fbpx
Wikipedia

Inference

Inferences are steps in reasoning, moving from premises to logical consequences; etymologically, the word infer means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that in Europe dates at least to Aristotle (300s BCE). Deduction is inference deriving logical conclusions from premises known or assumed to be true, with the laws of valid inference being studied in logic. Induction is inference from particular evidence to a universal conclusion. A third type of inference is sometimes distinguished, notably by Charles Sanders Peirce, contradistinguishing abduction from induction.

Various fields study how inference is done in practice. Human inference (i.e. how humans draw conclusions) is traditionally studied within the fields of logic, argumentation studies, and cognitive psychology; artificial intelligence researchers develop automated inference systems to emulate human inference. Statistical inference uses mathematics to draw conclusions in the presence of uncertainty. This generalizes deterministic reasoning, with the absence of uncertainty as a special case. Statistical inference uses quantitative or qualitative (categorical) data which may be subject to random variations.

Definition

The process by which a conclusion is inferred from multiple observations is called inductive reasoning. The conclusion may be correct or incorrect, or correct to within a certain degree of accuracy, or correct in certain situations. Conclusions inferred from multiple observations may be tested by additional observations.

This definition is disputable (due to its lack of clarity. Ref: Oxford English dictionary: "induction ... 3. Logic the inference of a general law from particular instances."[clarification needed]) The definition given thus applies only when the "conclusion" is general.

Two possible definitions of "inference" are:

  1. A conclusion reached on the basis of evidence and reasoning.
  2. The process of reaching such a conclusion.

Examples

Example for definition #1

Ancient Greek philosophers defined a number of syllogisms, correct three part inferences, that can be used as building blocks for more complex reasoning. We begin with a famous example:

  1. All humans are mortal.
  2. All Greeks are humans.
  3. All Greeks are mortal.

The reader can check that the premises and conclusion are true, but logic is concerned with inference: does the truth of the conclusion follow from that of the premises?

The validity of an inference depends on the form of the inference. That is, the word "valid" does not refer to the truth of the premises or the conclusion, but rather to the form of the inference. An inference can be valid even if the parts are false, and can be invalid even if some parts are true. But a valid form with true premises will always have a true conclusion.

For example, consider the form of the following symbological track:

  1. All meat comes from animals.
  2. All beef is meat.
  3. Therefore, all beef comes from animals.

If the premises are true, then the conclusion is necessarily true, too.

Now we turn to an invalid form.

  1. All A are B.
  2. All C are B.
  3. Therefore, all C are A.

To show that this form is invalid, we demonstrate how it can lead from true premises to a false conclusion.

  1. All apples are fruit. (True)
  2. All bananas are fruit. (True)
  3. Therefore, all bananas are apples. (False)

A valid argument with a false premise may lead to a false conclusion, (this and the following examples do not follow the Greek syllogism):

  1. All tall people are French. (False)
  2. John Lennon was tall. (True)
  3. Therefore, John Lennon was French. (False)

When a valid argument is used to derive a false conclusion from a false premise, the inference is valid because it follows the form of a correct inference.

A valid argument can also be used to derive a true conclusion from a false premise:

  1. All tall people are musicians. (Valid, False)
  2. John Lennon was tall. (Valid, True)
  3. Therefore, John Lennon was a musician. (Valid, True)

In this case we have one false premise and one true premise where a true conclusion has been inferred.

Example for definition #2

Evidence: It is the early 1950s and you are an American stationed in the Soviet Union. You read in the Moscow newspaper that a soccer team from a small city in Siberia starts winning game after game. The team even defeats the Moscow team. Inference: The small city in Siberia is not a small city anymore. The Soviets are working on their own nuclear or high-value secret weapons program.

Knowns: The Soviet Union is a command economy: people and material are told where to go and what to do. The small city was remote and historically had never distinguished itself; its soccer season was typically short because of the weather.

