 11 min b 195Ir 3 2 195mOs 427 8 3 keV 47 3 s IT 195Os 13 2 b 195Ir 196Os 76 120 195 969643 43 34 9 2 min b 196Ir 0 197Os 76 121 196 97308 22 93 7 s b 197Ir 5 2 198Os 76 122 197 97466 22 125 28 s b 198Ir 0 199Os 76 123 198 97824 22 6 3 s b 199Ir 5 2 200Os 76 124 199 98009 32 7 4 s b 200Ir 0 201Os 76 125 200 98407 32 3 s gt 300ns b 201Ir 1 2 202Os 76 126 201 98655 43 2 s gt 300ns b 202Ir 0 203Os 76 127 202 99220 43 300 ms gt 300ns b 203Ir 9 2 b n 202Ir This table header amp footer view mOs Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS Bold half life nearly stable half life longer than age of universe Modes of decay EC Electron capture IT Isomeric transition p Proton emission Bold italics symbol as daughter Daughter product is nearly stable Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN a b primordial radionuclide Possibly undergoing b b decay to 184W 1 a b Used in rhenium osmium dating Believed to undergo a decay to 183W with a half life over 3 2 1015 years Believed to undergo a decay to 184W with a half life over 3 3 1018 years Believed to undergo a decay to 185W with a half life over 3 3 1015 years Believed to undergo a decay to 186W with a half life over 1 2 1019 years Believed to undergo a decay to 188W or b b decay to 192Pt with a half life over 5 3 1019 yearsReferences edit a b c d e f Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae a b Peters Stefan T M Munker Carsten Becker Harry Schulz Toni April 2014 Alpha decay of 184Os revealed by radiogenic 180W in meteorites Half life determination and viability as geochronometer Earth and Planetary Science Letters 391 69 76 doi 10 1016 j epsl 2014 01 030 Standard Atomic Weights Osmium CIAAW 1991 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline Bohlke John K Chesson Lesley A Coplen Tyler B Ding Tiping Dunn Philip J H Groning Manfred Holden Norman E Meijer Harro A J 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 Flegenheimer Juan 2014 The mystery of the disappearing isotope Revista Virtual de Quimica 6 4 1139 1142 doi 10 5935 1984 6835 20140073 a b c d Peucker Ehrenbrink B Ravizza G 2000 The marine osmium isotope record Terra Nova 12 5 205 219 Bibcode 2000TeNov 12 205P doi 10 1046 j 1365 3121 2000 00295 x S2CID 12486288 a b c Esser Bradley K Turekian Karl K 1993 The osmium isotopic composition of the continental crust Geochimica et Cosmochimica Acta 57 13 3093 3104 Bibcode 1993GeCoA 57 3093E doi 10 1016 0016 7037 93 90296 9 Hauri Erik H 2002 Osmium Isotopes and Mantle Convection PDF Philosophical Transactions Mathematical Physical and Engineering Sciences 360 1800 2371 2382 Bibcode 2002RSPTA 360 2371H doi 10 1098 rsta 2002 1073 JSTOR 3558902 PMID 12460472 S2CID 18451805 Lowery Chistopher Morgan Joanna Gulick Sean Bralower Timothy Christeson Gail 2019 Ocean Drilling Perspectives on Meteorite Impacts Oceanography 32 120 134 doi 10 5670 oceanog 2019 133 Selby D Creaser R A 2005 Direct Radiometric Dating of Hydrocarbon Deposits Using Rhenium Osmium Isotopes Science 308 5726 1293 1295 Bibcode 2005Sci 308 1293S doi 10 1126 science 1111081 PMID 15919988 S2CID 41419594 a b c d Chen C Sedwick P N Sharma M 2009 Anthropogenic osmium in rain and snow reveals global scale atmospheric contamination Proceedings of the National Academy of Sciences 106 19 7724 7728 Bibcode 2009PNAS 106 7724C doi 10 1073 pnas 0811803106 PMC 2683094 PMID 19416862 Cook David L Kruijer Thomas S Leya Ingo Kleine Thorsten September 2014 Cosmogenic 180W variations in meteorites and re assessment of a possible 184Os 180W decay system Geochimica et Cosmochimica Acta 140 160 176 doi 10 1016 j gca 2014 05 013 Cook David L Smith Thomas Leya Ingo Hilton Connor D Walker Richard J Schonbachler Maria September 2018 Excess 180W in IIAB iron meteorites Identification of cosmogenic radiogenic and nucleosynthetic components Earth Planet Sci Lett 503 29 36 doi 10 1016 j epsl 2018 09 021 PMC 6398611 Wang Meng Huang W J Kondev F G Audi G Naimi S 2021 The AME 2020 atomic mass evaluation II Tables graphs and references Chinese Physics C 45 3 030003 doi 10 1088 1674 1137 abddaf a b Briscoe A D Page R D Uusitalo J et al 2023 Decay spectroscopy at the two proton drip line Radioactivity of the new nuclides 160Os and 156W Physics Letters B 47 138310 doi 10 1016 j physletb 2023 138310 Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Retrieved from https en wikipedia org w index php title Isotopes of osmium amp oldid 1217876975, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.