fbpx
Wikipedia

Craton

A craton ( /ˈkrtɒn/, /ˈkrætɒn/, or /ˈkrtən/;[1][2][3] from Greek: κράτος kratos "strength") is an old and stable part of the continental lithosphere, which consists of Earth's two topmost layers, the crust and the uppermost mantle. Having often survived cycles of merging and rifting of continents, cratons are generally found in the interiors of tectonic plates; the exceptions occur where geologically recent rifting events have separated cratons and created passive margins along their edges. Cratons are characteristically composed of ancient crystalline basement rock, which may be covered by younger sedimentary rock. They have a thick crust and deep lithospheric roots that extend as much as several hundred kilometres into Earth's mantle.

Geologic provinces of the world (USGS)

Terminology

The term craton is used to distinguish the stable portion of the continental crust from regions that are more geologically active and unstable.[4] Cratons are composed of two layers: A continental shield, in which the basement rock crops out at the surface,[5] and a platform which overlays the shield in some areas with sedimentary rock.[6]

The word craton was first proposed by the Austrian geologist Leopold Kober in 1921 as Kratogen, referring to stable continental platforms, and orogen as a term for mountain or orogenic belts. Later Hans Stille shortened the former term to Kraton, from which craton derives.[7]

Examples

Examples of cratons are the Dharwar Craton[8] in India, North China Craton,[9] the East European Craton,[10] the Amazonian Craton in South America,[11] the Kaapvaal Craton in South Africa,[12] the North American Craton (also called the Laurentia Craton),[13] and the Gawler Craton in South Australia.[14]

Structure

Cratons have thick lithospheric roots. Mantle tomography shows that cratons are underlain by anomalously cold mantle corresponding to lithosphere more than twice the typical 100 km (60 mi) thickness of mature oceanic or non-cratonic, continental lithosphere. At that depth, craton roots extend into the asthenosphere,[15] and the low-velocity zone seen elsewhere at these depths is weak or absent beneath stable cratons.[16] Craton lithosphere is distinctly different from oceanic lithosphere because cratons have a neutral or positive buoyancy, and a low intrinsic density. This low density offsets density increases due to geothermal contraction and prevents the craton from sinking into the deep mantle. Cratonic lithosphere is much older than oceanic lithosphere—up to 4 billion years versus 180 million years.[17]

Rock fragments (xenoliths) carried up from the mantle by magmas containing peridotite have been delivered to the surface as inclusions in subvolcanic pipes called kimberlites. These inclusions have densities consistent with craton composition and are composed of mantle material residual from high degrees of partial melt. Peridotite is strongly influenced by the inclusion of moisture. Craton peridotite moisture content is unusually low, which leads to much greater strength. It also contains high percentages of low-weight magnesium instead of higher-weight calcium and iron.[18] Peridotites are important for understanding the deep composition and origin of cratons because peridotite nodules are pieces of mantle rock modified by partial melting. Harzburgite peridotites represent the crystalline residues after extraction of melts of compositions like basalt and komatiite.[19]

Formation

The process by which cratons were formed is called cratonization. There is much about this process that remains uncertain. However, the first cratonic landmasses likely formed during the Archean Eon. This is indicated by the age of diamonds, which originate in the roots of cratons, and which are almost always over 2 billion years and often over 3 billion years in age.[17] Rock of Archean age makes up only 7% of the world's current cratons; even allowing for erosion and destruction of past formations, this suggests that only 5 to 40 percent of the present continental crust formed during the Archean.[20] Cratonization likely was completed during the Proterozoic. Subsequent growth of continents was by accretion at continental margins.[17]