Explanation: In a command economy, people and material are moved where they are needed. Large cities might field good teams due to the greater availability of high quality players; and teams that can practice longer (weather, facilities) can reasonably be expected to be better. In addition, you put your best and brightest in places where they can do the most good—such as on high-value weapons programs. It is an anomaly for a small city to field such a good team. The anomaly (i.e. the soccer scores and great soccer team) indirectly described a condition by which the observer inferred a new meaningful pattern—that the small city was no longer small. Why would you put a large city of your best and brightest in the middle of nowhere? To hide them, of course.

Incorrect inference

An incorrect inference is known as a fallacy. Philosophers who study informal logic have compiled large lists of them, and cognitive psychologists have documented many biases in human reasoning that favor incorrect reasoning.

Applications

Inference engines

AI systems first provided automated logical inference and these were once extremely popular research topics, leading to industrial applications under the form of expert systems and later business rule engines. More recent work on automated theorem proving has had a stronger basis in formal logic.

An inference system's job is to extend a knowledge base automatically. The knowledge base (KB) is a set of propositions that represent what the system knows about the world. Several techniques can be used by that system to extend KB by means of valid inferences. An additional requirement is that the conclusions the system arrives at are relevant to its task.

Prolog engine

Prolog (for "Programming in Logic") is a programming language based on a subset of predicate calculus. Its main job is to check whether a certain proposition can be inferred from a KB (knowledge base) using an algorithm called backward chaining.

Let us return to our Socrates syllogism. We enter into our Knowledge Base the following piece of code:

mortal(X) :- man(X). man(socrates). 

( Here :- can be read as "if". Generally, if P   Q (if P then Q) then in Prolog we would code Q:-P (Q if P).)
This states that all men are mortal and that Socrates is a man. Now we can ask the Prolog system about Socrates:

?- mortal(socrates). 

(where ?- signifies a query: Can mortal(socrates). be deduced from the KB using the rules) gives the answer "Yes".

On the other hand, asking the Prolog system the following:

?- mortal(plato). 

gives the answer "No".

This is because Prolog does not know anything about Plato, and hence defaults to any property about Plato being false (the so-called closed world assumption). Finally ?- mortal(X) (Is anything mortal) would result in "Yes" (and in some implementations: "Yes": X=socrates)
Prolog can be used for vastly more complicated inference tasks. See the corresponding article for further examples.

Semantic web

Recently automatic reasoners found in semantic web a new field of application. Being based upon description logic, knowledge expressed using one variant of OWL can be logically processed, i.e., inferences can be made upon it.

Bayesian statistics and probability logic

Philosophers and scientists who follow the Bayesian framework for inference use the mathematical rules of probability to find this best explanation. The Bayesian view has a number of desirable features—one of them is that it embeds deductive (certain) logic as a subset (this prompts some writers to call Bayesian probability "probability logic", following E. T. Jaynes).

Bayesians identify probabilities with degrees of beliefs, with certainly true propositions having probability 1, and certainly false propositions having probability 0. To say that "it's going to rain tomorrow" has a 0.9 probability is to say that you consider the possibility of rain tomorrow as extremely likely.

Through the rules of probability, the probability of a conclusion and of alternatives can be calculated. The best explanation is most often identified with the most probable (see Bayesian decision theory). A central rule of Bayesian inference is Bayes' theorem.

Fuzzy logic

Non-monotonic logic

[1]

A relation of inference is monotonic if the addition of premises does not undermine previously reached conclusions; otherwise the relation is non-monotonic. Deductive inference is monotonic: if a conclusion is reached on the basis of a certain set of premises, then that conclusion still holds if more premises are added.

By contrast, everyday reasoning is mostly non-monotonic because it involves risk: we jump to conclusions from deductively insufficient premises. We know when it is worth or even necessary (e.g. in medical diagnosis) to take the risk. Yet we are also aware that such inference is defeasible—that new information may undermine old conclusions. Various kinds of defeasible but remarkably successful inference have traditionally captured the attention of philosophers (theories of induction, Peirce's theory of abduction, inference to the best explanation, etc.). More recently logicians have begun to approach the phenomenon from a formal point of view. The result is a large body of theories at the interface of philosophy, logic and artificial intelligence.

