fbpx
Wikipedia

Grandi's series

In mathematics, the infinite series 1 − 1 + 1 − 1 + ⋯, also written

is sometimes called Grandi's series, after Italian mathematician, philosopher, and priest Guido Grandi, who gave a memorable treatment of the series in 1703. It is a divergent series, meaning that it does not have a sum.

However, it can be manipulated to yield a number of mathematically interesting results. For example, many summation methods are used in mathematics to assign numerical values even to a divergent series. For example, the Cesàro summation and the Ramanujan summation of this series is 1/2.

Unrigorous methods edit

One obvious method to find the sum of the series

1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + ...

is to treat it like a telescoping series and perform the subtractions in place:

(1 − 1) + (1 − 1) + (1 − 1) + ... = 0 + 0 + 0 + ... = 0.

On the other hand, a similar bracketing procedure leads to the apparently contradictory result

1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + ... = 1 + 0 + 0 + 0 + ... = 1.

Thus, by applying parentheses to Grandi's series in different ways, one can obtain either 0 or 1 as a "value". (Variations of this idea, called the Eilenberg–Mazur swindle, are sometimes used in knot theory and algebra.). By taking the average of these two "values", one can justify that the series converges to 1/2.

Treating Grandi's series as a divergent geometric series and using the same algebraic methods that evaluate convergent geometric series to obtain a third value:

S = 1 − 1 + 1 − 1 + ..., so
1 − S = 1 − (1 − 1 + 1 − 1 + ...) = 1 − 1 + 1 − 1 + ... = S'
1 − S = S
1 = 2S,

resulting in S = 1/2. The same conclusion results from calculating −S (- S = (1 − S) - 1), subtracting the result from S, and solving 2S = 1.[1]

The above manipulations do not consider what the sum of a series actually means and how said algebraic methods can be applied to divergent geometric series. Still, to the extent that it is important to be able to bracket series at will, and that it is more important to be able to perform arithmetic with them, one can arrive at two conclusions:

  • The series 1 − 1 + 1 − 1 + ... has no sum.[1][2]
  • ...but its sum should be 1/2.[2]

In fact, both of these statements can be made precise and formally proven, but only using well-defined mathematical concepts that arose in the 19th century. After the late 17th-century introduction of calculus in Europe, but before the advent of modern rigor, the tension between these answers fueled what has been characterized as an "endless" and "violent" dispute between mathematicians.[3]

Relation to the geometric series edit

For any number   in the interval  , the sum to infinity of a geometric series can be evaluated via

 

For any  , one thus finds

 

and so the limit   of series evaluations is

 

However, as mentioned, the series obtained by switching the limits,

 

is divergent.

In the terms of complex analysis,   is thus seen to be the value at   of the analytic continuation of the series  , which is only defined on the complex unit disk,  .

Early ideas edit

Divergence edit

In modern mathematics, the sum of an infinite series is defined to be the limit of the sequence of its partial sums, if it exists. The sequence of partial sums of Grandi's series is 1, 0, 1, 0, ..., which clearly does not approach any number (although it does have two accumulation points at 0 and 1). Therefore, Grandi's series is divergent.

It can be shown that it is not valid to perform many seemingly innocuous operations on a series, such as reordering individual terms, unless the series is absolutely convergent. Otherwise these operations can alter the result of summation.[4] Further, the terms of Grandi's series can be rearranged to have its accumulation points at any interval of two or more consecutive integer numbers, not only 0 or 1. For instance, the series

 

(in which, after five initial +1 terms, the terms alternate in pairs of +1 and −1 terms–the infinitude of both +1's and -1's allows any finite number of 1's or -1's to be prepended, by Hilbert's paradox of the Grand Hotel) is a permutation of Grandi's series in which each value in the rearranged series corresponds to a value that is at most four positions away from it in the original series; its accumulation points are 3, 4, and 5.

Education edit

Cognitive impact edit

Around 1987, Anna Sierpińska introduced Grandi's series to a group of 17-year-old precalculus students at a Warsaw lyceum. She focused on humanities students with the expectation that their mathematical experience would be less significant than that of their peers studying mathematics and physics, so the epistemological obstacles they exhibit would be more representative of the obstacles that may still be present in lyceum students.

