fbpx
Wikipedia

Gastrotrich

The gastrotrichs (phylum Gastrotricha), commonly referred to as hairybellies or hairybacks, are a group of microscopic (0.06-3.0 mm), cylindrical, acoelomate animals, and are widely distributed and abundant in freshwater and marine environments. They are mostly benthic and live within the periphyton, the layer of tiny organisms and detritus that is found on the seabed and the beds of other water bodies. The majority live on and between particles of sediment or on other submerged surfaces, but a few species are terrestrial and live on land in the film of water surrounding grains of soil. Gastrotrichs are divided into two orders, the Macrodasyida which are marine (except for two species), and the Chaetonotida, some of which are marine and some freshwater. Nearly 800 species of gastrotrich have been described.

Gastrotrich
Darkfield photograph of a gastrotrich
Scientific classification
Kingdom: Animalia
Subkingdom: Eumetazoa
Clade: ParaHoxozoa
Clade: Bilateria
Clade: Nephrozoa
(unranked): Protostomia
(unranked): Spiralia
Clade: Rouphozoa
Phylum: Gastrotricha
Metschnikoff, 1865[1]
Orders

Gastrotrichs have a simple body plan with a head region, with a brain and sensory organs, and a trunk with a simple gut and the reproductive organs. They have adhesive glands with which they can anchor themselves to the substrate and cilia with which they move around. They feed on detritus, sucking up organic particles with their muscular pharynx. They are hermaphrodites, the marine species producing eggs which develop directly into miniature adults. The freshwater species are parthenogenetic, producing unfertilised eggs, and at least one species is viviparous. Gastrotrichs mature with great rapidity and have lifespans of only a few days.

Etymology and taxonomy

The name "gastrotrich" comes from the Greek γαστήρ gaster, meaning "stomach", and θρίξ thrix, meaning "hair".[2] The name was coined by the Russian zoologist Élie Metchnikoff in 1865.[1] The common name "hairyback" apparently arises from a mistranslation of "gastrotrich".[3]

The relationship of gastrotrichs to other phyla is unclear. Morphology suggests that they are close to the Gnathostomulida, the Rotifera, or the Nematoda. On the other hand, genetic studies place them as close relatives of the Platyhelminthes, the Ecdysozoa or the Lophotrochozoa.[4] As of 2011, around 790 species have been described.[5] The phylum contains a single class, divided into two orders: the Macrodasyida and the Chaetonotida.[6] Edward Ruppert et al. report that the Macrodasyida are wholly marine,[6] but two rare and poorly known species, Marinellina flagellata and Redudasys fornerise, are known from fresh water.[7] The Chaetonotida comprises both marine and freshwater species.[6]

Anatomy

 

Gastrotrichs vary in size from about 0.06 to 3 mm (0.002 to 0.118 in) in body length.[4] They are bilaterally symmetrical, with a transparent strap-shaped or bowling pin-shaped body, arched dorsally and flattened ventrally. The anterior end is not clearly defined as a head but contains the sense organs, brain and pharynx. Cilia are found around the mouth and on the ventral surface of the head and body. The trunk contains the gut and the reproductive organs. At the posterior end of the body are two projections with cement glands that serve in adhesion. This is a double-gland system where one gland secretes the glue and another secretes a de-adhesive agent to sever the connection. In the Macrodasyida, there are additional adhesive glands at the anterior end and on the sides of the body.[6]

 
Diplodasys rothei

The body wall consists of a cuticle, an epidermis and longitudinal and circular bands of muscle fibres. In some primitive species, each epidermal cell has a single cilium, a feature shared only by the gnathostomulans. The whole ventral surface of the animal may be ciliated or the cilia may be arranged in rows, patches or transverse bands. The cuticle is locally thickened in some gastrotrichs and forms scales, hooks and spines. There is no coelom (body cavity) and the interior of the animal is filled with poorly differentiated connective tissue. In the macrodasyidans, Y-shaped cells, each containing a vacuole, surround the gut and may function as a hydrostatic skeleton.[6]