See also

References

  1. ^ Fuhrmann, André. (PDF). Archived from the original (PDF) on 9 December 2003.

Further reading

Inductive inference:

  • Carnap, Rudolf; Jeffrey, Richard C., eds. (1971). Studies in Inductive Logic and Probability. Vol. 1. The University of California Press.
  • Jeffrey, Richard C., ed. (1980). Studies in Inductive Logic and Probability. Vol. 2. The University of California Press. ISBN 9780520038264.
  • Angluin, Dana (1976). An Application of the Theory of Computational Complexity to the Study of Inductive Inference (Ph.D.). University of California at Berkeley.
  • Angluin, Dana (1980). "Inductive Inference of Formal Languages from Positive Data" (PDF). Information and Control. 45 (2): 117–135. doi:10.1016/s0019-9958(80)90285-5.
  • Angluin, Dana; Smith, Carl H. (Sep 1983). "Inductive Inference: Theory and Methods" (PDF). Computing Surveys. 15 (3): 237–269. doi:10.1145/356914.356918. S2CID 3209224.
  • Gabbay, Dov M.; Hartmann, Stephan; Woods, John, eds. (2009). Inductive Logic. Handbook of the History of Logic. Vol. 10. Elsevier.
  • Goodman, Nelson (1983). Fact, Fiction, and Forecast. Harvard University Press. ISBN 9780674290716.

Abductive inference:

  • O'Rourke, P.; Josephson, J., eds. (1997). Automated abduction: Inference to the best explanation. AAAI Press.
  • Psillos, Stathis (2009). Gabbay, Dov M.; Hartmann, Stephan; Woods, John (eds.). An Explorer upon Untrodden Ground: Peirce on Abduction (PDF). Handbook of the History of Logic. Vol. 10. Elsevier. pp. 117–152.
  • Ray, Oliver (Dec 2005). Hybrid Abductive Inductive Learning (Ph.D.). University of London, Imperial College. CiteSeerX 10.1.1.66.1877.

Psychological investigations about human reasoning:

  • deductive:
    • Johnson-Laird, Philip Nicholas; Byrne, Ruth M. J. (1992). Deduction. Erlbaum.
    • Byrne, Ruth M. J.; Johnson-Laird, P. N. (2009). (PDF). Trends in Cognitive Sciences. 13 (7): 282–287. doi:10.1016/j.tics.2009.04.003. PMID 19540792. S2CID 657803. Archived from the original (PDF) on 2014-04-07. Retrieved 2013-08-09.
    • Knauff, Markus; Fangmeier, Thomas; Ruff, Christian C.; Johnson-Laird, P. N. (2003). (PDF). Journal of Cognitive Neuroscience. 15 (4): 559–573. CiteSeerX 10.1.1.318.6615. doi:10.1162/089892903321662949. hdl:11858/00-001M-0000-0013-DC8B-C. PMID 12803967. S2CID 782228. Archived from the original (PDF) on 2015-05-18. Retrieved 2013-08-09.
    • Johnson-Laird, Philip N. (1995). Gazzaniga, M. S. (ed.). Mental Models, Deductive Reasoning, and the Brain (PDF). MIT Press. pp. 999–1008.
    • Khemlani, Sangeet; Johnson-Laird, P. N. (2008). "Illusory Inferences about Embedded Disjunctions" (PDF). Proceedings of the 30th Annual Conference of the Cognitive Science Society. Washington/DC. pp. 2128–2133.
  • statistical:
    • McCloy, Rachel; Byrne, Ruth M. J.; Johnson-Laird, Philip N. (2009). (PDF). The Quarterly Journal of Experimental Psychology. 63 (3): 499–515. doi:10.1080/17470210903024784. PMID 19591080. S2CID 7741180. Archived from the original (PDF) on 2015-05-18. Retrieved 2013-08-09.
    • Johnson-Laird, Philip N. (1994). "Mental Models and Probabilistic Thinking" (PDF). Cognition. 50 (1–3): 189–209. doi:10.1016/0010-0277(94)90028-0. PMID 8039361. S2CID 9439284.,
  • analogical:
    • Burns, B. D. (1996). "Meta-Analogical Transfer: Transfer Between Episodes of Analogical Reasoning". Journal of Experimental Psychology: Learning, Memory, and Cognition. 22 (4): 1032–1048. doi:10.1037/0278-7393.22.4.1032.
  • spatial:
    • Jahn, Georg; Knauff, Markus; Johnson-Laird, P. N. (2007). "Preferred mental models in reasoning about spatial relations" (PDF). Memory & Cognition. 35 (8): 2075–2087. doi:10.3758/bf03192939. PMID 18265622. S2CID 25356700.
    • Knauff, Markus; Johnson-Laird, P. N. (2002). "Visual imagery can impede reasoning" (PDF). Memory & Cognition. 30 (3): 363–371. doi:10.3758/bf03194937. PMID 12061757. S2CID 7330724.
    • Waltz, James A.; Knowlton, Barbara J.; Holyoak, Keith J.; Boone, Kyle B.; Mishkin, Fred S.; de Menezes Santos, Marcia; Thomas, Carmen R.; Miller, Bruce L. (Mar 1999). "A System for Relational Reasoning in Human Prefrontal Cortex". Psychological Science. 10 (2): 119–125. doi:10.1111/1467-9280.00118. S2CID 44019775.
  • moral:
    • Bucciarelli, Monica; Khemlani, Sangeet; Johnson-Laird, P. N. (Feb 2008). "The Psychology of Moral Reasoning" (PDF). Judgment and Decision Making. 3 (2): 121–139.