Sierpińska initially expected the students to balk at assigning a value to Grandi's series, at which point she could shock them by claiming that 1 − 1 + 1 − 1 + · · · = 12 as a result of the geometric series formula. Ideally, by searching for the error in reasoning and by investigating the formula for various common ratios, the students would "notice that there are two kinds of series and an implicit conception of convergence will be born".[5] However, the students showed no shock at being told that 1 − 1 + 1 − 1 + · · · = 12 or even that 1 + 2 + 4 + 8 + · · · = −1. Sierpińska remarks that a priori, the students' reaction shouldn't be too surprising given that Leibniz and Grandi thought 12 to be a plausible result;

"A posteriori, however, the explanation of this lack of shock on the part of the students may be somewhat different. They accepted calmly the absurdity because, after all, 'mathematics is completely abstract and far from reality', and 'with those mathematical transformations you can prove all kinds of nonsense', as one of the boys later said."[5]

The students were ultimately not immune to the question of convergence; Sierpińska succeeded in engaging them in the issue by linking it to decimal expansions the following day. As soon as 0.999... = 1 caught the students by surprise, the rest of her material "went past their ears".[5]

Preconceptions edit

In another study conducted in Treviso, Italy around the year 2000, third-year and fourth-year Liceo Scientifico pupils (between 16 and 18 years old) were given cards asking the following:

"In 1703, the mathematician Guido Grandi studied the addition: 1 – 1 + 1 – 1 + ... (addends, infinitely many, are always +1 and –1). What is your opinion about it?"

The students had been introduced to the idea of an infinite set, but they had no prior experience with infinite series. They were given ten minutes without books or calculators. The 88 responses were categorized as follows:

(26) the result is 0
(18) the result can be either 0 or 1
(5) the result does not exist
(4) the result is 12
(3) the result is 1
(2) the result is infinite
(30) no answer

The researcher, Giorgio Bagni, interviewed several of the students to determine their reasoning. Some 16 of them justified an answer of 0 using logic similar to that of Grandi and Riccati. Others justified 12 as being the average of 0 and 1. Bagni notes that their reasoning, while similar to Leibniz's, lacks the probabilistic basis that was so important to 18th-century mathematics. He concludes that the responses are consistent with a link between historical development and individual development, although the cultural context is different.[6]

Prospects edit

Joel Lehmann describes the process of distinguishing between different sum concepts as building a bridge over a conceptual crevasse: the confusion over divergence that dogged 18th-century mathematics.

"Since series are generally presented without history and separate from applications, the student must wonder not only "What are these things?" but also "Why are we doing this?" The preoccupation with determining convergence but not the sum makes the whole process seem artificial and pointless to many students—and instructors as well."[7]

As a result, many students develop an attitude similar to Euler's:

"...problems that arise naturally (i.e., from nature) do have solutions, so the assumption that things will work out eventually is justified experimentally without the need for existence sorts of proof. Assume everything is okay, and if the arrived-at solution works, you were probably right, or at least right enough. ...so why bother with the details that only show up in homework problems?"[8]

Lehmann recommends meeting this objection with the same example that was advanced against Euler's treatment of Grandi's series by Jean-Charles Callet. Euler had viewed the sum as the evaluation at   of the geometric series  , giving the sum  . However, Callet pointed out that one could instead view Grandi's series as the evaluation at   of a different series,  , giving the sum  . Lehman argues that seeing such a conflicting outcome in intuitive evaluations may motivate the need for rigorous definitions and attention to detail.[8]

Summability edit

Related problems edit

The series 1 − 2 + 3 − 4 + 5 − 6 + 7 − 8 + .... (up to infinity) is also divergent, but some methods may be used to sum it to 14. This is the square of the value most summation methods assign to Grandi's series, which is reasonable as it can be viewed as the Cauchy product of two copies of Grandi's series.

See also edit

Notes edit

  1. ^ a b Devlin 1994, p. 77.
  2. ^ a b Davis 1989, p. 152.
  3. ^ Kline 1983, p. 307; Knopp 1990, p. 457
  4. ^ Protter & Morrey 1991.
  5. ^ a b c Sierpińska 1987, pp. 371–378.
  6. ^ Bagni 2005, pp. 6–8.
  7. ^ Lehmann (1995), p. 165.
  8. ^ a b Lehmann (1995), p. 176.