The mouth is at the anterior end and opens into an elongated muscular pharynx with a triangular or Y-shaped lumen, lined by myoepithelial cells. The pharynx opens into a cylindrical intestine, which is lined with glandular and digestive cells. The anus is located on the ventral surface close to the posterior of the body. In some species, there are pores in the pharynx opening to the ventral surface; these contain valves and may allow egestion of any excess water swallowed while feeding.[6]

In the chaetonotidans, the excretory system consists of a single pair of protonephridia, which open through separate pores on the lateral underside of the animal, usually in the midsection of the body. In the macrodasyidans, there are several pairs of these opening along the side of the body. Nitrogenous waste is probably excreted through the body wall, as part of respiration, and the protonephridia are believed to function mainly in osmoregulation.[6] Unusually, the protonephridia do not take the form of flame cells, but, instead, the excretory cells consist of a skirt surrounding a series of cytoplasmic rods that in turn enclose a central flagellum. These cells, termed cyrtocytes, connect to a single outlet cell which passes the excreted material into the protonephridial duct.[8]

As is typical for such small animals, there are no respiratory or circulatory organs. The nervous system is relatively simple. The brain consists of two ganglia, one on either side of the pharynx, connected by a commissure. From these lead a pair of nerve cords which run along either side of the body beside the longitudinal muscle bands. The primary sensory organs are the bristles and ciliated tufts of the body surface which function as mechanoreceptors. There are also ciliated pits on the head, simple ciliary photoreceptors and fleshy appendages which act as chemoreceptors.[6]

Distribution and habitat

 
A & B = Macrodasyida
C, D, E & F = Chaetonotida

Gastrotrichs are cosmopolitan in distribution. They inhabit the interstitial spaces between particles in marine and freshwater environments, the surfaces of aquatic plants and other submerged objects and the surface film of water surrounding soil particles on land.[4] They are also found in stagnant pools and anaerobic mud, where they thrive even in the presence of hydrogen sulfide. When pools dry up they can survive periods of desiccation as eggs, and some species are capable of forming cysts in harsh conditions.[9] In marine sediments they have been known to reach 364 individuals per 10 cm2 (1.6 sq in) making them the third most common invertebrate in the sediment after nematodes and harpacticoid copepods. In freshwater they may reach a density of 158 individuals per 10 cm2 (1.6 sq in) and are the fifth most abundant group of invertebrates in the sediment.[4]

Behaviour and ecology

In marine and freshwater environments, gastrotrichs form part of the benthic community. They are detritivores and are microphagous, sucking dead or living organic material, diatoms, bacteria and small protozoa into their mouths by the muscular action of the pharynx. They are themselves eaten by turbellarians and other small macrofauna.[4]

Like many microscopic animals, gastrotrich locomotion is primarily powered by hydrostatics, but movement occurs through different methods in different members of the group. Chaetonotids only have adhesive glands at the back and, in them, locomotion typically proceeds in a smooth gliding manner; the whole body is propelled forward by the rhythmic action of the cilia on the ventral surface. In the pelagic chaetonotid genus Stylochaeta, however, movement proceeds in jerks as the long, muscle-activated spines are forced rhythmically towards the side of the body. By contrast, with chaetonotids, macrodasyidans typically have multiple adhesive glands and move forward with a creeping action similar to that of a "looper" caterpillar. In response to a threat, the head and trunk can be rapidly pulled backwards, or the creeping movement can be reversed. Muscular action is important when the animal turns sideways and during copulation, when two individuals twine around each other.[6]