External links

inference, 1992, album, pianist, marilyn, crispell, saxophonist, berne, album, process, statistics, machine, learning, statistical, inference, this, article, includes, list, general, references, lacks, sufficient, corresponding, inline, citations, please, help. For the 1992 album by pianist Marilyn Crispell and saxophonist Tim Berne see Inference album For the process in statistics and machine learning see Statistical inference This article includes a list of general references but it lacks sufficient corresponding inline citations Please help to improve this article by introducing more precise citations April 2010 Learn how and when to remove this template message Inferences are steps in reasoning moving from premises to logical consequences etymologically the word infer means to carry forward Inference is theoretically traditionally divided into deduction and induction a distinction that in Europe dates at least to Aristotle 300s BCE Deduction is inference deriving logical conclusions from premises known or assumed to be true with the laws of valid inference being studied in logic Induction is inference from particular evidence to a universal conclusion A third type of inference is sometimes distinguished notably by Charles Sanders Peirce contradistinguishing abduction from induction Various fields study how inference is done in practice Human inference i e how humans draw conclusions is traditionally studied within the fields of logic argumentation studies and cognitive psychology artificial intelligence researchers develop automated inference systems to emulate human inference Statistical inference uses mathematics to draw conclusions in the presence of uncertainty This generalizes deterministic reasoning with the absence of uncertainty as a special case Statistical inference uses quantitative or qualitative categorical data which may be subject to random variations Contents 1 Definition 2 Examples 2 1 Example for definition 1 2 2 Example for definition 2 3 Incorrect inference 4 Applications 4 1 Inference engines 4 1 1 Prolog engine 4 2 Semantic web 4 3 Bayesian statistics and probability logic 4 4 Fuzzy logic 4 5 Non monotonic logic 5 See also 6 References 7 Further reading 8 External linksDefinition EditThe process by which a conclusion is inferred from multiple observations is called inductive reasoning The conclusion may be correct or incorrect or correct to within a certain degree of accuracy or correct in certain situations Conclusions inferred from multiple observations may be tested by additional observations This definition is disputable due to its lack of clarity Ref Oxford English dictionary induction 3 Logic the inference of a general law from particular instances clarification needed The definition given thus applies only when the conclusion is general Two possible definitions of inference are A conclusion reached on the basis of evidence and reasoning The process of reaching such a conclusion Examples EditExample for definition 1 Edit Ancient Greek philosophers defined a number of syllogisms correct three part inferences that can be used as building blocks for more complex reasoning We begin with a famous example All humans are mortal All Greeks are humans All Greeks are mortal The reader can check that the premises and conclusion are true but logic is concerned with inference does the truth of the conclusion follow from that of the premises The validity of an inference depends on the form of the inference That is the word valid does not refer to the truth of the premises or the conclusion but rather to the form of the inference An inference can be valid even if the parts are false and can be invalid even if some parts are true But a valid form with true premises will always have a true conclusion For example consider the form of the following symbological track All meat comes from animals All beef is meat Therefore all beef comes from animals If the premises are true then the conclusion is necessarily true too Now we turn to an invalid form All A are B All C are B Therefore all C are A To show that