fbpx
Wikipedia

Fatty alcohol

Fatty alcohols (or long-chain alcohols) are usually high-molecular-weight, straight-chain primary alcohols, but can also range from as few as 4–6 carbons to as many as 22–26, derived from natural fats and oils. The precise chain length varies with the source.[1][2] Some commercially important fatty alcohols are lauryl, stearyl, and oleyl alcohols. They are colourless oily liquids (for smaller carbon numbers) or waxy solids, although impure samples may appear yellow. Fatty alcohols usually have an even number of carbon atoms and a single alcohol group (–OH) attached to the terminal carbon. Some are unsaturated and some are branched. They are widely used in industry. As with fatty acids, they are often referred to generically by the number of carbon atoms in the molecule, such as "a C12 alcohol", that is an alcohol having 12 carbons, for example dodecanol.

An example of a fatty alcohol

Production and occurrence edit

Fatty alcohols became commercially available in the early 1900s. They were originally obtained by reduction of wax esters with sodium by the Bouveault–Blanc reduction process. In the 1930s catalytic hydrogenation was commercialized, which allowed the conversion of fatty acid esters, typically tallow, to the alcohols. In the 1940s and 1950s, petrochemicals became an important source of chemicals, and Karl Ziegler had discovered the polymerization of ethylene. These two developments opened the way to synthetic fatty alcohols.

From natural sources edit

Most fatty alcohols in nature are found as waxes, which are esters of fatty acids and fatty alcohols.[1] They are produced by bacteria, plants and animals for purposes of buoyancy, as source of metabolic water and energy, biosonar lenses (marine mammals) and for thermal insulation in the form of waxes (in plants and insects).[3] The traditional sources of fatty alcohols have largely been various vegetable oils, which remain a large-scale feedstock. Animal fats (tallow) were of historic importance, particularly whale oil, however they are no longer used on a large scale. Tallows produce a fairly narrow range of alcohols, predominantly C16–C18, while plant sources produce a wider range of alcohols from (C6–C24), making them the preferred source. The alcohols are obtained from the triglycerides (fatty acid triesters), which form the bulk of the oil. The process involves the transesterification of the triglycerides to give methyl esters which are then hydrogenated to produce the fatty alcohols.[4] Higher alcohols (C20–C22) can be obtained from rapeseed oil or mustard seed oil. Midcut alcohols are obtained from coconut oil (C12–C14) or palm kernel oil (C16–C18).

From petrochemical sources edit

Fatty alcohols are also prepared from petrochemical sources. In the Ziegler process, ethylene is oligomerized using triethylaluminium followed by air oxidation. This process affords even-numbered alcohols:

Al(C2H5)3 + 18 C2H4 → Al(C14H29)3
Al(C14H29)3 + 32 O2 + 32 H2O → 3 HOC14H29 + 12 Al2O3

Alternatively ethylene can be oligomerized to give mixtures of alkenes, which are subjected to hydroformylation, this process affording odd-numbered aldehyde, which is subsequently hydrogenated. For example, from 1-decene, hydroformylation gives the C11 alcohol:

C8H17CH=CH2 + H2 + CO → C8H17CH2CH2CHO
C8H17CH2CH2CHO + H2 → C8H17CH2CH2CH2OH

In the Shell higher olefin process, the chain-length distribution in the initial mixture of alkene oligomers is adjusted so as to more closely match market demand. Shell does this by means of an intermediate metathesis reaction.[5] The resultant mixture is fractionated and hydroformylated/hydrogenated in a subsequent step.

