fbpx
Wikipedia

Electron electric dipole moment

The electron electric dipole moment de is an intrinsic property of an electron such that the potential energy is linearly related to the strength of the electric field:

The electron's electric dipole moment (EDM) must be collinear with the direction of the electron's magnetic moment (spin).[1] Within the Standard Model of elementary particle physics, such a dipole is predicted to be non-zero but very small, at most 10−38 e⋅cm,[2] where e stands for the elementary charge. The discovery of a substantially larger electron electric dipole moment would imply a violation of both parity invariance and time reversal invariance.[3][4]

Implications for Standard Model and extensions edit

In the Standard Model, the electron EDM arises from the CP-violating components of the CKM matrix. The moment is very small because the CP violation involves quarks, not electrons directly, so it can only arise by quantum processes where virtual quarks are created, interact with the electron, and then are annihilated.[2][a]

If neutrinos are Majorana particles, a larger EDM (around 10−33 e⋅cm) is possible in the Standard Model.[2]

Many extensions to the Standard Model have been proposed in the past two decades. These extensions generally predict larger values for the electron EDM. For instance, the various technicolor models predict |de| that ranges from 10−27 to 10−29 e⋅cm.[citation needed] Some supersymmetric models predict that |de| > 10−26 e⋅cm[5] but some other parameter choices or other supersymmetric models lead to smaller predicted values. The present experimental limit therefore eliminates some of these technicolor/supersymmetric theories, but not all. Further improvements, or a positive result,[6] would place further limits on which theory takes precedence.

Formal definition edit

As the electron has a net charge, the definition of its electric dipole moment is ambiguous in that

 

depends on the point   about which the moment of the charge distribution   is taken. If we were to choose   to be the center of charge, then   would be identically zero. A more interesting choice would be to take   as the electron's center of mass evaluated in the frame in which the electron is at rest.

Classical notions such as the center of charge and mass are, however, hard to make precise for a quantum elementary particle. In practice the definition used by experimentalists comes from the form factors   appearing in the matrix element[7]

 

of the electromagnetic current operator between two on-shell states with Lorentz invariant phase space normalization in which

 

Here   and   are 4-spinor solutions of the Dirac equation normalized so that  , and   is the momentum transfer from the current to the electron. The   form factor   is the electron's charge,   is its static magnetic dipole moment, and   provides the formal definition of the electron's electric dipole moment. The remaining form factor   would, if nonzero, be the anapole moment.

Experimental measurements edit

Electron EDMs are usually not measured on free electrons, but instead on bound, unpaired valence electrons inside atoms and molecules. In these, one can observe the effect of   as a slight shift of spectral lines. The sensitivity to   scales approximately with the nuclear charge cubed.[8] For this reason, electron EDM searches almost always are conducted on systems involving heavy elements.

To date, no experiment has found a non-zero electron EDM. As of 2020 the Particle Data Group publishes its value as |de| < 0.11×10−28 e⋅cm.[9] Here is a list of some electron EDM experiments after 2000 with published results:

List of Electron EDM Experiments
Year Location Principal Investigators Method Species Experimental upper limit on |de|
2002 University of California, Berkeley Eugene Commins, David DeMille Atomic beam Tl 1.6×10−27 e⋅cm[10]
2011 Imperial College London Edward Hinds, Ben Sauer Molecular beam YbF 1.1×10−27 e⋅cm[11]
2014 Harvard-Yale
(ACME I experiment)
David DeMille, John Doyle, Gerald Gabrielse Molecular beam ThO 8.7×10−29 e⋅cm[12]
2017 JILA Eric Cornell, Jun Ye Ion trap HfF+ 1.3×10−28 e⋅cm[13]
2018 Harvard-Yale
(ACME II experiment)
David DeMille, John Doyle, Gerald Gabrielse Molecular beam ThO 1.1×10−29 e⋅cm[14]
2022 JILA Eric Cornell, Jun Ye Ion trap HfF+ 4.1×10−30 e⋅cm[15] [16]


The ACME collaboration is, as of 2020, developing a further version of the ACME experiment series. The latest experiment is called Advanced ACME or ACME III and it aims to improve the limit on electron EDM by one to two orders of magnitude.[17]

