fbpx
Wikipedia

Isotopes of iridium

There are two natural isotopes of iridium (77Ir), and 37 radioisotopes, the most stable radioisotope being 192Ir with a half-life of 73.83 days, and many nuclear isomers, the most stable of which is 192m2Ir with a half-life of 241 years. All other isomers have half-lives under a year, most under a day. All isotopes of iridium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.[4]

Isotopes of iridium (77Ir)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
191Ir 37.3% stable
192Ir synth 73.827 d β 192Pt
ε 192Os
192m2Ir synth 241 y IT 192Ir
193Ir 62.7% stable
Standard atomic weight Ar°(Ir)

List of isotopes edit

Nuclide[5]
[n 1]
Z N Isotopic mass (Da)[6]
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity
[n 8][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4] Normal proportion Range of variation
164Ir[7] 77 87 163.99220(44)# <0.5 µs p? 163Os 2−#
164mIr 270(110)# keV 70(10) µs p (96%) 163Os 9+#
α (4%) 160mRe
165Ir 77 88 164.98752(23)# 1.20+0.82
−0.74
 μs
[8]
p 164Os (1/2+)
165mIr[9] ~255 keV 340(40) µs p (88%) 164Os (11/2−)
α (12%) 161mRe
166Ir 77 89 165.98582(22)# 10.5(22) ms α (93%) 162Re (2−)
p (7%) 165Os
166mIr 172(6) keV 15.1(9) ms α (98.2%) 162Re (9+)
p (1.8%) 165Os
167Ir 77 90 166.981665(20) 35.2(20) ms α (48%) 163Re 1/2+
p (32%) 166Os
β+ (20%) 167Os
167mIr 175.3(22) keV 30.0(6) ms α (80%) 163Re 11/2−
β+ (20%) 167Os
p (.4%) 166Os
168Ir 77 91 167.97988(16)# 161(21) ms α 164Re (2-)
β+ (rare) 168Os
168mIr 50(100)# keV 125(40) ms α 164Re (9+)
169Ir 77 92 168.976295(28) 780(360) ms
[0.64(+46−24) s]
α 165Re (1/2+)
β+ (rare) 169Os
169mIr 154(24) keV 308(22) ms α (72%) 165Re (11/2−)
β+ (28%) 169Os
170Ir 77 93 169.97497(11)# 910(150) ms
[0.87(+18−12) s]
β+ (64%) 170Os low#
α (36%) 166Re
170mIr 160(50)# keV 440(60) ms α (36%) 166Re (8+)
β+ 170Os
IT 170Ir
171Ir 77 94 170.97163(4) 3.6(10) s
[3.2(+13−7) s]
α (58%) 167Re 1/2+
β+ (42%) 171Os
171mIr 180(30)# keV 1.40(10) s (11/2−)
172Ir 77 95 171.970610(30) 4.4(3) s β+ (98%) 172Os (3+)
α (2%) 168Re
172mIr 280(100)# keV 2.0(1) s β+ (77%) 172Os (7+)
α (23%) 168Re
173Ir 77 96 172.967502(15) 9.0(8) s β+ (93%) 173Os (3/2+,5/2+)
α (7%) 169Re
173mIr 253(27) keV 2.20(5) s β+ (88%) 173Os (11/2−)
α (12%) 169Re
174Ir 77 97 173.966861(30) 7.9(6) s β+ (99.5%) 174Os (3+)
α (.5%) 170Re
174mIr 193(11) keV 4.9(3) s β+ (99.53%) 174Os (7+)
α (.47%) 170Re
175Ir 77 98 174.964113(21) 9(2) s β+ (99.15%) 175Os (5/2−)
α (.85%) 171Re
176Ir 77 99 175.963649(22) 8.3(6) s β+ (97.9%) 176Os
α (2.1%) 172Re
177Ir 77 100 176.961302(21) 30(2) s β+ (99.94%) 177Os 5/2−
α (.06%) 173Re
178Ir 77 101 177.961082(21) 12(2) s β+ 178Os
179Ir 77 102 178.959122(12) 79(1) s β+ 179Os (5/2)−
180Ir 77 103 179.959229(23) 1.5(1) min β+ 180Os (4,5)(+#)
181Ir 77 104 180.957625(28) 4.90(15) min β+ 181Os (5/2)−
182Ir 77 105 181.958076(23) 15(1) min β+ 182Os (3+)
183Ir 77 106 182.956846(27) 57(4) min β+ ( 99.95%) 183Os 5/2−
α (.05%) 179Re
184Ir 77 107 183.95748(3) 3.09(3) h β+ 184Os 5−
184m1Ir 225.65(11) keV 470(30) µs 3+
184m2Ir 328.40(24) keV 350(90) ns (7)+