Applications edit

Fatty alcohols are mainly used in the production of detergents and surfactants. They are components also of cosmetics, foods, and as industrial solvents. Due to their amphipathic nature, fatty alcohols behave as nonionic surfactants. They find use as co-emulsifiers, emollients and thickeners in cosmetics and food industry. About 50% of fatty alcohols used commercially are of natural origin, the remainder being synthetic.[1]

Nutrition edit

Very long-chain fatty alcohols (VLCFA), obtained from plant waxes and beeswax have been reported to lower plasma cholesterol in humans. They can be found in unrefined cereal grains, beeswax, and many plant-derived foods. Reports suggest that 5–20 mg per day of mixed C24–C34 alcohols, including octacosanol and triacontanol, lower low-density lipoprotein (LDL) cholesterol by 21%–29% and raise high-density lipoprotein cholesterol by 8%–15%.[citation needed] Wax esters are hydrolyzed by a bile salt–dependent pancreatic esterase, releasing long-chain alcohols and fatty acids that are absorbed in the gastrointestinal tract. Studies of fatty alcohol metabolism in fibroblasts suggest that very long-chain fatty alcohols, fatty aldehydes, and fatty acids are reversibly inter-converted in a fatty alcohol cycle. The metabolism of these compounds is impaired in several inherited human peroxisomal disorders, including adrenoleukodystrophy and Sjögren–Larsson syndrome.[6]

Safety edit

Human health edit

Fatty alcohols are relatively benign materials, with LD50 (oral, rat) ranging from 3.1–4 g/kg for hexanol to 6–8 g/kg for octadecanol.[1] For a 50 kg person, these values translate to more than 100 g. Tests of acute and repeated exposures have revealed a low level of toxicity from inhalation, oral or dermal exposure of fatty alcohols. Fatty alcohols are not very volatile and the acute lethal concentration is greater than the saturated vapor pressure. Longer-chain (C12–C16) fatty alcohols produce fewer health effects than short-chain (smaller than C12). Short-chain fatty alcohols are considered eye irritants, while long chain alcohols are not.[7] Fatty alcohols exhibit no skin sensitization.[8]

Repeated exposure to fatty alcohols produce low-level toxicity and certain compounds in this category can cause local irritation on contact or low-grade liver effects (essentially linear alcohols have a slightly higher rate of occurrence of these effects). No effects on the central nervous system have been seen with inhalation and oral exposure. Tests of repeated bolus dosages of 1-hexanol and 1-octanol showed potential for CNS depression and induced respiratory distress. No potential for peripheral neuropathy has been found. In rats, the no observable adverse effect level (NOAEL) ranges from 200 mg/kg/day to 1000 mg/kg/day by ingestion. There has been no evidence that fatty alcohols are mutagenic or cause reproductive toxicity or infertility. Fatty alcohols are effectively eliminated from the body when exposed, limiting possibility of retention or bioaccumulation.[8]

Margins of exposure resulting from consumer uses of these chemicals are adequate for the protection of human health as determined by the Organisation for Economic Co-operation and Development (OECD) high production volume chemicals program.[7][9]

Environment edit

Fatty alcohols up to chain length C18 are biodegradable, with length up to C16 biodegrading within 10 days completely. Chains C16 to C18 were found to biodegrade from 62% to 76% in 10 days. Chains greater than C18 were found to degrade by 37% in 10 days. Field studies at wastewater treatment plants have shown that 99% of fatty alcohols lengths C12–C18 are removed.[8]

Fate prediction using fugacity modeling has shown that fatty alcohols with chain lengths of C10 and greater in water partition into sediment. Lengths C14 and above are predicted to stay in the air upon release. Modeling shows that each type of fatty alcohol will respond independently upon environmental release.[8]

Aquatic organisms edit

Fish, invertebrates and algae experience similar levels of toxicity with fatty alcohols although it is dependent on chain length with the shorter chain having greater toxicity potential. Longer chain lengths show no toxicity to aquatic organisms.[8]

Chain size Acute toxicity for fish Chronic toxicity for fish
<C11 1–100 mg/L 0.1–1.0 mg/L
C11–C13 0.1–1.0 mg/L 0.1–<1.0 mg/L
C14–C15 0.01 mg/L
>C16

This category of chemicals was evaluated under the Organisation for Economic Co-operation and Development (OECD) high production volume chemicals program. No unacceptable environmental risks were identified.[9]

Table with common names edit

This table lists some alkyl alcohols. Note that in general the alcohols with even numbers of carbon atoms have common names, since they are found in nature, whereas those with odd numbers of carbon atoms generally do not have a common name.

