fbpx
Wikipedia

Rhenium–osmium dating

Rhenium–osmium dating is a form of radiometric dating based on the beta decay of the isotope 187Re to 187Os. This normally occurs with a half-life of 41.6 × 109 y,[1] but studies using fully ionised 187Re atoms have found that this can decrease to only 33 y.[2] Both rhenium and osmium are strongly siderophilic (iron loving), while Re is also chalcophilic (sulfur loving) making it useful in dating sulfide ores such as gold and Cu–Ni deposits.

This dating method is based on an isochron calculated based on isotopic ratios measured using N-TIMS (Negative – Thermal Ionization Mass Spectrometry).

Rhenium–osmium isochron edit

Rhenium–osmium dating is carried out by the isochron dating method. Isochrons are created by analysing several samples believed to have formed at the same time from a common source. The Re–Os isochron plots the ratio of radiogenic 187Os to non-radiogenic 188Os against the ratio of the parent isotope 187Re to the non-radiogenic isotope 188Os. The stable and relatively abundant osmium isotope 188Os is used to normalize the radiogenic isotope in the isochron.

The Re–Os isochron is defined by the following equation:

 

where:

t is the age of the sample,
λ is the decay constant of 187Re,
(eλt−1) is the slope of the isochron which defines the age of the system.

A good example of an application of the Re–Os isochron method is a study on the dating of a gold deposit in the Witwatersrand mining camp, South Africa.[3]

Rhenium–osmium isotopic evolution edit

Rhenium and osmium were strongly refractory and siderophile during the initial accretion of the Earth which caused both elements to preferentially enter the Earth's core. Thus the two elements should be depleted in the silicate Earth yet the 187Os / 188Os ratio of mantle is chondritic.[4] The reason for this apparent contradiction is owed to the change in behavior between Re and Os in partial melt events. Re tends to enter the melt phase (incompatible) while Os remains in the solid residue (compatible). This causes high ratios of Re/Os in oceanic crust (which is derived from partial melting of mantle) and low ratios of Re/Os in the lower mantle. In this regard, the Re–Os system to study the geochemical evolution of mantle rocks and in defining the chronology of mantle differentiation is extremely helpful.

Peridotite xenoliths which are thought to sample the upper mantle sometimes contain supra-chondritic Os-isotopic ratios.[5] This is thought to evidence of subducted ancient high Re/Os basaltic crust that is being recycled back into the mantle. This combination of radiogenic (187Os that was created by decay of 187Re) and nonradiogenic melts helps to support the theory of at least two Os-isotopic reservoirs in the mantle. The volume of both these reservoirs is thought to be around 5–10% of the whole mantle.[6] The first reservoir is characterized by depletion in Re and proxies for melt fertility (such as concentrations of elements like Ca and Al). The second reservoir is chondritic in composition.

Direct measurement of the age of continental crust through Re–Os dating is difficult. Infiltration of xenoliths by their commonly Re-rich magma alters the true elemental Re/Os ratios. Instead, determining model ages can be done in two ways: "Re depletion" model ages or the "melting age" model. The former finds the minimum age of the extraction event assuming the elemental Re/Os ratio equals 0 (komatiite residues have Re/Os of 0, so this is assuming a xenolith was extracted from a near-komatiite melt). The latter gives the age of the melting event inferred from the point when a melt proxy like Al2O3 is equal to 0 (ancient subcontinental lithosphere has weight percentages of CaO and Al2O3 ranging from 0 to 2%).

Pt–Re–Os systematics edit

The radioactive decay of 190Pt to 186Os has a half-life of 4.83(3)×1011 years[7] (which is longer than the age of the universe, so it is essentially stable). However, in-situ 187Os / 188Os and 186Os / 188Os of modern plume related magmas show simultaneous enrichment which implies a source that is supra-chondritic in Pt/Os and Re/Os. Since both parental isotopes have extremely long half-lives, the Os-isotope rich reservoir must be very old to allow enough time for the daughter isotopes to form. These observations are interpreted to support the theory that the Archean subducted crust contributed Os-isotope rich melts back into the mantle.