The origin of the roots of cratons is still debated.[21][22][18] However, the present understanding of cratonization began with the publication in 1978 of a paper by Thomas H. Jordan in Nature. Jordan proposed that cratons formed from a high degree of partial melting of the upper mantle, with 30 to 40 percent of the source rock entering the melt. Such a high degree of melting was possible because of the high mantle temperatures of the Archean. The extraction of so much magma left behind a solid peridotite residue that was enriched in lightweight magnesium, and thus lower in chemical density than undepleted mantle. This lower chemical density compensated for the effects of thermal contraction as the craton and its roots cooled, so that the physical density of the cratonic roots matched that of the surrounding hotter, but more chemically dense, mantle.[23][17] In addition to cooling the craton roots and lowering their chemical density, the extraction of magma also increased the viscosity and melting temperature of the craton roots and prevented mixing with the surrounding undepleted mantle.[24] The resulting mantle roots have remained stable for billions of years.[22] Jordan suggested that depletion occurred primarily in subduction zones and secondarily as flood basalts.[25]

This model of melt extraction from the upper mantle has held up well with subsequent observations.[26] The properties of mantle xenoliths confirm that the geothermal gradient is much lower beneath continents than oceans.[27] The olivine of craton root xenoliths is extremely dry, which would give the roots a very high viscosity.[28] Rhenium–osmium dating of xenoliths indicates that the oldest melting events took place in the early to middle Archean. Significant cratonization continued into the late Archean, accompanied by voluminous mafic magmatism.[29] However, melt extraction alone cannot explain all the properties of craton roots. Jordan noted in his original paper that this mechanism could be effective for constructing craton roots only down to a depth of 200 kilometers (120 mi). The great depths of craton roots required further explanation.[25] The 30 to 40 percent partial melting of mantle rock at 4 to 10 GPa pressure produces komatiite magma and a solid residue very close in composition to Archean lithospheric mantle, but continental shields do not contain enough komatiite to match the expected depletion. Either much of the komatiite never reached the surface, or other processes aided craton root formation.[29]

There are at least three hypotheses of how cratons have been formed. Jordan's suggestion was that further cratonization was a result of repeated continental collisions. The thickening of the crust associated with these collusions must have been balanced by craton root thickening according to the principle of isostacy.[25] Jordan likened this model to "kneading" of the cratons, allowing low density material to move up and higher density to move down, creating stable cratonic roots as deep as 400 km (250 mi).[28] A second model suggests that the surface crust was thickened by a rising plume of molten material from the deep mantle. This would have built up a thick layer of depleted mantle underneath the cratons. The third model suggests that successive slabs of subducting oceanic lithosphere became lodged beneath a proto-craton, underplating the craton with chemically depleted rock.[28][18][21]

The chemistry of xenoliths[26] and seismic tomography both favor the two accretional models over the plume model.[28][30] However, other geochemical evidence favors mantle plumes.[31][32][33] Tomography shows two layers in the craton roots beneath North America. One is found at depths shallower than 150 km (93 mi) and may be Archean, while the second is found at depths from 180 to 240 km (110 to 150 mi) and may be younger. The second layer may be a less depleted thermal boundary layer that stagnated against the depleted "lid" formed by the first layer.[34]

All these proposed mechanisms rely on buoyant, viscous material separating from a denser residue due to mantle flow, and it is possible that more than one mechanism contributed to craton root formation.[29]

Erosion

The long-term erosion of cratons has been labelled the "cratonic regime". It involves processes of pediplanation and etchplanation that lead to the formation of flattish surfaces known as peneplains.[35] While the process of etchplanation is associated to humid climate and pediplanation with arid and semi-arid climate, shifting climate over geological time leads to the formation of so-called polygenetic peneplains of mixed origin. Another result of the longevity of cratons is that they may alternate between periods of high and low relative sea levels. High relative sea level leads to increased oceanicity, while the opposite leads to increased inland conditions.[35]

Many cratons have had subdued topographies since Precambrian times. For example, the Yilgarn Craton of Western Australia was flattish already by Middle Proterozoic times[35] and the Baltic Shield had been eroded into a subdued terrain already during the Late Mesoproterozoic when the rapakivi granites intruded.[36][37]