Name Carbon atoms Branches/saturation Formula
tert-Butyl alcohol 4 carbon atoms branched C4H10O
tert-Amyl alcohol 5 carbon atoms branched C5H12O
3-Methyl-3-pentanol 6 carbon atoms branched C6H14O
1-Heptanol (enanthic alcohol) 7 carbon atoms C7H16O
1-Octanol (capryl alcohol) 8 carbon atoms C8H18O
Pelargonic alcohol (1-nonanol) 9 carbon atoms C9H20O
1-Decanol (decyl alcohol, capric alcohol) 10 carbon atoms C10H22O
Undecyl alcohol (1-undecanol, undecanol, Hendecanol) 11 carbon atoms C11H24O
Lauryl alcohol (dodecanol, 1-dodecanol) 12 carbon atoms C12H26O
Tridecyl alcohol (1-tridecanol, tridecanol, isotridecanol) 13 carbon atoms C13H28O
Myristyl alcohol (1-tetradecanol) 14 carbon atoms C14H30O
Pentadecyl alcohol (1-pentadecanol, pentadecanol) 15 carbon atoms C15H32O
Cetyl alcohol (1-hexadecanol) 16 carbon atoms C16H34O
Palmitoleyl alcohol (cis-9-hexadecen-1-ol) 16 carbon atoms unsaturated C16H32O
Heptadecyl alcohol (1-n-heptadecanol, heptadecanol) 17 carbon atoms C17H36O
Stearyl alcohol (1-octadecanol) 18 carbon atoms C18H38O
Oleyl alcohol (1-octadecenol) 18 carbon atoms unsaturated C18H36O
Nonadecyl alcohol (1-nonadecanol) 19 carbon atoms C19H40O
Arachidyl alcohol (1-eicosanol) 20 carbon atoms C20H42O
Heneicosyl alcohol (1-heneicosanol) 21 carbon atoms C21H44O
Behenyl alcohol (1-docosanol) 22 carbon atoms C22H46O
Erucyl alcohol (cis-13-docosen-1-ol) 22 carbon atoms unsaturated C22H44O
Lignoceryl alcohol (1-tetracosanol) 24 carbon atoms C24H50O
Ceryl alcohol (1-hexacosanol) 26 carbon atoms C26H54O
1-Heptacosanol 27 carbon atoms C27H56O
Montanyl alcohol, cluytyl alcohol, or 1-octacosanol 28 carbon atoms C28H58O
1-Nonacosanol 29 carbon atoms C29H60O
Myricyl alcohol, melissyl alcohol, or 1-triacontanol 30 carbon atoms C30H62O
1-Dotriacontanol (Lacceryl alcohol) 32 carbon atoms C32H66O
Geddyl alcohol (1-tetratriacontanol) 34 carbon atoms C34H70O