References edit

  • Bagni, Giorgio T. (June 2005). (PDF). International Journal for Mathematics Teaching and Learning. Archived from the original (PDF) on 2006-12-29.
  • Davis, Harry F. (May 1989). Fourier Series and Orthogonal Functions. Dover. ISBN 978-0-486-65973-2.
  • Devlin, Keith (1994). Mathematics, the science of patterns: the search for order in life, mind, and the universe. Scientific American Library. ISBN 978-0-7167-6022-1.
  • Kline, Morris (November 1983). "Euler and Infinite Series". Mathematics Magazine. 56 (5): 307–314. CiteSeerX 10.1.1.639.6923. doi:10.2307/2690371. JSTOR 2690371.
  • Knopp, Konrad (1990) [1922]. Theory and Application of Infinite Series. Dover. ISBN 978-0-486-66165-0.
  • Hobson, E. W. (1907). The theory of functions of a real variable and the theory of Fourier's series. Cambridge University Press. section 331. ISBN 978-1-4181-8651-7.
  • Lehmann, Joel (1995). "Converging Concepts of Series: Learning from History". In Swetz, Frank; Fauvel, John; Bekken, Otto; Johansson, Bengt; Katz, Victor (eds.). Learn from the Masters! (PDF). Mathematical Association of America. pp. 161–180.
  • Protter, Murray H.; Morrey, Charles B. Jr. (1991). A First Course in Real Analysis. Undergraduate Texts in Mathematics. Springer. p. 249. ISBN 978-0-387-97437-8.
  • Sierpińska, Anna (November 1987). "Humanities students and epistemological obstacles related to limits". Educational Studies in Mathematics. 18 (4): 371–396. doi:10.1007/BF00240986. JSTOR 3482354. S2CID 144880659.
  • Whittaker, E. T.; Watson, G. N. (1962). A Course of Modern Analysis (4th, reprinted ed.). Cambridge University Press. § 2.1.