See also

References

  1. ^ . Oxford Dictionaries. Archived from the original on 2015-04-02. Retrieved 2015-03-28.
  2. ^ . Oxford Dictionaries. Archived from the original on 2015-04-02. Retrieved 2015-03-28.
  3. ^ Macquarie Dictionary (5th ed.). Sydney: Macquarie Dictionary Publishers Pty Ltd. 2009.
  4. ^ Jackson, Julia A., ed. (1997). "craton". Glossary of geology (Fourth ed.). Alexandria, Virginia: American Geological Institute. ISBN 0922152349.
  5. ^ Jackson 1997, "shield [tect]".
  6. ^ Jackson 1997, "platform [tect]".
  7. ^ Şengör, A.M.C. (2003). The Large-wavelength Deformations of the Lithosphere: Materials for a history of the evolution of though from the earliest times toi plate tectonics. Geological Society of America memoir. Vol. 196. p. 331.
  8. ^ Ratheesh-Kumar, R.T.; Windley, B.F.; Xiao, W.J.; Jia, X-L.; Mohanty, D.P.; Zeba-Nezrin, F.K. (October 2019). "Early growth of the Indian lithosphere: implications from the assembly of the Dharwar Craton and adjacent granulite blocks, southern India". Precambrian Research. 336: 105491. doi:10.1016/j.precamres.2019.105491.
  9. ^ Kusky, T. M.; Windley, B. F.; Zhai, M.-G. (2007). "Tectonic evolution of the North China Block: from orogen to craton to orogen". Geological Society, London, Special Publications. 280 (1): 1–34. Bibcode:2007GSLSP.280....1K. doi:10.1144/sp280.1. S2CID 129902429.
  10. ^ Artemieva, Irina M (August 2003). "Lithospheric structure, composition, and thermal regime of the East European Craton: implications for the subsidence of the Russian platform" (PDF). Earth and Planetary Science Letters. 213 (3–4): 431–446. Bibcode:2003E&PSL.213..431A. doi:10.1016/S0012-821X(03)00327-3.
  11. ^ Cordani, U.G.; Teixeira, W.; D'Agrella-Filho, M.S.; Trindade, R.I. (June 2009). "The position of the Amazonian Craton in supercontinents". Gondwana Research. 15 (3–4): 396–407. Bibcode:2009GondR..15..396C. doi:10.1016/j.gr.2008.12.005.
  12. ^ Nguuri, T. K.; Gore, J.; James, D. E.; Webb, S. J.; Wright, C.; Zengeni, T. G.; Gwavava, O.; Snoke, J. A. (1 July 2001). "Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons". Geophysical Research Letters. 28 (13): 2501–2504. doi:10.1029/2000GL012587. hdl:10919/24271. S2CID 15687067.
  13. ^ Hoffman, P F (May 1988). "United Plates of America, The Birth of a Craton: Early Proterozoic Assembly and Growth of Laurentia". Annual Review of Earth and Planetary Sciences. 16 (1): 543–603. Bibcode:1988AREPS..16..543H. doi:10.1146/annurev.ea.16.050188.002551.
  14. ^ Hand, M.; Reid, A.; Jagodzinski, L. (1 December 2007). "Tectonic Framework and Evolution of the Gawler Craton, Southern Australia". Economic Geology. 102 (8): 1377–1395. doi:10.2113/gsecongeo.102.8.1377.
  15. ^ Petit, Charles (18 December 2010). "Continental Hearts – Science News". Science News. Society for Science & the Public. 178 (13): 24. doi:10.1002/scin.5591781325. ISSN 0036-8423.