Reproduction and lifespan

 
Ptychostomella sp., Macrodasyida

Gastrotrich reproduction and reproductive behaviour has been little studied. That of macrodasiyds probably most represents that of the ancestral lineage and these more primitive gastrotrichs are simultaneous hermaphrodites, possessing both male and female sex organs. There is generally a single pair of gonads, the anterior portion of which contains sperm-producing cells and the posterior portion producing ova. The sperm is sometimes packaged in spermatophores and is released through male gonopores that open, often temporarily, on the underside of the animal, roughly two-thirds of the way along the body. A copulatory organ on the tail collects the sperm and transfers it to the partner's seminal receptacle through the female gonopore. Details of the process and the behaviour involved vary with the species, and there is a range of different accessory reproductive organs. During copulation, the "male" individual uses his copulatory organ to transfer sperm to his partner's gonopore and fertilisation is internal. The fertilised eggs are released by rupture of the body wall which afterwards repairs itself. As is the case in most protostomes, development of the embryo is determinate, with each cell destined to become a specific part of the animal's body.[6] At least one species of gastrotrich, Urodasys viviparus, is viviparous.[10]

Many species of chaetotonid gastrotrichs reproduce entirely by parthenogenesis. In these species, the male portions of the reproductive system are degenerate and non-functional, or, in many cases, entirely absent. Though the eggs have a diameter of less than 50 µm, they are still very large in comparison with the animals' size. Some species are capable of laying eggs that remain dormant during times of desiccation or low temperatures; these species, however, are also able to produce regular eggs, which hatch in one to four days, when environmental conditions are more favourable. The eggs of all gastrotrichs undergo direct development and hatch into miniature versions of the adult. The young typically reach sexual maturity in about three days. In the laboratory, Lepidodermella squamatum has lived for up to forty days, producing four or five eggs during the first ten days of life.[6]

Gastrotrichs demonstrate eutely, each species having an invariant genetically fixed number of cells as adults. Cell division ceases at the end of embryonic development and further growth is solely due to cell enlargement.[6]

Classification

Gastrotricha is divided into two orders and a number of families:[1][4]

References

  1. ^ a b c Todaro, Antonio (2013). "Gastrotricha". WoRMS. World Register of Marine Species. Retrieved 2014-01-26.
  2. ^ "Gastrotrich". The Free Dictionary. Retrieved 2014-01-29.
  3. ^ Marren, Peter (2010). Hairybacks Gastrotricha: Bugs Britannica. Random House. p. 27. ISBN 978-0-7011-8180-2.
  4. ^ a b c d e f Todaro, M. A. (2014-01-03). "Gastrotricha". Retrieved 2014-01-23.
  5. ^ Zhang, Z.-Q. (2011). "Animal biodiversity: An introduction to higher-level classification and taxonomic richness" (PDF). Zootaxa. 3148: 7–12. doi:10.11646/zootaxa.3148.1.3. Archived (PDF) from the original on 2022-10-09.
  6. ^ a b c d e f g h i j k l Ruppert, Edward E.; Fox, Richard, S.; Barnes, Robert D. (2004). Invertebrate Zoology, 7th edition. Cengage Learning. pp. 753–757. ISBN 978-81-315-0104-7.
  7. ^ Todaro, M. A.; Dal Zotto, M.; Jondelius, U.; Hochberg, R.; Hummon, W. D.; Kånneby, T.; Rocha, C. E. F. (14 February 2012). "Gastrotricha: A Marine Sister for a Freshwater Puzzle". PLOS ONE. 7 (2): e31740. Bibcode:2012PLoSO...731740T. doi:10.1371/journal.pone.0031740. PMC 3279426. PMID 22348127.
  8. ^ Barnes, Robert D. (1982). Invertebrate Zoology. Holt-Saunders International. pp. 263–272. ISBN 0-03-056747-5.
  9. ^ Adl, Sina M. (2003). The Ecology of Soil Decomposition: Gastrotrichs. CABI. p. 52. ISBN 978-0-85199-661-5.
  10. ^ Elena, Fregni; Faienza, Maria Grazia; De Zio Grimaldi, Susanna; Tongiorgi, Paolo; Balsamo, Maria (1999). "Marine gastrotrichs from the Tremiti archipelago in the southern Adriatic Sea, with the description of two new species of Urodasys". Italian Journal of Zoology. 66 (2): 183–194. doi:10.1080/11250009909356254.