this form is invalid we demonstrate how it can lead from true premises to a false conclusion All apples are fruit True All bananas are fruit True Therefore all bananas are apples False A valid argument with a false premise may lead to a false conclusion this and the following examples do not follow the Greek syllogism All tall people are French False John Lennon was tall True Therefore John Lennon was French False When a valid argument is used to derive a false conclusion from a false premise the inference is valid because it follows the form of a correct inference A valid argument can also be used to derive a true conclusion from a false premise All tall people are musicians Valid False John Lennon was tall Valid True Therefore John Lennon was a musician Valid True In this case we have one false premise and one true premise where a true conclusion has been inferred Example for definition 2 Edit Evidence It is the early 1950s and you are an American stationed in the Soviet Union You read in the Moscow newspaper that a soccer team from a small city in Siberia starts winning game after game The team even defeats the Moscow team Inference The small city in Siberia is not a small city anymore The Soviets are working on their own nuclear or high value secret weapons program Knowns The Soviet Union is a command economy people and material are told where to go and what to do The small city was remote and historically had never distinguished itself its soccer season was typically short because of the weather Explanation In a command economy people and material are moved where they are needed Large cities might field good teams due to the greater availability of high quality players and teams that can practice longer weather facilities can reasonably be expected to be better In addition you put your best and brightest in places where they can do the most good such as on high value weapons programs It is an anomaly for a small city to field such a good team The anomaly i e the soccer scores and great soccer team indirectly described a condition by which the observer inferred a new meaningful pattern that the small city was no longer small Why would you put a large city of your best and brightest in the middle of nowhere To hide them of course Incorrect inference EditAn incorrect inference is known as a fallacy Philosophers who study informal logic have compiled large lists of them and cognitive psychologists have documented many biases in human reasoning that favor incorrect reasoning Applications EditInference engines Edit Main articles Reasoning system Inference engine expert system and business rule engine AI systems first provided automated logical inference and these were once extremely popular research topics leading to industrial applications under the form of expert systems and later business rule engines More recent work on automated theorem proving has had a stronger basis in formal logic An inference system s job is to extend a knowledge base automatically The knowledge base KB is a set of propositions that represent what the system knows about the world Several techniques can be used by that system to extend KB by means of valid inferences An additional requirement is that the conclusions the system arrives at are relevant to its task Prolog engine Edit Prolog for Programming in Logic is a programming language based on a subset of predicate calculus Its main job is to check whether a certain proposition can be inferred from a KB knowledge base using an algorithm called backward chaining Let us return to our Socrates syllogism We enter into our Knowledge Base the following piece of code mortal X man X man socrates Here can be read as if Generally if P displaystyle to Q if P then Q then in Prolog we would code Q P Q if P This states that all men are mortal and that Socrates is a man Now we can ask the Prolog system about Socrates mortal socrates where signifies a query Can mortal socrates be deduced from the KB using the rules gives the answer Yes On the other hand asking the Prolog system the following mortal plato gives the answer No