185Ir 77 108 184.95670(3) 14.4(1) h β+ 185Os 5/2−
186Ir 77 109 185.957946(18) 16.64(3) h β+ 186Os 5+
186mIr 0.8(4) keV 1.92(5) h β+ 186Os 2−
IT (rare) 186Ir
187Ir 77 110 186.957363(7) 10.5(3) h β+ 187Os 3/2+
187m1Ir 186.15(4) keV 30.3(6) ms IT 187Ir 9/2−
187m2Ir 433.81(9) keV 152(12) ns 11/2−
188Ir 77 111 187.958853(8) 41.5(5) h β+ 188Os 1−
188mIr 970(30) keV 4.2(2) ms IT 188Ir 7+#
β+ (rare) 188Os
189Ir 77 112 188.958719(14) 13.2(1) d EC 189Os 3/2+
189m1Ir 372.18(4) keV 13.3(3) ms IT 189Ir 11/2−
189m2Ir 2333.3(4) keV 3.7(2) ms (25/2)+
190Ir 77 113 189.9605460(18) 11.78(10) d EC 190Os 4−
β+ (<0.002%)[1]
190m1Ir 26.1(1) keV 1.120(3) h IT 190Ir (1−)
190m2Ir 36.154(25) keV >2 µs (4)+
190m3Ir 376.4(1) keV 3.087(12) h (11)−
191Ir 77 114 190.9605940(18) Observationally Stable[n 9] 3/2+ 0.373(2)
191m1Ir 171.24(5) keV 4.94(3) s IT 191Ir 11/2−
191m2Ir 2120(40) keV 5.5(7) s
192Ir 77 115 191.9626050(18) 73.827(13) d β (95.24%) 192Pt 4+
EC (4.76%) 192Os
192m1Ir 56.720(5) keV 1.45(5) min IT (98.25%) 192Ir 1−
β (1.75%) 192Pt
192m2Ir 168.14(12) keV 241(9) y IT 192Ir (11−)
193Ir 77 116 192.9629264(18) Observationally Stable[n 10] 3/2+ 0.627(2)
193mIr 80.240(6) keV 10.53(4) d IT 193Ir 11/2−
194Ir 77 117 193.9650784(18) 19.28(13) h β 194Pt 1−
194m1Ir 147.078(5) keV 31.85(24) ms IT 194Ir (4+)
194m2Ir 370(70) keV 171(11) d (10,11)(−#)
195Ir 77 118 194.9659796(18) 2.5(2) h β 195Pt 3/2+
195mIr 100(5) keV 3.8(2) h β (95%) 195Pt 11/2−
IT (5%) 195Ir
196Ir 77 119 195.96840(4) 52(1) s β 196Pt (0−)
196mIr 210(40) keV 1.40(2) h β (99.7%) 196Pt (10,11−)
IT 196Ir
197Ir 77 120 196.969653(22) 5.8(5) min β 197Pt 3/2+
197mIr 115(5) keV 8.9(3) min β (99.75%) 197Pt 11/2−
IT (.25%) 197Ir
198Ir 77 121 197.97228(21)# 8(1) s β 198Pt
199Ir 77 122 198.97380(4) 7(5) s β 199Pt 3/2+#
199mIr 130(40)# keV 235(90) ns IT 199Ir 11/2−#
200Ir 77 123 199.976800(210)# 43(6) s β 200Pt (2-, 3-)
201Ir 77 124 200.978640(210)# 21(5) s β 201Pt (3/2+)
202Ir 77 125 201.981990(320)# 11(3) s β 202Pt (2-)
202mIr 2000(1000)# keV 3.4(0.6) µs IT 202Ir
This table header & footer:
  1. ^ mIr – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
  6. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ Believed to undergo α decay to 187Re
  10. ^ Believed to undergo α decay to 189Re

Iridium-192 edit

Iridium-192 (symbol 192Ir) is a radioactive isotope of iridium, with a half-life of 73.83 days.[10] It decays by emitting beta (β) particles and gamma (γ) radiation. About 96% of 192Ir decays occur via emission of β and γ radiation, leading to 192Pt. Some of the β particles are captured by other 192Ir nuclei, which are then converted to 192Os. Electron capture is responsible for the remaining 4% of 192Ir decays.[11] Iridium-192 is normally produced by neutron activation of natural-abundance iridium metal.[12]

Iridium-192 is a very strong gamma ray emitter, with a gamma dose-constant of approximately 1.54 μSv·h−1·MBq−1 at 30 cm, and a specific activity of 341 TBq·g−1 (9.22 kCi·g−1).[13][14] There are seven principal energy packets produced during its disintegration process ranging from just over 0.2 to about 0.6 MeV.