References edit

  1. ^ Smoliar, M.I.; Walker, R.J.; Morgan, J.W. (1996). "Re–Os ages of group IIA, IIIA, IVA, and IVB iron meteorites". Science. 271 (5252): 1099–1102. Bibcode:1996Sci...271.1099S. doi:10.1126/science.271.5252.1099. S2CID 96376008.
  2. ^ Bosch, F.; Faestermann, T.; Friese, J.; Heine, F.; Kienle, P.; Wefers, E.; Zeitelhack, K.; Beckert, K.; et al. (1996). "Observation of bound-state β– decay of fully ionized 187Re:187Re−187Os Cosmochronometry". Physical Review Letters. 77 (26): 5190–5193. Bibcode:1996PhRvL..77.5190B. doi:10.1103/PhysRevLett.77.5190. PMID 10062738.
  3. ^ Kirk, J.; Ruiz, J.; Chesley, J.; Walshe, J.; England, G. (2002). "A major Archean, gold- and crust-forming event in the Kaapvaal Craton, South Africa". Science. 297 (5588): 1856–1858. Bibcode:2002Sci...297.1856K. doi:10.1126/science.1075270. PMID 12228713. S2CID 37071214.
  4. ^ "EarthRef.org Reference Database (ERR) – Shirey & Walker 1998". earthref.org. Retrieved 2017-04-12.
  5. ^ Bizimis, M., Griselin, M., Lassiter, J. C., Salters, V. J. M. & Sen, G.(2007). Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium/Hafnium isotopic evidence from peridotite mantle xenoliths. Earth and Planetary Science Letters.
  6. ^ "Constraints on mantle evolution from 187Os/188Os isotopic compositions of Archean ultramafic rocks from southern West Greenland (3.8 Ga) and Western Australia (3.46 Ga)".
  7. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.