This is because Prolog does not know anything about Plato and hence defaults to any property about Plato being false the so called closed world assumption Finally mortal X Is anything mortal would result in Yes and in some implementations Yes X socrates Prolog can be used for vastly more complicated inference tasks See the corresponding article for further examples Semantic web Edit Recently automatic reasoners found in semantic web a new field of application Being based upon description logic knowledge expressed using one variant of OWL can be logically processed i e inferences can be made upon it Bayesian statistics and probability logic Edit Main article Bayesian inference Philosophers and scientists who follow the Bayesian framework for inference use the mathematical rules of probability to find this best explanation The Bayesian view has a number of desirable features one of them is that it embeds deductive certain logic as a subset this prompts some writers to call Bayesian probability probability logic following E T Jaynes Bayesians identify probabilities with degrees of beliefs with certainly true propositions having probability 1 and certainly false propositions having probability 0 To say that it s going to rain tomorrow has a 0 9 probability is to say that you consider the possibility of rain tomorrow as extremely likely Through the rules of probability the probability of a conclusion and of alternatives can be calculated The best explanation is most often identified with the most probable see Bayesian decision theory A central rule of Bayesian inference is Bayes theorem Fuzzy logic Edit Main article Fuzzy logic This section needs expansion You can help by adding to it October 2016 Non monotonic logic Edit Main article Non monotonic logic 1 A relation of inference is monotonic if the addition of premises does not undermine previously reached conclusions otherwise the relation is non monotonic Deductive inference is monotonic if a conclusion is reached on the basis of a certain set of premises then that conclusion still holds if more premises are added By contrast everyday reasoning is mostly non monotonic because it involves risk we jump to conclusions from deductively insufficient premises We know when it is worth or even necessary e g in medical diagnosis to take the risk Yet we are also aware that such inference is defeasible that new information may undermine old conclusions Various kinds of defeasible but remarkably successful inference have traditionally captured the attention of philosophers theories of induction Peirce s theory of abduction inference to the best explanation etc More recently logicians have begun to approach the phenomenon from a formal point of view The result is a large body of theories at the interface of philosophy logic and artificial intelligence See also EditA priori and a posteriori Abductive reasoning Deductive reasoning Inductive reasoning Entailment Epilogism Analogy Axiom system Axiom Immediate inference Inferential programming Inquiry Logic Logic of information Logical assertion Logical graph Rule of inference List of rules of inference Theorem Transduction machine learning Philosophy portal Psychology portalReferences Edit Fuhrmann Andre Nonmonotonic Logic PDF Archived from the original PDF on 9 December 2003 Further reading EditHacking Ian 2001 An Introduction to Probability and Inductive Logic Cambridge University Press ISBN 978 0 521 77501 4 Jaynes Edwin Thompson 2003 Probability Theory The Logic of Science Cambridge University Press ISBN 978 0 521 59271 0 Archived from the original on 2004 10 11 Retrieved 2004 11 29 McKay David J C 2003 Information Theory Inference and Learning Algorithms Cambridge University Press ISBN 978 0 521 64298 9 Russell Stuart J Norvig Peter 2003 Artificial Intelligence A Modern Approach 2nd ed Upper Saddle River New Jersey Prentice Hall ISBN 0 13 790395 2 Tijms Henk 2004 Understanding Probability Cambridge University Press ISBN 978 0 521 70172 3 Inductive inference Carnap Rudolf Jeffrey Richard C eds 1971 Studies in Inductive Logic and Probability Vol 1 