External links

gastrotrich, gastrotrichs, phylum, commonly, referred, hairybellies, hairybacks, group, microscopic, cylindrical, acoelomate, animals, widely, distributed, abundant, freshwater, marine, environments, they, mostly, benthic, live, within, periphyton, layer, tiny. The gastrotrichs phylum Gastrotricha commonly referred to as hairybellies or hairybacks are a group of microscopic 0 06 3 0 mm cylindrical acoelomate animals and are widely distributed and abundant in freshwater and marine environments They are mostly benthic and live within the periphyton the layer of tiny organisms and detritus that is found on the seabed and the beds of other water bodies The majority live on and between particles of sediment or on other submerged surfaces but a few species are terrestrial and live on land in the film of water surrounding grains of soil Gastrotrichs are divided into two orders the Macrodasyida which are marine except for two species and the Chaetonotida some of which are marine and some freshwater Nearly 800 species of gastrotrich have been described GastrotrichDarkfield photograph of a gastrotrichScientific classificationKingdom AnimaliaSubkingdom EumetazoaClade ParaHoxozoaClade BilateriaClade Nephrozoa unranked Protostomia unranked SpiraliaClade RouphozoaPhylum GastrotrichaMetschnikoff 1865 1 OrdersChaetonotida MacrodasyidaGastrotrichs have a simple body plan with a head region with a brain and sensory organs and a trunk with a simple gut and the reproductive organs They have adhesive glands with which they can anchor themselves to the substrate and cilia with which they move around They feed on detritus sucking up organic particles with their muscular pharynx They are hermaphrodites the marine species producing eggs which develop directly into miniature adults The freshwater species are parthenogenetic producing unfertilised eggs and at least one species is viviparous Gastrotrichs mature with great rapidity and have lifespans of only a few days Contents 1 Etymology and taxonomy 2 Anatomy 3 Distribution and habitat 4 Behaviour and ecology 5 Reproduction and lifespan 6 Classification 7 References 8 External linksEtymology and taxonomy EditThe name gastrotrich comes from the Greek gasthr gaster meaning stomach and 8ri3 thrix meaning hair 2 The name was coined by the Russian zoologist Elie Metchnikoff in 1865 1 The common name hairyback apparently arises from a mistranslation of gastrotrich 3 The relationship of gastrotrichs to other phyla is unclear Morphology suggests that they are close to the Gnathostomulida the Rotifera or the Nematoda On the other hand genetic studies place them as close relatives of the Platyhelminthes the Ecdysozoa or the Lophotrochozoa 4 As of 2011 around 790 species have been described 5 The phylum contains a single class divided into two orders the Macrodasyida and the Chaetonotida 6 Edward Ruppert et al report that the Macrodasyida are wholly marine 6 but two rare and poorly known species Marinellina flagellata and Redudasys fornerise are known from fresh water 7 The Chaetonotida comprises both marine and freshwater species 6 Anatomy Edit Lepidodermella squamata Chaetonotida Gastrotrichs vary in size from about 0 06 to 3 mm 0 002 to 0 118 in in body length 4 They are bilaterally symmetrical with a transparent strap shaped or bowling pin shaped body arched dorsally and flattened ventrally The anterior end is not clearly defined as a head but contains the sense organs brain and pharynx Cilia are found around the mouth and on the ventral surface of the head and body The trunk contains the gut and the reproductive organs At the posterior end of the body are two projections with cement glands that serve in adhesion This is a double gland system where one gland secretes the glue and another secretes a de adhesive agent to sever the connection In the Macrodasyida there are additional adhesive glands at the anterior end and on the sides of the body 6 Diplodasys rothei The body wall consists of a cuticle an epidermis and longitudinal and circular bands of muscle fibres In some primitive