  16. ^ Kearey, P.; Klepeis, K.A.; Vine, F.J. (2009). Global tectonics (3rd ed.). Oxford: Wiley-Blackwell. p. 349. ISBN 9781405107778.
  17. ^ a b c d Petit 2010, p. 25.
  18. ^ a b c Petit 2010, pp. 25–26.
  19. ^ Philpotts, Anthony R.; Ague, Jay J. (2009). Principles of igneous and metamorphic petrology (2nd ed.). Cambridge, UK: Cambridge University Press. pp. 373, 602–603. ISBN 9780521880060.
  20. ^ Stanley, Steven M. (1999). Earth System History. New York: W.H. Freeman and Company. pp. 297–302. ISBN 0-7167-2882-6.
  21. ^ a b Lee, C. (2006). Benn, K.; Mareschal, J.C.; Condie, K.C. (eds.). "Geochemical/petrologic constraints on the origin of cratonic mantle" (PDF). American Geophysical Union Geophysical Monograph. Geophysical Monograph Series. 164: 89. Bibcode:2006GMS...164...89L. doi:10.1029/164GM08. ISBN 978-0-87590-429-0. Retrieved 20 November 2021.
  22. ^ a b Miller, Meghan S.; Eaton, David W. (September 2010). "Formation of cratonic mantle keels by arc accretion: Evidence from S receiver functions: FORMATION OF CRATONIC MANTLE KEELS". Geophysical Research Letters. 37 (18): n/a. doi:10.1029/2010GL044366. S2CID 129901730.
  23. ^ Jordan, Thomas H. (August 1978). "Composition and development of the continental tectosphere". Nature. 274 (5671): 544–548. Bibcode:1978Natur.274..544J. doi:10.1038/274544a0. S2CID 4286280.
  24. ^ Jordan 1978, p. 546.
  25. ^ a b c Jordan 1978, p. 547.
  26. ^ a b Lee 2006.
  27. ^ Jordan 1978, p. 544.
  28. ^ a b c d Petit 2010, p. 26.
  29. ^ a b c Kearey, Klepeis & Vine 2009, p. 351.
  30. ^ Miller & Eaton 2010.
  31. ^ Tomlinson, Kirsty Y.; Condie, Kent C. (2001). "Archean mantle plumes: Evidence from greenstone belt geochemistry". Mantle Plumes: Their Identification Through Time. doi:10.1130/0-8137-2352-3.341. ISBN 9780813723525. Retrieved 21 November 2021.
  32. ^ Ernst, Richard E.; Buchan, Kenneth L.; Campbell, Ian H. (February 2005). "Frontiers in large igneous province research". Lithos. 79 (3–4): 271–297. Bibcode:2005Litho..79..271E. doi:10.1016/j.lithos.2004.09.004.
  33. ^ Kearey, Klepeis & Vine 2009, p. 352.
  34. ^ Yuan, Huaiyu; Romanowicz, Barbara (August 2010). "Lithospheric layering in the North American craton". Nature. 466 (7310): 1063–1068. Bibcode:2010Natur.466.1063Y. doi:10.1038/nature09332. PMID 20740006. S2CID 4380594.
  35. ^ a b c Fairbridge, Rhodes W.; Finkl Jr., Charles W. (1980). "Cratonic erosion unconformities and peneplains". The Journal of Geology. 88 (1): 69–86. Bibcode:1980JG.....88...69F. doi:10.1086/628474. S2CID 129231129.
  36. ^ Lindberg, Johan (April 4, 2016). "berggrund och ytformer". Uppslagsverket Finland (in Swedish). from the original on January 6, 2018. Retrieved February 13, 2018.
  37. ^ Lundmark, Anders Mattias; Lamminen, Jarkko (2016). "The provenance and setting of the Mesoproterozoic Dala Sandstone, western Sweden, and paleogeographic implications for southwestern Fennoscandia". Precambrian Research. 275: 197–208. Bibcode:2016PreR..275..197L. doi:10.1016/j.precamres.2016.01.003.