The University of California Press Jeffrey Richard C ed 1980 Studies in Inductive Logic and Probability Vol 2 The University of California Press ISBN 9780520038264 Angluin Dana 1976 An Application of the Theory of Computational Complexity to the Study of Inductive Inference Ph D University of California at Berkeley Angluin Dana 1980 Inductive Inference of Formal Languages from Positive Data PDF Information and Control 45 2 117 135 doi 10 1016 s0019 9958 80 90285 5 Angluin Dana Smith Carl H Sep 1983 Inductive Inference Theory and Methods PDF Computing Surveys 15 3 237 269 doi 10 1145 356914 356918 S2CID 3209224 Gabbay Dov M Hartmann Stephan Woods John eds 2009 Inductive Logic Handbook of the History of Logic Vol 10 Elsevier Goodman Nelson 1983 Fact Fiction and Forecast Harvard University Press ISBN 9780674290716 Abductive inference O Rourke P Josephson J eds 1997 Automated abduction Inference to the best explanation AAAI Press Psillos Stathis 2009 Gabbay Dov M Hartmann Stephan Woods John eds An Explorer upon Untrodden Ground Peirce on Abduction PDF Handbook of the History of Logic Vol 10 Elsevier pp 117 152 Ray Oliver Dec 2005 Hybrid Abductive Inductive Learning Ph D University of London Imperial College CiteSeerX 10 1 1 66 1877 Psychological investigations about human reasoning deductive Johnson Laird Philip Nicholas Byrne Ruth M J 1992 Deduction Erlbaum Byrne Ruth M J Johnson Laird P N 2009 If and the Problems of Conditional Reasoning PDF Trends in Cognitive Sciences 13 7 282 287 doi 10 1016 j tics 2009 04 003 PMID 19540792 S2CID 657803 Archived from the original PDF on 2014 04 07 Retrieved 2013 08 09 Knauff Markus Fangmeier Thomas Ruff Christian C Johnson Laird P N 2003 Reasoning Models and Images Behavioral Measures and Cortical Activity PDF Journal of Cognitive Neuroscience 15 4 559 573 CiteSeerX 10 1 1 318 6615 doi 10 1162 089892903321662949 hdl 11858 00 001M 0000 0013 DC8B C PMID 12803967 S2CID 782228 Archived from the original PDF on 2015 05 18 Retrieved 2013 08 09 Johnson Laird Philip N 1995 Gazzaniga M S ed Mental Models Deductive Reasoning and the Brain PDF MIT Press pp 999 1008 Khemlani Sangeet Johnson Laird P N 2008 Illusory Inferences about Embedded Disjunctions PDF Proceedings of the 30th Annual Conference of the Cognitive Science Society Washington DC pp 2128 2133 statistical McCloy Rachel Byrne Ruth M J Johnson Laird Philip N 2009 Understanding Cumulative Risk PDF The Quarterly Journal of Experimental Psychology 63 3 499 515 doi 10 1080 17470210903024784 PMID 19591080 S2CID 7741180 Archived from the original PDF on 2015 05 18 Retrieved 2013 08 09 Johnson Laird Philip N 1994 Mental Models and Probabilistic Thinking PDF Cognition 50 1 3 189 209 doi 10 1016 0010 0277 94 90028 0 PMID 8039361 S2CID 9439284 analogical Burns B D 1996 Meta Analogical Transfer Transfer Between Episodes of Analogical Reasoning Journal of Experimental Psychology Learning Memory and Cognition 22 4 1032 1048 doi 10 1037 0278 7393 22 4 1032 spatial Jahn Georg Knauff Markus Johnson Laird P N 2007 Preferred mental models in reasoning about spatial relations PDF Memory amp Cognition 35 8 2075 2087 doi 10 3758 bf03192939 PMID 18265622 S2CID 25356700 Knauff Markus Johnson Laird P N 2002 Visual imagery can impede reasoning PDF Memory amp Cognition 30 3 363 371 doi 10 3758 bf03194937 PMID 12061757 S2CID 7330724 Waltz James A Knowlton Barbara J Holyoak Keith J Boone Kyle B Mishkin Fred S de Menezes Santos Marcia Thomas Carmen R Miller Bruce L Mar 1999 A System for Relational Reasoning in Human Prefrontal Cortex Psychological Science 10 2 119 125 doi 10 1111 1467 9280 00118 S2CID 44019775 moral Bucciarelli Monica Khemlani Sangeet Johnson Laird P N Feb 2008 The Psychology of Moral Reasoning PDF Judgment and Decision Making 3 2 121 139 External links Edit Look up inference or infer in Wiktionary the free dictionary Inference at PhilPapers Inference example and definition Inference at the Indiana Philosophy Ontology Project Retrieved from https en wikipedia org w index php title Inference amp oldid 1106284422, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.