species each epidermal cell has a single cilium a feature shared only by the gnathostomulans The whole ventral surface of the animal may be ciliated or the cilia may be arranged in rows patches or transverse bands The cuticle is locally thickened in some gastrotrichs and forms scales hooks and spines There is no coelom body cavity and the interior of the animal is filled with poorly differentiated connective tissue In the macrodasyidans Y shaped cells each containing a vacuole surround the gut and may function as a hydrostatic skeleton 6 The mouth is at the anterior end and opens into an elongated muscular pharynx with a triangular or Y shaped lumen lined by myoepithelial cells The pharynx opens into a cylindrical intestine which is lined with glandular and digestive cells The anus is located on the ventral surface close to the posterior of the body In some species there are pores in the pharynx opening to the ventral surface these contain valves and may allow egestion of any excess water swallowed while feeding 6 In the chaetonotidans the excretory system consists of a single pair of protonephridia which open through separate pores on the lateral underside of the animal usually in the midsection of the body In the macrodasyidans there are several pairs of these opening along the side of the body Nitrogenous waste is probably excreted through the body wall as part of respiration and the protonephridia are believed to function mainly in osmoregulation 6 Unusually the protonephridia do not take the form of flame cells but instead the excretory cells consist of a skirt surrounding a series of cytoplasmic rods that in turn enclose a central flagellum These cells termed cyrtocytes connect to a single outlet cell which passes the excreted material into the protonephridial duct 8 As is typical for such small animals there are no respiratory or circulatory organs The nervous system is relatively simple The brain consists of two ganglia one on either side of the pharynx connected by a commissure From these lead a pair of nerve cords which run along either side of the body beside the longitudinal muscle bands The primary sensory organs are the bristles and ciliated tufts of the body surface which function as mechanoreceptors There are also ciliated pits on the head simple ciliary photoreceptors and fleshy appendages which act as chemoreceptors 6 Distribution and habitat Edit A amp B MacrodasyidaC D E amp F Chaetonotida Gastrotrichs are cosmopolitan in distribution They inhabit the interstitial spaces between particles in marine and freshwater environments the surfaces of aquatic plants and other submerged objects and the surface film of water surrounding soil particles on land 4 They are also found in stagnant pools and anaerobic mud where they thrive even in the presence of hydrogen sulfide When pools dry up they can survive periods of desiccation as eggs and some species are capable of forming cysts in harsh conditions 9 In marine sediments they have been known to reach 364 individuals per 10 cm2 1 6 sq in making them the third most common invertebrate in the sediment after nematodes and harpacticoid copepods In freshwater they may reach a density of 158 individuals per 10 cm2 1 6 sq in and are the fifth most abundant group of invertebrates in the sediment 4 Behaviour and ecology EditIn marine and freshwater environments gastrotrichs form part of the benthic community They are detritivores and are microphagous sucking dead or living organic material diatoms bacteria and small protozoa into their mouths by the muscular action of the pharynx They are themselves eaten by turbellarians and other small macrofauna 4 Like many microscopic animals gastrotrich locomotion is primarily powered by hydrostatics but movement occurs through different methods in different members of the group Chaetonotids only have adhesive glands at the back and in them locomotion typically proceeds in a smooth gliding manner the whole body is propelled forward by the rhythmic action of the cilia on the ventral surface In the pelagic chaetonotid genus