Further reading

  • Dayton, Gene (2006). Geological Evolution of Australia. Sr. Lecturer, Geography, School of Humanities, Central Queensland University, Australia.
  • Grotzinger, John P.; Jordan, Thomas H. (4 February 2010), Understanding Earth (Sixth ed.), W. H. Freeman, ISBN 978-1429219518
  • Hamilton, Warren B. (August 1998). "Archean magmatism and deformation were not products of plate tectonics". Precambrian Research. 91 (1–2): 143–179. Bibcode:1998PreR...91..143H. doi:10.1016/S0301-9268(98)00042-4.
  • Hamilton, Warren B. (1999). . Department of Geophysics, Colorado School of Mines, Journal of Conference Abstracts. 4 (1). Archived from the original on 2006-05-14.. Symposium A08, Early Evolution of the Continental Crust.

External links

  • Smithsonian. "The Dynamic Earth @ National Museum of Natural History". Smithsonian National Museum of Natural History. Retrieved 2011-01-09.


craton, craton, from, greek, κράτος, kratos, strength, stable, part, continental, lithosphere, which, consists, earth, topmost, layers, crust, uppermost, mantle, having, often, survived, cycles, merging, rifting, continents, cratons, generally, found, interior. A craton ˈ k r eɪ t ɒ n ˈ k r ae t ɒ n or ˈ k r eɪ t en 1 2 3 from Greek kratos kratos strength is an old and stable part of the continental lithosphere which consists of Earth s two topmost layers the crust and the uppermost mantle Having often survived cycles of merging and rifting of continents cratons are generally found in the interiors of tectonic plates the exceptions occur where geologically recent rifting events have separated cratons and created passive margins along their edges Cratons are characteristically composed of ancient crystalline basement rock which may be covered by younger sedimentary rock They have a thick crust and deep lithospheric roots that extend as much as several hundred kilometres into Earth s mantle Geologic provinces of the world USGS Shield Platform Orogen Basin Large igneous province Extended crust Oceanic crust 0 20 Ma 20 65 Ma gt 65 Ma Contents 1 Terminology 2 Examples 3 Structure 4 Formation 5 Erosion 6 See also 7 References 8 Further reading 9 External linksTerminology EditThe term craton is used to distinguish the stable portion of the continental crust from regions that are more geologically active and unstable 4 Cratons are composed of two layers A continental shield in which the basement rock crops out at the surface 5 and a platform which overlays the shield in some areas with sedimentary rock 6 The word craton was first proposed by the Austrian geologist Leopold Kober in 1921 as Kratogen referring to stable continental platforms and orogen as a term for mountain or orogenic belts Later Hans Stille shortened the former term to Kraton from which craton derives 7 Examples EditExamples of cratons are the Dharwar Craton 8 in India North China Craton 9 the East European Craton 10 the Amazonian Craton in South America 11 the Kaapvaal Craton in South Africa 12 the North American Craton also called the Laurentia Craton 13 and the Gawler Craton in South Australia 14 Structure EditCratons have thick lithospheric roots Mantle tomography shows that cratons are underlain by anomalously cold mantle corresponding to lithosphere more than twice the typical 100 km 60 mi thickness of mature oceanic or non cratonic continental lithosphere At that depth craton roots extend into the asthenosphere 15 and the low velocity zone seen elsewhere at these depths is weak or absent beneath stable cratons 16 Craton lithosphere is distinctly different from oceanic lithosphere because cratons have a neutral or positive buoyancy and a low intrinsic density This low density offsets density increases due to geothermal contraction and prevents the craton from sinking into the deep mantle Cratonic lithosphere is much older than oceanic lithosphere up to 4 billion years versus 180 million years 17 Rock fragments xenoliths carried up from the mantle by magmas containing peridotite have been delivered to the surface as inclusions in subvolcanic pipes called kimberlites These inclusions have densities consistent with craton composition and are composed of mantle material residual from high degrees of