External links edit

  • One minus one plus one minus one – Numberphile, Grandi's series

grandi, series, mathematics, infinite, series, also, written, displaystyle, infty, sometimes, called, after, italian, mathematician, philosopher, priest, guido, grandi, gave, memorable, treatment, series, 1703, divergent, series, meaning, that, does, have, how. In mathematics the infinite series 1 1 1 1 also written n 0 1 n displaystyle sum n 0 infty 1 n is sometimes called Grandi s series after Italian mathematician philosopher and priest Guido Grandi who gave a memorable treatment of the series in 1703 It is a divergent series meaning that it does not have a sum However it can be manipulated to yield a number of mathematically interesting results For example many summation methods are used in mathematics to assign numerical values even to a divergent series For example the Cesaro summation and the Ramanujan summation of this series is 1 2 Contents 1 Unrigorous methods 2 Relation to the geometric series 3 Early ideas 4 Divergence 5 Education 5 1 Cognitive impact 5 2 Preconceptions 5 3 Prospects 6 Summability 7 Related problems 8 See also 9 Notes 10 References 11 External linksUnrigorous methods editOne obvious method to find the sum of the series 1 1 1 1 1 1 1 1 is to treat it like a telescoping series and perform the subtractions in place 1 1 1 1 1 1 0 0 0 0 On the other hand a similar bracketing procedure leads to the apparently contradictory result 1 1 1 1 1 1 1 1 0 0 0 1 Thus by applying parentheses to Grandi s series in different ways one can obtain either 0 or 1 as a value Variations of this idea called the Eilenberg Mazur swindle are sometimes used in knot theory and algebra By taking the average of these two values one can justify that the series converges to 1 2 Treating Grandi s series as a divergent geometric series and using the same algebraic methods that evaluate convergent geometric series to obtain a third value S 1 1 1 1 so 1 S 1 1 1 1 1 1 1 1 1 S 1 S S 1 2S resulting in S 1 2 The same conclusion results from calculating S S 1 S 1 subtracting the result from S and solving 2S 1 1 The above manipulations do not consider what the sum of a series actually means and how said algebraic methods can be applied to divergent geometric series Still to the extent that it is important to be able to bracket series at will and that it is more important to be able to perform arithmetic with them one can arrive at two conclusions The series 1 1 1 1 has no sum 1 2 but its sum should be 1 2 2 In fact both of these statements can be made precise and formally proven but only using well defined mathematical concepts that arose in the 19th century After the late 17th century introduction of calculus in Europe but before the advent of modern rigor the tension between these answers fueled what has been characterized as an endless and violent dispute between mathematicians 3 Relation to the geometric series editFor any number r displaystyle r nbsp in the interval 1 1 displaystyle 1 1 nbsp the sum to infinity of a geometric series can be evaluated via lim N n 0 N r n n 0 r n 1 1 r displaystyle lim N to infty sum n 0 N r n sum n 0 infty r n frac 1 1 r nbsp dd For any e 0 2 displaystyle varepsilon in 0 2 nbsp one thus finds n 0 1 e n 1 1 1 e 1 2 e displaystyle sum n 0 infty 1 varepsilon n frac 1 1 1 varepsilon frac 1 2 varepsilon nbsp dd and so the limit e 0 displaystyle varepsilon to 0 nbsp of series evaluations is lim e 0 lim N n 0 N 1 e n 1 2 displaystyle lim varepsilon to 0 lim N to infty sum n 0 N 1 varepsilon n frac 1 2 nbsp dd However as mentioned the series obtained by switching the limits lim N lim e 0 n 0 N 1 e n n 0 1 n displaystyle lim N to infty lim varepsilon to 0 sum n 0 N 1 varepsilon n sum n 0 infty 1 n nbsp dd is divergent In the terms of complex analysis 1 2 displaystyle tfrac 1 2 nbsp is thus seen to be the value at z 1 displaystyle z 1 nbsp of the analytic continuation of the series n 0 N z n displaystyle sum n 0 N z n nbsp which is only defined on the complex unit disk z lt 1 displaystyle z lt 1 nbsp Early ideas editMain article History of Grandi s seriesDivergence editIn modern mathematics the sum of an infinite series is defined to be the limit of the sequence of its partial sums if it exists The sequence of partial sums of Grandi s series is 1 0 1 0 which clearly does not approach any number although it does have two accumulation points at 0 and 1 Therefore Grandi s series is divergent It can be shown that it is not valid to perform many seemingly innocuous operations on a series such as reordering individual terms unless the series is absolutely convergent Otherwise these operations can alter the result of summation 4 Further the terms of Grandi s series can be rearranged to have its accumulation points at any interval of two or more consecutive integer numbers not only 0 or 1 For instance the series 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 displaystyle 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 cdots nbsp in which after five initial 1 terms the terms alternate in pairs of 1 and 1 terms the infinitude of both 1 s and 1 s allows any finite number of 1 s or 1 s to be prepended by Hilbert s paradox of the Grand Hotel is a permutation of Grandi s series in which each value in the rearranged series corresponds to a value that is at most four positions away from it in the original series its accumulation points are 3 4 and 5 Education editCognitive impact edit Around 1987 Anna Sierpinska introduced Grandi s series to a group of 17 year old precalculus students at a Warsaw lyceum She focused on humanities students with the expectation that their mathematical experience would be less significant than that of their peers studying mathematics and physics so the epistemological obstacles they exhibit would be more representative of the obstacles that may still be present in lyceum students Sierpinska initially expected the students to balk at assigning a value to Grandi s series at which point she could shock them by claiming that 1 1 1 1 1 2 as a result of the geometric series formula Ideally by searching for the error in reasoning and by investigating the formula for various common ratios the students would notice that there are two kinds of series and an implicit conception of convergence will be born 5 However