Stylochaeta however movement proceeds in jerks as the long muscle activated spines are forced rhythmically towards the side of the body By contrast with chaetonotids macrodasyidans typically have multiple adhesive glands and move forward with a creeping action similar to that of a looper caterpillar In response to a threat the head and trunk can be rapidly pulled backwards or the creeping movement can be reversed Muscular action is important when the animal turns sideways and during copulation when two individuals twine around each other 6 Reproduction and lifespan Edit Ptychostomella sp Macrodasyida Gastrotrich reproduction and reproductive behaviour has been little studied That of macrodasiyds probably most represents that of the ancestral lineage and these more primitive gastrotrichs are simultaneous hermaphrodites possessing both male and female sex organs There is generally a single pair of gonads the anterior portion of which contains sperm producing cells and the posterior portion producing ova The sperm is sometimes packaged in spermatophores and is released through male gonopores that open often temporarily on the underside of the animal roughly two thirds of the way along the body A copulatory organ on the tail collects the sperm and transfers it to the partner s seminal receptacle through the female gonopore Details of the process and the behaviour involved vary with the species and there is a range of different accessory reproductive organs During copulation the male individual uses his copulatory organ to transfer sperm to his partner s gonopore and fertilisation is internal The fertilised eggs are released by rupture of the body wall which afterwards repairs itself As is the case in most protostomes development of the embryo is determinate with each cell destined to become a specific part of the animal s body 6 At least one species of gastrotrich Urodasys viviparus is viviparous 10 Many species of chaetotonid gastrotrichs reproduce entirely by parthenogenesis In these species the male portions of the reproductive system are degenerate and non functional or in many cases entirely absent Though the eggs have a diameter of less than 50 µm they are still very large in comparison with the animals size Some species are capable of laying eggs that remain dormant during times of desiccation or low temperatures these species however are also able to produce regular eggs which hatch in one to four days when environmental conditions are more favourable The eggs of all gastrotrichs undergo direct development and hatch into miniature versions of the adult The young typically reach sexual maturity in about three days In the laboratory Lepidodermella squamatum has lived for up to forty days producing four or five eggs during the first ten days of life 6 Gastrotrichs demonstrate eutely each species having an invariant genetically fixed number of cells as adults Cell division ceases at the end of embryonic development and further growth is solely due to cell enlargement 6 Classification EditSee also List of bilaterial animal orders Gastrotricha is divided into two orders and a number of families 1 4 Order MacrodasyidaRemane 1925 Rao and Clausen 1970 Family CephalodasyidaeHummon amp Todaro 2010Genus CephalodasysRemane 1926 Genus DolichodasysGagne 1977 Genus MegadasysSchmidt 1974 Genus MesodasysRemane 1951 Genus ParadasysRemane 1934 Genus PleurodasysRemane 1927 dd Family DactylopodolidaeStrand 1929Genus DactylopodolaStrand 1929 Genus DendrodasysWilke 1954 Genus DendropodolaHummon Todaro amp Tongiorgi 1992 dd Family LepidodasyidaeRemane 1927Genus LepidodasysRemane 1926 dd Family MacrodasyidaeRemane 1926Genus MacrodasysRemane 1924 Genus UrodasysRemane 1926 dd Family PlanodasyidaeRao amp Clausen 1970Genus CrasiellaClausen 1968 Genus PlanodasysRao amp Clausen 1970 dd Family RedudasyidaeTodaro Dal Zotto Jondelius Hochberg et al 2012Genus AnandrodasysTodaro Dal Zotto Jondelius Hochberg et al 2012 Genus RedudasysKisielewski 1987 dd Family ThaumastodermatidaeRemane 1927 Subfamily DiplodasyinaeRuppert 1978 Genus AcanthodasysRemane 