partial melt Peridotite is strongly influenced by the inclusion of moisture Craton peridotite moisture content is unusually low which leads to much greater strength It also contains high percentages of low weight magnesium instead of higher weight calcium and iron 18 Peridotites are important for understanding the deep composition and origin of cratons because peridotite nodules are pieces of mantle rock modified by partial melting Harzburgite peridotites represent the crystalline residues after extraction of melts of compositions like basalt and komatiite 19 Formation EditThe process by which cratons were formed is called cratonization There is much about this process that remains uncertain However the first cratonic landmasses likely formed during the Archean Eon This is indicated by the age of diamonds which originate in the roots of cratons and which are almost always over 2 billion years and often over 3 billion years in age 17 Rock of Archean age makes up only 7 of the world s current cratons even allowing for erosion and destruction of past formations this suggests that only 5 to 40 percent of the present continental crust formed during the Archean 20 Cratonization likely was completed during the Proterozoic Subsequent growth of continents was by accretion at continental margins 17 The origin of the roots of cratons is still debated 21 22 18 However the present understanding of cratonization began with the publication in 1978 of a paper by Thomas H Jordan in Nature Jordan proposed that cratons formed from a high degree of partial melting of the upper mantle with 30 to 40 percent of the source rock entering the melt Such a high degree of melting was possible because of the high mantle temperatures of the Archean The extraction of so much magma left behind a solid peridotite residue that was enriched in lightweight magnesium and thus lower in chemical density than undepleted mantle This lower chemical density compensated for the effects of thermal contraction as the craton and its roots cooled so that the physical density of the cratonic roots matched that of the surrounding hotter but more chemically dense mantle 23 17 In addition to cooling the craton roots and lowering their chemical density the extraction of magma also increased the viscosity and melting temperature of the craton roots and prevented mixing with the surrounding undepleted mantle 24 The resulting mantle roots have remained stable for billions of years 22 Jordan suggested that depletion occurred primarily in subduction zones and secondarily as flood basalts 25 This model of melt extraction from the upper mantle has held up well with subsequent observations 26 The properties of mantle xenoliths confirm that the geothermal gradient is much lower beneath continents than oceans 27 The olivine of craton root xenoliths is extremely dry which would give the roots a very high viscosity 28 Rhenium osmium dating of xenoliths indicates that the oldest melting events took place in the early to middle Archean Significant cratonization continued into the late Archean accompanied by voluminous mafic magmatism 29 However melt extraction alone cannot explain all the properties of craton roots Jordan noted in his original paper that this mechanism could be effective for constructing craton roots only down to a depth of 200 kilometers 120 mi The great depths of craton roots required further explanation 25 The 30 to 40 percent partial melting of mantle rock at 4 to 10 GPa pressure produces komatiite magma and a solid residue very close in composition to Archean lithospheric mantle but continental shields do not contain enough komatiite to match the expected depletion Either much of the komatiite never reached the surface or other processes aided craton root formation 29 There are at least three hypotheses of how cratons have been formed Jordan s suggestion was that further cratonization was a result of repeated continental collisions The thickening of the crust associated with these collusions must have been balanced by craton root thickening according to the principle of isostacy 25 Jordan likened this model to kneading of the cratons allowing low density material to move up and higher density