The 192m2Ir isomer is unusual, both for its long half-life for an isomer, and that said half-life greatly exceeds that of the ground state of the same isotope.

References edit

  1. ^ a b Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Iridium". CIAAW. 2017.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (8): 140–1–140–7. arXiv:1908.11458. Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. ISSN 1434-601X. S2CID 201664098.
  5. ^ Half-life, decay mode, nuclear spin, and isotopic composition is sourced in:
    Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  6. ^ Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1–030003-442. doi:10.1088/1674-1137/41/3/030003.
  7. ^ Drummond, M. C.; O'Donnell, D.; Page, R. D.; Joss, D. T.; Capponi, L.; Cox, D. M.; Darby, I. G.; Donosa, L.; Filmer, F.; Grahn, T.; Greenlees, P. T.; Hauschild, K.; Herzan, A.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Lopez-Martens, A.; Mistry, A. K.; Nieminen, P.; Peura, P.; Rahkila, P.; Rinta-Antila, S.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Sayğı, B.; Scholey, C.; Simpson, J.; Sorri, J.; Thornthwaite, A.; Uusitalo, J. (16 June 2014). "α decay of the π h 11 / 2 isomer in Ir 164". Physical Review C. 89 (6): 064309. Bibcode:2014PhRvC..89f4309D. doi:10.1103/PhysRevC.89.064309. ISSN 0556-2813. Retrieved 21 June 2023.
  8. ^ Hilton, Joshua Ben. "Decays of new nuclides 169Au, 170Hg, 165Pt and the ground state of 165Ir discovered using MARA". University of Liverpool. ProQuest 2448649087. Retrieved 21 June 2023.
  9. ^ Drummond, M. C.; O'Donnell, D.; Page, R. D.; Joss, D. T.; Capponi, L.; Cox, D. M.; Darby, I. G.; Donosa, L.; Filmer, F.; Grahn, T.; Greenlees, P. T.; Hauschild, K.; Herzan, A.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Lopez-Martens, A.; Mistry, A. K.; Nieminen, P.; Peura, P.; Rahkila, P.; Rinta-Antila, S.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Sayğı, B.; Scholey, C.; Simpson, J.; Sorri, J.; Thornthwaite, A.; Uusitalo, J. (16 June 2014). "α decay of the π h 11 / 2 isomer in Ir 164". Physical Review C. 89 (6): 064309. Bibcode:2014PhRvC..89f4309D. doi:10.1103/PhysRevC.89.064309. ISSN 0556-2813. Retrieved 21 June 2023.
  10. ^ "Radioisotope Brief: Iridium-192 (Ir-192)". Retrieved 20 March 2012.
  11. ^ Baggerly, Leo L. (1956). The radioactive decay of Iridium-192 (PDF) (Ph.D. thesis). Pasadena, Calif.: California Institute of Technology. pp. 1, 2, 7. doi:10.7907/26VA-RB25.
  12. ^ "Isotope Supplier: Stable Isotopes and Radioisotopes from ISOFLEX - Iridium-192". www.isoflex.com. Retrieved 2017-10-11.
  13. ^ Delacroix, D; Guerre, J P; Leblanc, P; Hickman, C (2002). (PDF). Radiation Protection Dosimetry. Vol. 98, no. 1 (2nd ed.). Ashford, Kent: Nuclear Technology Publishing. pp. 9–168. doi:10.1093/OXFORDJOURNALS.RPD.A006705. ISBN 1870965876. PMID 11916063. S2CID 123447679. Archived from the original (PDF) on 2019-08-22.
  14. ^ Unger, L M; Trubey, D K (May 1982). (PDF) (Report). Oak Ridge National Laboratory. Archived from the original (PDF) on 22 March 2018.
  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.