References edit

  1. ^ a b c d Noweck, Klaus; Grafahrend, Wolfgang. "Fatty Alcohols". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a10_277.pub2. ISBN 978-3527306732.
  2. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) ""Fatty alcohol"". doi:10.1351/goldbook.F02330
  3. ^ Mudge, Stephen; Meier-Augenstein, Wolfram; Eadsforth, Charles; DeLeo, Paul (2010). "What contribution do detergent fatty alcohols make to sewage discharges and the marine environment?". Journal of Environmental Monitoring. 12 (10): 1846–1856. doi:10.1039/C0EM00079E. PMID 20820625.
  4. ^ Kreutzer, Udo R. (February 1984). "Manufacture of fatty alcohols based on natural fats and oils". Journal of the American Oil Chemists' Society. 61 (2): 343–348. doi:10.1007/BF02678792. S2CID 84849226.
  5. ^ Ashford's Dictionary of Industrial Chemicals (3rd ed.). 2011. pp. 6706–6711.[ISBN missing]
  6. ^ Hargrove, James L.; Greenspan, Phillip; Hartle, Diane K. (2004). "Nutritional Significance and Metabolism of Very Long Chain Fatty Alcohols and Acids from Dietary Waxes". Exp. Biol. Med. 229 (3): 215–226. doi:10.1177/153537020422900301. PMID 14988513. S2CID 38905297.
  7. ^ a b Veenstra, Gauke; Webb, Catherine; Sanderson, Hans; Belanger, Scott E.; Fisk, Peter; Nielson, Allen; Kasai, Yutaka; Willing, Andreas; Dyer, Scott; Penney, David; Certa, Hans; Stanton, Kathleen; Sedlak, Richard (2009). "Human health risk assessment of long chain alcohols". Ecotoxicology and Environmental Safety. 72 (4): 1016–1030. doi:10.1016/j.ecoenv.2008.07.012. ISSN 0147-6513. PMID 19237197.
  8. ^ a b c d e UK/ICCA (2006). "SIDS Initial Assessment Profile". OECD Existing Chemicals Database.
  9. ^ a b Sanderson, Hans; Belanger, Scott E.; Fisk, Peter R.; Schäfers, Christoph; Veenstra, Gauke; Nielsen, Allen M.; Kasai, Yutaka; Willing, Andreas; Dyer, Scott D.; Stanton, Kathleen; Sedlak, Richard (May 2009). "An overview of hazard and risk assessment of the OECD high production volume chemical category—Long chain alcohols [C6–C22] (LCOH)". Ecotoxicology and Environmental Safety. 72 (4): 973–979. doi:10.1016/j.ecoenv.2008.10.006. PMID 19038453.

External links edit

  • Cyberlipid. . Archived from the original on 2012-06-25. Retrieved 2007-02-06. General overview of fatty alcohols, with references.
  • CONDEA. (PDF). Archived from the original (PDF) on 2007-09-27. Retrieved 2007-02-06.