1927 Genus DiplodasysRemane 1927 Subfamily ThaumastodermatinaeRemane 1927 Genus HemidasysClaparede 1867 Genus OregodasysHummon 2008 Platydasys Remane 1927 Genus PseudostomellaSwedmark 1956 Genus PtychostomellaRemane 1926 Genus TetranchyrodermaRemane 1926 Genus ThaumastodermaRemane 1926 Family TurbanellidaeRemane 1927Genus DesmodasysClausen 1965 Genus DinodasysRemane 1927 Genus ParaturbanellaRemane 1927 Genus ProstobuccantiaEvans amp Hummon 1991 Genus Pseudoturbanellad Hondt 1968 Genus TurbanellaSchultze 1853 dd Family XenodasyidaeTodaro Guidi Leasi amp Tongiorgi 2006Genus ChordodasiopsisTodaro Guidi Leasi amp Tongiorgi 2006 Genus XenodasysSwedmark 1967 dd Incertae sedisGenus MarinellinaRuttner Kolisko 1955 dd Order ChaetonotidaRemane 1925 Rao and Clausen 1970 Suborder Multitubulatinad Hondt 1971 Family NeodasyidaeRemane 1929Genus NeodasysRemane 1927 dd Suborder Paucitubulatinad Hondt 1971 Family ChaetonotidaeGosse 1864 Subfamily Chaetonotinae Kisielewski 1991 Genus ArenotusKisielewski 1987 Genus AspidiophorusVoigt 1903 Genus CaudichthydiumSchwank 1990 Genus ChaetonotusEhrenberg 1830 Genus Fluxidermad Hondt 1974 Genus IchthydiumEhrenberg 1830 Genus HalichaetonotusRemane 1936 Genus HeterolepidodermaRemane 1927 Genus LepidochaetusKisielewski 1991 Genus LepidodermellaBlake 1933 Genus PolymerurusRemane 1927 Genus RhomballichthysSchwank 1990 Subfamily UndulinaeKisielewski 1991 Genus UndulaKisielewski 1991 Family DasydytidaeDaday 1905Genus AnacanthodermaMarcolongo 1910 Genus ChitonodytesRemane 1936 Genus DasydytesGosse 1851 Genus HaltidytesRemane 1936 Genus OrnamentulaKisielewski 1991 Genus SetopusGrunspan 1908 Genus StylochaetaHlava 1905 dd Family DichaeturidaeRemane 1927Genus DichaeturaLauterborn 1913 dd Family MuselliferidaeLeasi amp Todaro 2008Genus DiuronotusTodaro Kristensen amp Balsamo 2005 Genus MuselliferHummon 1969 dd Family NeogosseidaeRemane 1927Genus NeogosseaRemane 1927 Genus KijanebalolaBeauchamp 1932 dd Family ProichthydiidaeRemane 1927Genus ProichthydiumCordero 1918 Genus ProichthydioidesSudzuki 1971 dd Family XenotrichulidaeRemane 1927 Subfamily DraculiciterinaeRuppert 1979 Genus DraculiciteriaHummon 1974 Subfamily XenotrichulinaeRemane 1927 Genus HeteroxenotrichulaWilke 1954 Genus XenotrichulaRemane 1927References Edit a b c Todaro Antonio 2013 Gastrotricha WoRMS World Register of Marine Species Retrieved 2014 01 26 Gastrotrich The Free Dictionary Retrieved 2014 01 29 Marren Peter 2010 Hairybacks Gastrotricha Bugs Britannica Random House p 27 ISBN 978 0 7011 8180 2 a b c d e f Todaro M A 2014 01 03 Gastrotricha Retrieved 2014 01 23 Zhang Z Q 2011 Animal biodiversity An introduction to higher level classification and taxonomic richness PDF Zootaxa 3148 7 12 doi 10 11646 zootaxa 3148 1 3 Archived PDF from the original on 2022 10 09 a b c d e f g h i j k l Ruppert Edward E Fox Richard S Barnes Robert D 2004 Invertebrate Zoology 7th edition Cengage Learning pp 753 757 ISBN 978 81 315 0104 7 Todaro M A Dal Zotto M Jondelius U Hochberg R Hummon W D Kanneby T Rocha C E F 14 February 2012 Gastrotricha A Marine Sister for a Freshwater Puzzle PLOS ONE 7 2 e31740 Bibcode 2012PLoSO 731740T doi 10 1371 journal pone 0031740 PMC 3279426 PMID 22348127 Barnes Robert D 1982 Invertebrate Zoology Holt Saunders International pp 263 272 ISBN 0 03 056747 5 Adl Sina M 2003 The Ecology of Soil Decomposition Gastrotrichs CABI p 52 ISBN 978 0 85199 661 5 Elena Fregni Faienza Maria Grazia De Zio Grimaldi Susanna Tongiorgi Paolo Balsamo Maria 1999 Marine gastrotrichs from the Tremiti archipelago in the southern Adriatic Sea with the description of two new species of Urodasys Italian Journal of Zoology 66 2 183 194 doi 10 1080 11250009909356254 External links Edit Wikimedia Commons has media related to Gastrotricha Wikispecies has information related to Gastrotricha Wikisource has the text of the 1911 Encyclopaedia Britannica article Gastrotricha Gastrotrichs in the Encyclopedia of Life Retrieved from https en wikipedia org w index php title Gastrotrich amp oldid 1134030861, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.