External links edit

  • NLM Hazardous Substances Databank – Iridium, Radioactive (referring to iridium-192)

isotopes, iridium, there, natural, isotopes, iridium, 77ir, radioisotopes, most, stable, radioisotope, being, 192ir, with, half, life, days, many, nuclear, isomers, most, stable, which, 192m2ir, with, half, life, years, other, isomers, have, half, lives, under. There are two natural isotopes of iridium 77Ir and 37 radioisotopes the most stable radioisotope being 192Ir with a half life of 73 83 days and many nuclear isomers the most stable of which is 192m2Ir with a half life of 241 years All other isomers have half lives under a year most under a day All isotopes of iridium are either radioactive or observationally stable meaning that they are predicted to be radioactive but no actual decay has been observed 4 Isotopes of iridium 77Ir Main isotopes 1 Decay abun dance half life t1 2 mode pro duct 191Ir 37 3 stable 192Ir synth 73 827 d b 192Pt e 192Os 192m2Ir synth 241 y IT 192Ir 193Ir 62 7 stableStandard atomic weight Ar Ir 192 217 0 002 2 192 22 0 01 abridged 3 viewtalkedit Contents 1 List of isotopes 2 Iridium 192 3 References 4 External linksList of isotopes editNuclide 5 n 1 Z N Isotopic mass Da 6 n 2 n 3 Half life n 4 Decaymode n 5 Daughterisotope n 6 n 7 Spin andparity n 8 n 4 Natural abundance mole fraction Excitation energy n 4 Normal proportion Range of variation 164Ir 7 77 87 163 99220 44 lt 0 5 µs p 163Os 2 164mIr 270 110 keV 70 10 µs p 96 163Os 9 a 4 160mRe 165Ir 77 88 164 98752 23 1 20 0 82 0 74 ms 8 p 164Os 1 2 165mIr 9 255 keV 340 40 µs p 88 164Os 11 2 a 12 161mRe 166Ir 77 89 165 98582 22 10 5 22 ms a 93 162Re 2 p 7 165Os 166mIr 172 6 keV 15 1 9 ms a 98 2 162Re 9 p 1 8 165Os 167Ir 77 90 166 981665 20 35 2 20 ms a 48 163Re 1 2 p 32 166Os b 20 167Os 167mIr 175 3 22 keV 30 0 6 ms a 80 163Re 11 2 b 20 167Os p 4 166Os 168Ir 77 91 167 97988 16 161 21 ms a 164Re 2 b rare 168Os 168mIr 50 100 keV 125 40 ms a 164Re 9 169Ir 77 92 168 976295 28 780 360 ms 0 64 46 24 s a 165Re 1 2 b rare 169Os 169mIr 154 24 keV 308 22 ms a 72 165Re 11 2 b 28 169Os 170Ir 77 93 169 97497 11 910 150 ms 0 87 18 12 s b 64 170Os low a 36 166Re 170mIr 160 50 keV 440 60 ms a 36 166Re 8 b 170Os IT 170Ir 171Ir 77 94 170 97163 4 3 6 10 s 3 2 13 7 s a 58 167Re 1 2 b 42 171Os 171mIr 180 30 keV 1 40 10 s 11 2 172Ir 77 95 171 970610 30 4 4 3 s b 98 172Os 3 a 2 168Re 172mIr 280 100 keV 2 0 1 s b 77 172Os 7 a 23 168Re 173Ir 77 96 172 967502 15 9 0 8 s b 93 173Os 3 2 5 2 a 7 169Re 173mIr 253 27 keV 2 20 5 s b 88 173Os 11 2 a 12 169Re 174Ir 77 97 173 966861 30 7 9 6 s b 99 5 174Os 3 a 5 170Re 174mIr 193 11 keV 4 9 3 s b 99 53 174Os 7 a 47 170Re 175Ir 77 98 174 964113 21 9 2 s b 99 15 175Os 5 2 a 85 171Re 176Ir 77 99 175 963649 22 8 3 6 s b 97 9 176Os a 2 1 172Re 177Ir 77 100 176 961302 21 30 2 s b 99 94 177Os 5 2 a 06 173Re 178Ir 77 101 177 961082 21 12 2 s b 178Os 179Ir 77 102 178 959122 12 79 1 s b 179Os 5 2 180Ir 77 103 179 959229 23 1 5 1 min b 180Os 4 5 181Ir 77 104 180 957625 28 4 90 15 min b 181Os 5 2 182Ir 77 105 181 958076 23 15 1 min b 182Os 3 183Ir 77 106 182 956846 27 57 4 min b 99 95 183Os 5 2 a 05 179Re 184Ir 77 107 183 95748 3 3 09 3 h b 184Os 5 184m1Ir 225 65 11 keV 470 30 µs 3 184m2Ir 328 40 24 keV 350 90 ns 7 185Ir 77 108 184 95670 3 14 4 1 h b 185Os 5 2 186Ir 77 109 185 957946 18 16 64 3 h