rhenium, osmium, dating, form, radiometric, dating, based, beta, decay, isotope, 187re, 187os, this, normally, occurs, with, half, life, studies, using, fully, ionised, 187re, atoms, have, found, that, this, decrease, only, both, rhenium, osmium, strongly, sid. Rhenium osmium dating is a form of radiometric dating based on the beta decay of the isotope 187Re to 187Os This normally occurs with a half life of 41 6 109 y 1 but studies using fully ionised 187Re atoms have found that this can decrease to only 33 y 2 Both rhenium and osmium are strongly siderophilic iron loving while Re is also chalcophilic sulfur loving making it useful in dating sulfide ores such as gold and Cu Ni deposits This dating method is based on an isochron calculated based on isotopic ratios measured using N TIMS Negative Thermal Ionization Mass Spectrometry Contents 1 Rhenium osmium isochron 2 Rhenium osmium isotopic evolution 3 Pt Re Os systematics 4 ReferencesRhenium osmium isochron editRhenium osmium dating is carried out by the isochron dating method Isochrons are created by analysing several samples believed to have formed at the same time from a common source The Re Os isochron plots the ratio of radiogenic 187Os to non radiogenic 188Os against the ratio of the parent isotope 187Re to the non radiogenic isotope 188Os The stable and relatively abundant osmium isotope 188Os is used to normalize the radiogenic isotope in the isochron The Re Os isochron is defined by the following equation 187 O s 188 O s p r e s e n t 187 O s 188 O s i n i t i a l 187 R e 188 O s e l t 1 displaystyle left frac 187 mathrm Os 188 mathrm Os right mathrm present left frac 187 mathrm Os 188 mathrm Os right mathrm initial left frac 187 mathrm Re 188 mathrm Os right cdot e lambda t 1 nbsp where t is the age of the sample l is the decay constant of 187Re elt 1 is the slope of the isochron which defines the age of the system A good example of an application of the Re Os isochron method is a study on the dating of a gold deposit in the Witwatersrand mining camp South Africa 3 Rhenium osmium isotopic evolution editRhenium and osmium were strongly refractory and siderophile during the initial accretion of the Earth which caused both elements to preferentially enter the Earth s core Thus the two elements should be depleted in the silicate Earth yet the 187Os 188Os ratio of mantle is chondritic 4 The reason for this apparent contradiction is owed to the change in behavior between Re and Os in partial melt events Re tends to enter the melt phase incompatible while Os remains in the solid residue compatible This causes high ratios of Re Os in oceanic crust which is derived from partial melting of mantle and low ratios of Re Os in the lower mantle In this regard the Re Os system to study the geochemical evolution of mantle rocks and in defining the chronology of mantle differentiation is extremely helpful Peridotite xenoliths which are thought to sample the upper mantle sometimes contain supra chondritic Os isotopic ratios 5 This is thought to evidence of subducted ancient high Re Os basaltic crust that is being recycled back into the mantle This combination of radiogenic 187Os that was created by decay of 187Re and nonradiogenic melts helps to support the theory of at least two Os isotopic reservoirs in the mantle The volume of both these reservoirs is thought to be around 5 10 of the whole mantle 6 The first reservoir is characterized by depletion in Re and proxies for melt fertility such as concentrations of elements like Ca and Al The second reservoir is chondritic in composition Direct measurement of the age of continental crust through Re Os dating is difficult Infiltration of xenoliths by their commonly Re rich magma alters the true elemental Re Os ratios Instead determining model ages can be done in two ways Re depletion model ages or the melting age model The former finds the minimum age of the extraction event assuming the elemental Re Os ratio equals 0 komatiite residues have Re Os of 0 so this is assuming a xenolith was extracted from a near komatiite melt The latter gives the age of the melting event inferred from the point when a melt proxy like Al2O3 is equal to 0 ancient subcontinental lithosphere has weight percentages of CaO and Al2O3 ranging from 0 to 2 Pt Re Os systematics editThe radioactive decay of 190Pt to 186Os has a half life of 4 83 3 1011 years 7 which is longer than the age of the universe so it is essentially stable However in situ 187Os 188Os and 186Os 188Os of modern plume related magmas show simultaneous enrichment which implies a source that is supra chondritic in Pt Os and Re Os Since both parental isotopes have extremely long half lives the Os isotope rich reservoir must be very old to allow enough time for the daughter isotopes to form These observations are interpreted to support the theory that the Archean subducted crust contributed Os isotope rich melts back into the mantle References edit nbsp The Wikibook Historical Geology has a page on the topic of Other isochron methods Smoliar M I Walker R J Morgan J W 1996 Re Os ages of group IIA IIIA IVA and IVB iron meteorites Science 271 5252 1099 1102 Bibcode 1996Sci 271 1099S doi 10 1126 science 271 5252 1099 S2CID 96376008 Bosch F Faestermann T Friese J Heine F Kienle P Wefers E Zeitelhack K Beckert K et al 1996 Observation of bound state b decay of fully ionized 187Re 187Re 187Os Cosmochronometry Physical Review Letters 77 26 5190 5193 Bibcode 1996PhRvL 77 5190B doi 10 1103 PhysRevLett 77 5190 PMID 10062738 Kirk J Ruiz J Chesley J Walshe J England G 2002 A major Archean gold and crust forming event in the Kaapvaal Craton South Africa Science 297 5588 1856 1858 Bibcode 2002Sci 297 1856K doi 10 1126 science 1075270 PMID 12228713 S2CID 37071214 EarthRef org Reference Database ERR Shirey amp Walker 1998 earthref org Retrieved 2017 04 12 Bizimis M Griselin M Lassiter J C Salters V J M amp Sen G 2007 Ancient recycled mantle lithosphere in the Hawaiian plume Osmium Hafnium isotopic evidence from peridotite mantle xenoliths Earth and Planetary Science Letters Constraints on mantle evolution from 187Os 188Os isotopic compositions of Archean ultramafic rocks from southern West Greenland 3 8 Ga and Western Australia 3 46 Ga Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae Retrieved from https en wikipedia org w index php title Rhenium osmium dating amp oldid 1208991825, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.