to move down creating stable cratonic roots as deep as 400 km 250 mi 28 A second model suggests that the surface crust was thickened by a rising plume of molten material from the deep mantle This would have built up a thick layer of depleted mantle underneath the cratons The third model suggests that successive slabs of subducting oceanic lithosphere became lodged beneath a proto craton underplating the craton with chemically depleted rock 28 18 21 The chemistry of xenoliths 26 and seismic tomography both favor the two accretional models over the plume model 28 30 However other geochemical evidence favors mantle plumes 31 32 33 Tomography shows two layers in the craton roots beneath North America One is found at depths shallower than 150 km 93 mi and may be Archean while the second is found at depths from 180 to 240 km 110 to 150 mi and may be younger The second layer may be a less depleted thermal boundary layer that stagnated against the depleted lid formed by the first layer 34 All these proposed mechanisms rely on buoyant viscous material separating from a denser residue due to mantle flow and it is possible that more than one mechanism contributed to craton root formation 29 Erosion EditThe long term erosion of cratons has been labelled the cratonic regime It involves processes of pediplanation and etchplanation that lead to the formation of flattish surfaces known as peneplains 35 While the process of etchplanation is associated to humid climate and pediplanation with arid and semi arid climate shifting climate over geological time leads to the formation of so called polygenetic peneplains of mixed origin Another result of the longevity of cratons is that they may alternate between periods of high and low relative sea levels High relative sea level leads to increased oceanicity while the opposite leads to increased inland conditions 35 Many cratons have had subdued topographies since Precambrian times For example the Yilgarn Craton of Western Australia was flattish already by Middle Proterozoic times 35 and the Baltic Shield had been eroded into a subdued terrain already during the Late Mesoproterozoic when the rapakivi granites intruded 36 37 See also EditList of shields and cratons Cratonic sequenceReferences Edit Definition of craton in North American English Oxford Dictionaries Archived from the original on 2015 04 02 Retrieved 2015 03 28 Definition of craton in British and Commonwealth English Oxford Dictionaries Archived from the original on 2015 04 02 Retrieved 2015 03 28 Macquarie Dictionary 5th ed Sydney Macquarie Dictionary Publishers Pty Ltd 2009 Jackson Julia A ed 1997 craton Glossary of geology Fourth ed Alexandria Virginia American Geological Institute ISBN 0922152349 Jackson 1997 shield tect Jackson 1997 platform tect Sengor A M C 2003 The Large wavelength Deformations of the Lithosphere Materials for a history of the evolution of though from the earliest times toi plate tectonics Geological Society of America memoir Vol 196 p 331 Ratheesh Kumar R T Windley B F Xiao W J Jia X L Mohanty D P Zeba Nezrin F K October 2019 Early growth of the Indian lithosphere implications from the assembly of the Dharwar Craton and adjacent granulite blocks southern India Precambrian Research 336 105491 doi 10 1016 j precamres 2019 105491 Kusky T M Windley B F Zhai M G 2007 Tectonic evolution of the North China Block from orogen to craton to orogen Geological Society London Special Publications 280 1 1 34 Bibcode 2007GSLSP 280 1K doi 10 1144 sp280 1 S2CID 129902429 Artemieva Irina M August 2003 Lithospheric structure composition and thermal regime of the East European Craton implications for the subsidence of the Russian platform PDF Earth and Planetary Science Letters 213 3 4 431 446 Bibcode 2003E amp PSL 213 431A doi 10 1016 S0012 821X 03 00327 3 Cordani U G Teixeira W D Agrella Filho M S Trindade R I June 2009 The position of the Amazonian Craton in supercontinents Gondwana Research 15 3 4 396 407 Bibcode 2009GondR 15 396C doi 10 1016 j gr 2008 12 005 Nguuri T K Gore J James D E Webb S J Wright C Zengeni T G Gwavava O Snoke J A 1 July 2001 Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons Geophysical Research Letters 28 13 2501 2504 doi 