fatty, alcohol, long, chain, alcohols, usually, high, molecular, weight, straight, chain, primary, alcohols, also, range, from, carbons, many, derived, from, natural, fats, oils, precise, chain, length, varies, with, source, some, commercially, important, fatt. Fatty alcohols or long chain alcohols are usually high molecular weight straight chain primary alcohols but can also range from as few as 4 6 carbons to as many as 22 26 derived from natural fats and oils The precise chain length varies with the source 1 2 Some commercially important fatty alcohols are lauryl stearyl and oleyl alcohols They are colourless oily liquids for smaller carbon numbers or waxy solids although impure samples may appear yellow Fatty alcohols usually have an even number of carbon atoms and a single alcohol group OH attached to the terminal carbon Some are unsaturated and some are branched They are widely used in industry As with fatty acids they are often referred to generically by the number of carbon atoms in the molecule such as a C12 alcohol that is an alcohol having 12 carbons for example dodecanol An example of a fatty alcohol Contents 1 Production and occurrence 1 1 From natural sources 1 2 From petrochemical sources 2 Applications 2 1 Nutrition 3 Safety 3 1 Human health 3 2 Environment 3 3 Aquatic organisms 4 Table with common names 5 References 6 External linksProduction and occurrence editFatty alcohols became commercially available in the early 1900s They were originally obtained by reduction of wax esters with sodium by the Bouveault Blanc reduction process In the 1930s catalytic hydrogenation was commercialized which allowed the conversion of fatty acid esters typically tallow to the alcohols In the 1940s and 1950s petrochemicals became an important source of chemicals and Karl Ziegler had discovered the polymerization of ethylene These two developments opened the way to synthetic fatty alcohols From natural sources edit Most fatty alcohols in nature are found as waxes which are esters of fatty acids and fatty alcohols 1 They are produced by bacteria plants and animals for purposes of buoyancy as source of metabolic water and energy biosonar lenses marine mammals and for thermal insulation in the form of waxes in plants and insects 3 The traditional sources of fatty alcohols have largely been various vegetable oils which remain a large scale feedstock Animal fats tallow were of historic importance particularly whale oil however they are no longer used on a large scale Tallows produce a fairly narrow range of alcohols predominantly C16 C18 while plant sources produce a wider range of alcohols from C6 C24 making them the preferred source The alcohols are obtained from the triglycerides fatty acid triesters which form the bulk of the oil The process involves the transesterification of the triglycerides to give methyl esters which are then hydrogenated to produce the fatty alcohols 4 Higher alcohols C20 C22 can be obtained from rapeseed oil or mustard seed oil Midcut alcohols are obtained from coconut oil C12 C14 or palm kernel oil C16 C18 From petrochemical sources edit Fatty alcohols are also prepared from petrochemical sources In the Ziegler process ethylene is oligomerized using triethylaluminium followed by air oxidation This process affords even numbered alcohols Al C2H5 3 18 C2H4 Al C14H29 3 Al C14H29 3 3 2 O2 3 2 H2O 3 HOC14H29 1 2 Al2O3Alternatively ethylene can be oligomerized to give mixtures of alkenes which are subjected to hydroformylation this process affording odd numbered aldehyde which is subsequently hydrogenated For example from 1 decene hydroformylation gives the C11 alcohol C8H17CH CH2 H2 CO C8H17CH2CH2CHO C8H17CH2CH2CHO H2 C8H17CH2CH2CH2OHIn the Shell higher olefin process the chain length distribution in the initial mixture of alkene oligomers is adjusted so as to more closely match market demand Shell does this by means of an intermediate metathesis reaction 5 The resultant mixture is fractionated and hydroformylated hydrogenated in a subsequent step Applications editFatty alcohols are mainly used in the production of detergents and surfactants They are components also of cosmetics foods and as industrial solvents Due to their amphipathic nature fatty alcohols behave as nonionic surfactants They find use as co emulsifiers emollients and thickeners