b 186Os 5 186mIr 0 8 4 keV 1 92 5 h b 186Os 2 IT rare 186Ir 187Ir 77 110 186 957363 7 10 5 3 h b 187Os 3 2 187m1Ir 186 15 4 keV 30 3 6 ms IT 187Ir 9 2 187m2Ir 433 81 9 keV 152 12 ns 11 2 188Ir 77 111 187 958853 8 41 5 5 h b 188Os 1 188mIr 970 30 keV 4 2 2 ms IT 188Ir 7 b rare 188Os 189Ir 77 112 188 958719 14 13 2 1 d EC 189Os 3 2 189m1Ir 372 18 4 keV 13 3 3 ms IT 189Ir 11 2 189m2Ir 2333 3 4 keV 3 7 2 ms 25 2 190Ir 77 113 189 9605460 18 11 78 10 d EC 190Os 4 b lt 0 002 1 190m1Ir 26 1 1 keV 1 120 3 h IT 190Ir 1 190m2Ir 36 154 25 keV gt 2 µs 4 190m3Ir 376 4 1 keV 3 087 12 h 11 191Ir 77 114 190 9605940 18 Observationally Stable n 9 3 2 0 373 2 191m1Ir 171 24 5 keV 4 94 3 s IT 191Ir 11 2 191m2Ir 2120 40 keV 5 5 7 s 192Ir 77 115 191 9626050 18 73 827 13 d b 95 24 192Pt 4 EC 4 76 192Os 192m1Ir 56 720 5 keV 1 45 5 min IT 98 25 192Ir 1 b 1 75 192Pt 192m2Ir 168 14 12 keV 241 9 y IT 192Ir 11 193Ir 77 116 192 9629264 18 Observationally Stable n 10 3 2 0 627 2 193mIr 80 240 6 keV 10 53 4 d IT 193Ir 11 2 194Ir 77 117 193 9650784 18 19 28 13 h b 194Pt 1 194m1Ir 147 078 5 keV 31 85 24 ms IT 194Ir 4 194m2Ir 370 70 keV 171 11 d 10 11 195Ir 77 118 194 9659796 18 2 5 2 h b 195Pt 3 2 195mIr 100 5 keV 3 8 2 h b 95 195Pt 11 2 IT 5 195Ir 196Ir 77 119 195 96840 4 52 1 s b 196Pt 0 196mIr 210 40 keV 1 40 2 h b 99 7 196Pt 10 11 IT 196Ir 197Ir 77 120 196 969653 22 5 8 5 min b 197Pt 3 2 197mIr 115 5 keV 8 9 3 min b 99 75 197Pt 11 2 IT 25 197Ir 198Ir 77 121 197 97228 21 8 1 s b 198Pt 199Ir 77 122 198 97380 4 7 5 s b 199Pt 3 2 199mIr 130 40 keV 235 90 ns IT 199Ir 11 2 200Ir 77 123 199 976800 210 43 6 s b 200Pt 2 3 201Ir 77 124 200 978640 210 21 5 s b 201Pt 3 2 202Ir 77 125 201 981990 320 11 3 s b 202Pt 2 202mIr 2000 1000 keV 3 4 0 6 µs IT 202Ir This table header amp footer view mIr Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS a b c Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Modes of decay EC Electron capture IT Isomeric transition p Proton emission Bold italics symbol as daughter Daughter product is nearly stable Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments Believed to undergo a decay to 187Re Believed to undergo a decay to 189ReIridium 192 editMain article Iridium 192 Iridium 192 symbol 192Ir is a radioactive isotope of iridium with a half life of 73 83 days 10 It decays by emitting beta b particles and gamma g radiation About 96 of 192Ir decays occur via emission of b and g radiation leading to 192Pt Some of the b particles are captured by other 192Ir nuclei which are then converted to 192Os Electron capture is responsible for the remaining 4 of 192Ir decays 11 Iridium 192 is normally produced by neutron activation of natural abundance iridium metal 12 Iridium 192 is a very strong gamma ray emitter with a gamma dose constant of approximately 1 54 mSv h 1 MBq 1 at 30 cm and a specific activity of 341 TBq g 1 9 22 kCi g 1 13 14 There are seven principal energy packets produced during its disintegration process ranging from just over 0 2 to about 0 6 MeV The 192m2Ir isomer is unusual both for its long half life for an isomer and that said half life greatly exceeds that of the ground state of the same isotope References edit a b Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae Standard Atomic Weights Iridium CIAAW 2017 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline Bohlke John K Chesson Lesley A Coplen Tyler B Ding Tiping Dunn Philip J H Groning Manfred Holden Norman E Meijer Harro A J 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 Belli P Bernabei R Danevich F A et al 2019 Experimental searches for rare alpha and beta decays European Physical Journal A 55 8 140 1 140 7 arXiv 1908 11458 Bibcode 2019EPJA 55 140B doi 10 1140 epja i2019 12823 2 ISSN 1434 601X S2CID 201664098 Half life decay mode nuclear spin and isotopic composition is sourced in Audi G Kondev F G Wang M Huang W J Naimi S 2017 The NUBASE2016 evaluation of nuclear properties PDF Chinese Physics C 41 3 030001 Bibcode 2017ChPhC 41c0001A doi 10 1088 1674 1137 41 3 030001 Wang M Audi G Kondev F G Huang W J Naimi S Xu X 2017 The AME2016 atomic mass evaluation II Tables graphs and references PDF Chinese Physics C 41 3 030003 1 030003 442 doi 10 1088 1674 1137 41 3 030003 Drummond M C O Donnell D Page R D Joss D T Capponi L Cox D M Darby I G Donosa L Filmer F Grahn T Greenlees P T Hauschild K Herzan A Jakobsson U Jones P M Julin R Juutinen S Ketelhut S Leino M Lopez Martens A Mistry A K Nieminen P Peura P Rahkila P Rinta Antila S Ruotsalainen P Sandzelius M Saren J Saygi B Scholey C Simpson J Sorri J Thornthwaite A Uusitalo J 16 June 2014 a decay of the p h 11 2 isomer in Ir 164 Physical Review C 89 6 064309 Bibcode 2014PhRvC 89f4309D doi 10 1103 PhysRevC 89 064309 ISSN 0556 2813 Retrieved 21 June 2023 Hilton Joshua Ben Decays of new nuclides 169Au 170Hg 165Pt and the ground state of 165Ir discovered using MARA University of Liverpool ProQuest 2448649087 Retrieved 21 June 2023 Drummond M C O Donnell D Page R D Joss D T Capponi L Cox D M Darby I G Donosa L Filmer F Grahn T Greenlees P T Hauschild K Herzan A Jakobsson U Jones P M Julin R Juutinen S Ketelhut S Leino M Lopez Martens A Mistry A K Nieminen P Peura P Rahkila P Rinta Antila S Ruotsalainen P Sandzelius M Saren J Saygi B Scholey C Simpson J Sorri J Thornthwaite A Uusitalo J 16 June 2014 a decay of the p h 11 2 isomer in Ir 164 Physical Review C 89 6 064309 Bibcode 2014PhRvC 89f4309D doi 10 1103 PhysRevC 89 064309 ISSN 0556 2813 Retrieved 21 June 2023 Radioisotope Brief Iridium 192 Ir 192 Retrieved 20 March 2012 Baggerly Leo L 1956 The radioactive decay of Iridium 192 PDF Ph D thesis Pasadena Calif California Institute of Technology pp 1 2 7 doi 10 7907 26VA RB25 Isotope Supplier Stable Isotopes and Radioisotopes from ISOFLEX Iridium 192 www isoflex com Retrieved 2017 10 11 Delacroix D Guerre J P Leblanc P Hickman C 2002 Radionuclide and Radiation Protection Data Handbook PDF Radiation Protection Dosimetry Vol 98 no 1 2nd ed Ashford Kent Nuclear Technology Publishing pp 9 168 doi 10 1093 OXFORDJOURNALS RPD A006705 ISBN 1870965876 PMID 11916063 S2CID 123447679 Archived from the original PDF on 2019 08 22 Unger L M Trubey D K May 1982 Specific Gamma Ray Dose Constants for Nuclides Important to Dosimetry and Radiological Assessment PDF Report Oak Ridge National Laboratory Archived from the original PDF on 22 March 2018 Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 External links editNLM Hazardous Substances Databank Iridium Radioactive referring to iridium 192 Retrieved from https en wikipedia org w index php title Isotopes of iridium amp oldid 1218153907 Iridium 194, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.