10 1029 2000GL012587 hdl 10919 24271 S2CID 15687067 Hoffman P F May 1988 United Plates of America The Birth of a Craton Early Proterozoic Assembly and Growth of Laurentia Annual Review of Earth and Planetary Sciences 16 1 543 603 Bibcode 1988AREPS 16 543H doi 10 1146 annurev ea 16 050188 002551 Hand M Reid A Jagodzinski L 1 December 2007 Tectonic Framework and Evolution of the Gawler Craton Southern Australia Economic Geology 102 8 1377 1395 doi 10 2113 gsecongeo 102 8 1377 Petit Charles 18 December 2010 Continental Hearts Science News Science News Society for Science amp the Public 178 13 24 doi 10 1002 scin 5591781325 ISSN 0036 8423 Kearey P Klepeis K A Vine F J 2009 Global tectonics 3rd ed Oxford Wiley Blackwell p 349 ISBN 9781405107778 a b c d Petit 2010 p 25 a b c Petit 2010 pp 25 26 Philpotts Anthony R Ague Jay J 2009 Principles of igneous and metamorphic petrology 2nd ed Cambridge UK Cambridge University Press pp 373 602 603 ISBN 9780521880060 Stanley Steven M 1999 Earth System History New York W H Freeman and Company pp 297 302 ISBN 0 7167 2882 6 a b Lee C 2006 Benn K Mareschal J C Condie K C eds Geochemical petrologic constraints on the origin of cratonic mantle PDF American Geophysical Union Geophysical Monograph Geophysical Monograph Series 164 89 Bibcode 2006GMS 164 89L doi 10 1029 164GM08 ISBN 978 0 87590 429 0 Retrieved 20 November 2021 a b Miller Meghan S Eaton David W September 2010 Formation of cratonic mantle keels by arc accretion Evidence from S receiver functions FORMATION OF CRATONIC MANTLE KEELS Geophysical Research Letters 37 18 n a doi 10 1029 2010GL044366 S2CID 129901730 Jordan Thomas H August 1978 Composition and development of the continental tectosphere Nature 274 5671 544 548 Bibcode 1978Natur 274 544J doi 10 1038 274544a0 S2CID 4286280 Jordan 1978 p 546 a b c Jordan 1978 p 547 a b Lee 2006 Jordan 1978 p 544 a b c d Petit 2010 p 26 a b c Kearey Klepeis amp Vine 2009 p 351 Miller amp Eaton 2010 Tomlinson Kirsty Y Condie Kent C 2001 Archean mantle plumes Evidence from greenstone belt geochemistry Mantle Plumes Their Identification Through Time doi 10 1130 0 8137 2352 3 341 ISBN 9780813723525 Retrieved 21 November 2021 Ernst Richard E Buchan Kenneth L Campbell Ian H February 2005 Frontiers in large igneous province research Lithos 79 3 4 271 297 Bibcode 2005Litho 79 271E doi 10 1016 j lithos 2004 09 004 Kearey Klepeis amp Vine 2009 p 352 Yuan Huaiyu Romanowicz Barbara August 2010 Lithospheric layering in the North American craton Nature 466 7310 1063 1068 Bibcode 2010Natur 466 1063Y doi 10 1038 nature09332 PMID 20740006 S2CID 4380594 a b c Fairbridge Rhodes W Finkl Jr Charles W 1980 Cratonic erosion unconformities and peneplains The Journal of Geology 88 1 69 86 Bibcode 1980JG 88 69F doi 10 1086 628474 S2CID 129231129 Lindberg Johan April 4 2016 berggrund och ytformer Uppslagsverket Finland in Swedish Archived from the original on January 6 2018 Retrieved February 13 2018 Lundmark Anders Mattias Lamminen Jarkko 2016 The provenance and setting of the Mesoproterozoic Dala Sandstone western Sweden and paleogeographic implications for southwestern Fennoscandia Precambrian Research 275 197 208 Bibcode 2016PreR 275 197L doi 10 1016 j precamres 2016 01 003 Further reading EditDayton Gene 2006 Geological Evolution of Australia Sr Lecturer Geography School of Humanities Central Queensland University Australia Grotzinger John P Jordan Thomas H 4 February 2010 Understanding Earth Sixth ed W H Freeman ISBN 978 1429219518 Hamilton Warren B August 1998 Archean magmatism and deformation were not products of plate tectonics Precambrian Research 91 1 2 143 179 Bibcode 1998PreR 91 143H doi 10 1016 S0301 9268 98 00042 4 Hamilton Warren B 1999 How did the Archean Earth Lose Heat Department of Geophysics Colorado School of Mines Journal of Conference Abstracts 4 1 Archived from the original on 2006 05 14 Symposium A08 Early Evolution of the Continental Crust External links EditSmithsonian The Dynamic Earth National Museum of Natural History Smithsonian National Museum of Natural History Retrieved 2011 01 09 Retrieved from https en wikipedia org w index php title Craton amp oldid 1136334534, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.