in cosmetics and food industry About 50 of fatty alcohols used commercially are of natural origin the remainder being synthetic 1 Nutrition edit Very long chain fatty alcohols VLCFA obtained from plant waxes and beeswax have been reported to lower plasma cholesterol in humans They can be found in unrefined cereal grains beeswax and many plant derived foods Reports suggest that 5 20 mg per day of mixed C24 C34 alcohols including octacosanol and triacontanol lower low density lipoprotein LDL cholesterol by 21 29 and raise high density lipoprotein cholesterol by 8 15 citation needed Wax esters are hydrolyzed by a bile salt dependent pancreatic esterase releasing long chain alcohols and fatty acids that are absorbed in the gastrointestinal tract Studies of fatty alcohol metabolism in fibroblasts suggest that very long chain fatty alcohols fatty aldehydes and fatty acids are reversibly inter converted in a fatty alcohol cycle The metabolism of these compounds is impaired in several inherited human peroxisomal disorders including adrenoleukodystrophy and Sjogren Larsson syndrome 6 Safety editHuman health edit Fatty alcohols are relatively benign materials with LD50 oral rat ranging from 3 1 4 g kg for hexanol to 6 8 g kg for octadecanol 1 For a 50 kg person these values translate to more than 100 g Tests of acute and repeated exposures have revealed a low level of toxicity from inhalation oral or dermal exposure of fatty alcohols Fatty alcohols are not very volatile and the acute lethal concentration is greater than the saturated vapor pressure Longer chain C12 C16 fatty alcohols produce fewer health effects than short chain smaller than C12 Short chain fatty alcohols are considered eye irritants while long chain alcohols are not 7 Fatty alcohols exhibit no skin sensitization 8 Repeated exposure to fatty alcohols produce low level toxicity and certain compounds in this category can cause local irritation on contact or low grade liver effects essentially linear alcohols have a slightly higher rate of occurrence of these effects No effects on the central nervous system have been seen with inhalation and oral exposure Tests of repeated bolus dosages of 1 hexanol and 1 octanol showed potential for CNS depression and induced respiratory distress No potential for peripheral neuropathy has been found In rats the no observable adverse effect level NOAEL ranges from 200 mg kg day to 1000 mg kg day by ingestion There has been no evidence that fatty alcohols are mutagenic or cause reproductive toxicity or infertility Fatty alcohols are effectively eliminated from the body when exposed limiting possibility of retention or bioaccumulation 8 Margins of exposure resulting from consumer uses of these chemicals are adequate for the protection of human health as determined by the Organisation for Economic Co operation and Development OECD high production volume chemicals program 7 9 Environment edit Fatty alcohols up to chain length C18 are biodegradable with length up to C16 biodegrading within 10 days completely Chains C16 to C18 were found to biodegrade from 62 to 76 in 10 days Chains greater than C18 were found to degrade by 37 in 10 days Field studies at wastewater treatment plants have shown that 99 of fatty alcohols lengths C12 C18 are removed 8 Fate prediction using fugacity modeling has shown that fatty alcohols with chain lengths of C10 and greater in water partition into sediment Lengths C14 and above are predicted to stay in the air upon release Modeling shows that each type of fatty alcohol will respond independently upon environmental release 8 Aquatic organisms edit Fish invertebrates and algae experience similar levels of toxicity with fatty alcohols although it is dependent on chain length with the shorter chain having greater toxicity potential Longer chain lengths show no toxicity to aquatic organisms 8 Chain size Acute toxicity for fish Chronic toxicity for fish lt C11 1 100 mg L 0 1 1 0 mg LC11 C13 0 1 1 0 mg L 0 1 lt 1 0 mg LC14 C15 0 01 mg L gt C16 This category of chemicals was evaluated under the Organisation for Economic Co operation and Development OECD high production volume chemicals program No unacceptable environmental risks were identified 9 Table with common names editThis table lists some alkyl alcohols Note that in general the alcohols with