the students showed no shock at being told that 1 1 1 1 1 2 or even that 1 2 4 8 1 Sierpinska remarks that a priori the students reaction shouldn t be too surprising given that Leibniz and Grandi thought 1 2 to be a plausible result A posteriori however the explanation of this lack of shock on the part of the students may be somewhat different They accepted calmly the absurdity because after all mathematics is completely abstract and far from reality and with those mathematical transformations you can prove all kinds of nonsense as one of the boys later said 5 The students were ultimately not immune to the question of convergence Sierpinska succeeded in engaging them in the issue by linking it to decimal expansions the following day As soon as 0 999 1 caught the students by surprise the rest of her material went past their ears 5 Preconceptions edit In another study conducted in Treviso Italy around the year 2000 third year and fourth year Liceo Scientifico pupils between 16 and 18 years old were given cards asking the following In 1703 the mathematician Guido Grandi studied the addition 1 1 1 1 addends infinitely many are always 1 and 1 What is your opinion about it The students had been introduced to the idea of an infinite set but they had no prior experience with infinite series They were given ten minutes without books or calculators The 88 responses were categorized as follows 26 the result is 0 18 the result can be either 0 or 1 5 the result does not exist 4 the result is 1 2 3 the result is 1 2 the result is infinite 30 no answer The researcher Giorgio Bagni interviewed several of the students to determine their reasoning Some 16 of them justified an answer of 0 using logic similar to that of Grandi and Riccati Others justified 1 2 as being the average of 0 and 1 Bagni notes that their reasoning while similar to Leibniz s lacks the probabilistic basis that was so important to 18th century mathematics He concludes that the responses are consistent with a link between historical development and individual development although the cultural context is different 6 Prospects edit Joel Lehmann describes the process of distinguishing between different sum concepts as building a bridge over a conceptual crevasse the confusion over divergence that dogged 18th century mathematics Since series are generally presented without history and separate from applications the student must wonder not only What are these things but also Why are we doing this The preoccupation with determining convergence but not the sum makes the whole process seem artificial and pointless to many students and instructors as well 7 As a result many students develop an attitude similar to Euler s problems that arise naturally i e from nature do have solutions so the assumption that things will work out eventually is justified experimentally without the need for existence sorts of proof Assume everything is okay and if the arrived at solution works you were probably right or at least right enough so why bother with the details that only show up in homework problems 8 Lehmann recommends meeting this objection with the same example that was advanced against Euler s treatment of Grandi s series by Jean Charles Callet Euler had viewed the sum as the evaluation at x 1 displaystyle x 1 nbsp of the geometric series 1 x x 2 x 3 1 1 x displaystyle 1 x x 2 x 3 cdots 1 1 x nbsp giving the sum 1 2 displaystyle tfrac 1 2 nbsp However Callet pointed out that one could instead view Grandi s series as the evaluation at x 1 displaystyle x 1 nbsp of a different series 1 x 2 x 3 x 5 x 6 1 x 1 x x 2 displaystyle 1 x 2 x 3 x 5 x 6 cdots tfrac 1 x 1 x x 2 nbsp giving the sum 2 3 displaystyle tfrac 2 3 nbsp Lehman argues that seeing such a conflicting outcome in intuitive evaluations may motivate the need for rigorous definitions and attention to detail 8 Summability editMain article Summation of Grandi s seriesRelated problems editMain article Occurrences of Grandi s series The series 1 2 3 4 5 6 7 8 up to infinity is also divergent but some methods may be used to sum it to 1 4 This is the square of the value most summation methods assign to Grandi s series which is reasonable as it can be viewed as the Cauchy product of two copies of Grandi s series See also edit1 1 2 6 24 120 1 1 1 1 1 2 3 4 1 2 3 4 1 2 4 8 1 2 4 8 Ramanujan summation Cesaro summation Thomson s lampNotes edit a b Devlin 1994 p 77 a b Davis 1989 p 152 Kline 1983 p 307 Knopp 1990 p 457 Protter amp Morrey 1991 a b c Sierpinska 1987 pp 371 378 Bagni 2005 pp 6 8 Lehmann 1995 p 165 a b Lehmann 1995 p 176 References editBagni Giorgio T June 2005 Infinite Series from History to Mathematics Education PDF International Journal for Mathematics Teaching and Learning Archived from the original PDF on 2006 12 29 Davis Harry F May 1989 Fourier Series and Orthogonal Functions Dover ISBN 978 0 486 65973 2 Devlin Keith 1994 Mathematics the science of patterns the search for order in life mind and the universe Scientific American Library ISBN 978 0 7167 6022 1 Kline Morris November 1983 Euler and Infinite Series Mathematics Magazine 56 5 307 314 CiteSeerX 10 1 1 639 6923 doi 10 2307 2690371 JSTOR 2690371 Knopp Konrad 1990 1922 Theory and Application of Infinite Series Dover ISBN 978 0 486 66165 0 Hobson E W 1907 The theory of functions of a real variable and the theory of Fourier s series Cambridge University Press section 331 ISBN 978 1 4181 8651 7 Lehmann Joel 1995 Converging Concepts of Series Learning from History In Swetz Frank Fauvel John Bekken Otto Johansson Bengt Katz Victor eds Learn from the Masters PDF Mathematical Association of America pp 161 180 Protter Murray H Morrey Charles B Jr 1991 A First Course in Real Analysis Undergraduate Texts in Mathematics Springer p 249 ISBN 978 0 387 97437 8 Sierpinska Anna November 1987 Humanities students and epistemological obstacles related to limits Educational Studies in Mathematics 18 4 371 396 doi 10 1007 BF00240986 JSTOR 3482354 S2CID 144880659 Whittaker E T Watson G N 1962 A Course of Modern Analysis 4th reprinted ed Cambridge University Press 2 1 External links editOne minus one plus one minus one Numberphile Grandi s series Retrieved from https en wikipedia org w index php title Grandi 27s series amp oldid 1214755619, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.