even numbers of carbon atoms have common names since they are found in nature whereas those with odd numbers of carbon atoms generally do not have a common name Name Carbon atoms Branches saturation Formulatert Butyl alcohol 4 carbon atoms branched C4H10Otert Amyl alcohol 5 carbon atoms branched C5H12O3 Methyl 3 pentanol 6 carbon atoms branched C6H14O1 Heptanol enanthic alcohol 7 carbon atoms C7H16O1 Octanol capryl alcohol 8 carbon atoms C8H18OPelargonic alcohol 1 nonanol 9 carbon atoms C9H20O1 Decanol decyl alcohol capric alcohol 10 carbon atoms C10H22OUndecyl alcohol 1 undecanol undecanol Hendecanol 11 carbon atoms C11H24OLauryl alcohol dodecanol 1 dodecanol 12 carbon atoms C12H26OTridecyl alcohol 1 tridecanol tridecanol isotridecanol 13 carbon atoms C13H28OMyristyl alcohol 1 tetradecanol 14 carbon atoms C14H30OPentadecyl alcohol 1 pentadecanol pentadecanol 15 carbon atoms C15H32OCetyl alcohol 1 hexadecanol 16 carbon atoms C16H34OPalmitoleyl alcohol cis 9 hexadecen 1 ol 16 carbon atoms unsaturated C16H32OHeptadecyl alcohol 1 n heptadecanol heptadecanol 17 carbon atoms C17H36OStearyl alcohol 1 octadecanol 18 carbon atoms C18H38OOleyl alcohol 1 octadecenol 18 carbon atoms unsaturated C18H36ONonadecyl alcohol 1 nonadecanol 19 carbon atoms C19H40OArachidyl alcohol 1 eicosanol 20 carbon atoms C20H42OHeneicosyl alcohol 1 heneicosanol 21 carbon atoms C21H44OBehenyl alcohol 1 docosanol 22 carbon atoms C22H46OErucyl alcohol cis 13 docosen 1 ol 22 carbon atoms unsaturated C22H44OLignoceryl alcohol 1 tetracosanol 24 carbon atoms C24H50OCeryl alcohol 1 hexacosanol 26 carbon atoms C26H54O1 Heptacosanol 27 carbon atoms C27H56OMontanyl alcohol cluytyl alcohol or 1 octacosanol 28 carbon atoms C28H58O1 Nonacosanol 29 carbon atoms C29H60OMyricyl alcohol melissyl alcohol or 1 triacontanol 30 carbon atoms C30H62O1 Dotriacontanol Lacceryl alcohol 32 carbon atoms C32H66OGeddyl alcohol 1 tetratriacontanol 34 carbon atoms C34H70OReferences edit a b c d Noweck Klaus Grafahrend Wolfgang Fatty Alcohols Ullmann s Encyclopedia of Industrial Chemistry Weinheim Wiley VCH doi 10 1002 14356007 a10 277 pub2 ISBN 978 3527306732 IUPAC Compendium of Chemical Terminology 2nd ed the Gold Book 1997 Online corrected version 2006 Fatty alcohol doi 10 1351 goldbook F02330 Mudge Stephen Meier Augenstein Wolfram Eadsforth Charles DeLeo Paul 2010 What contribution do detergent fatty alcohols make to sewage discharges and the marine environment Journal of Environmental Monitoring 12 10 1846 1856 doi 10 1039 C0EM00079E PMID 20820625 Kreutzer Udo R February 1984 Manufacture of fatty alcohols based on natural fats and oils Journal of the American Oil Chemists Society 61 2 343 348 doi 10 1007 BF02678792 S2CID 84849226 Ashford s Dictionary of Industrial Chemicals 3rd ed 2011 pp 6706 6711 ISBN missing Hargrove James L Greenspan Phillip Hartle Diane K 2004 Nutritional Significance and Metabolism of Very Long Chain Fatty Alcohols and Acids from Dietary Waxes Exp Biol Med 229 3 215 226 doi 10 1177 153537020422900301 PMID 14988513 S2CID 38905297 a b Veenstra Gauke Webb Catherine Sanderson Hans Belanger Scott E Fisk Peter Nielson Allen Kasai Yutaka Willing Andreas Dyer Scott Penney David Certa Hans Stanton Kathleen Sedlak Richard 2009 Human health risk assessment of long chain alcohols Ecotoxicology and Environmental Safety 72 4 1016 1030 doi 10 1016 j ecoenv 2008 07 012 ISSN 0147 6513 PMID 19237197 a b c d e UK ICCA 2006 SIDS Initial Assessment Profile OECD Existing Chemicals Database a b Sanderson Hans Belanger Scott E Fisk Peter R Schafers Christoph Veenstra Gauke Nielsen Allen M Kasai Yutaka Willing Andreas Dyer Scott D Stanton Kathleen Sedlak Richard May 2009 An overview of hazard and risk assessment of the OECD high production volume chemical category Long chain alcohols C6 C22 LCOH Ecotoxicology and Environmental Safety 72 4 973 979 doi 10 1016 j ecoenv 2008 10 006 PMID 19038453 External links editCyberlipid Fatty Alcohols and Aldehydes Archived from the original on 2012 06 25 Retrieved 2007 02 06 General overview of fatty alcohols with references CONDEA Dr Z Presents All about fatty alcohols PDF Archived from the original PDF on 2007 09 27 Retrieved 2007 02 06 Retrieved from https en wikipedia org w index php title Fatty alcohol amp oldid 1199040443, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.