Future proposed experiments edit

Besides the above groups, electron EDM experiments are being pursued or proposed by the following groups:

See also edit

Footnotes edit

  1. ^ More precisely, a non-zero EDM does not arise until the level of four-loop Feynman diagrams and higher.[2]

References edit

  1. ^ Eckel, S.; Sushkov, A.O.; Lamoreaux, S.K. (2012). "Limit on the electron electric dipole moment using paramagnetic ferroelectric Eu0.5Ba0.5TiO3". Physical Review Letters. 109 (19): 193003. arXiv:1208.4420. Bibcode:2012PhRvL.109s3003E. doi:10.1103/PhysRevLett.109.193003. PMID 23215379. S2CID 35411253.
  2. ^ a b c d Pospelov, M.; Ritz, A. (2005). "Electric dipole moments as probes of new physics". Annals of Physics. 318 (1): 119–169. arXiv:hep-ph/0504231. Bibcode:2005AnPhy.318..119P. doi:10.1016/j.aop.2005.04.002. S2CID 13827759.
  3. ^ Khriplovich, I.B.; Lamoreaux, S.K. (1997). CP violation without strangeness: Electric dipole moments of particles, atoms, and molecules. Springer-Verlag.
  4. ^ P. R. Bunker and P. Jensen (2005), Fundamentals of Molecular Symmetry (CRC Press) ISBN 0-7503-0941-5[1] Chapter 15
  5. ^ Arnowitt, R.; Dutta, B.; Santoso, Y. (2001). "Supersymmetric phases, the electron electric dipole moment and the muon magnetic moment". Physical Review D. 64 (11): 113010. arXiv:hep-ph/0106089. Bibcode:2001PhRvD..64k3010A. doi:10.1103/PhysRevD.64.113010. S2CID 17341766.
  6. ^ "Ultracold Atomic Physics Group". Physics. U. Texas. Retrieved 13 November 2015.
  7. ^ Nowakowski, M.; Paschos, E.A.; Rodriguez, J.M. (2005). "All electromagnetic form factors". European Journal of Physics. 26 (4): 545–560. arXiv:physics/0402058. Bibcode:2005EJPh...26..545N. doi:10.1088/0143-0807/26/4/001. S2CID 119097762.
  8. ^ Alarcon, Ricardo; Alexander, Jim; Anastassopoulos, Vassilis; Aoki, Takatoshi; Baartman, Rick; Baeßler, Stefan; Bartoszek, Larry; Beck, Douglas H.; Bedeschi, Franco; Berger, Robert; Berz, Martin; Bethlem, Hendrick L.; Bhattacharya, Tanmoy; Blaskiewicz, Michael; Blum, Thomas (2022-04-04). "Electric dipole moments and the search for new physics". arXiv:2203.08103 [hep-ph].
  9. ^ "Electron listing" (PDF). Particle Data Group. Lawrence Berkeley Laboratory. 2020.
  10. ^ Regan, B.C.; Commins, Eugene D.; Schmidt, Christian J.; DeMille, David (1 February 2002). "New Limit on the Electron Electric Dipole Moment". Physical Review Letters. 88 (7): 071805. Bibcode:2002PhRvL..88g1805R. doi:10.1103/PhysRevLett.88.071805. PMID 11863886. S2CID 32396668.
  11. ^ Hudson, J.J.; Kara, D.M.; Smallman, I.J.; Sauer, B.E.; Tarbutt, M.R.; Hinds, E.A. (2011). "Improved measurement of the shape of the electron" (PDF). Nature. 473 (7348): 493–496. Bibcode:2011Natur.473..493H. doi:10.1038/nature10104. hdl:10044/1/19405. PMID 21614077. S2CID 205224996.
  12. ^ The ACME Collaboration (January 2014). (PDF). Science. 343 (6168): 269–272. arXiv:1310.7534. Bibcode:2014Sci...343..269B. doi:10.1126/science.1248213. PMID 24356114. S2CID 564518. Archived from the original (PDF) on 2015-04-27. Retrieved 2014-06-24.
  13. ^ Cairncross, William B.; Gresh, Daniel N.; Grau, Matt; Cossel, Kevin C.; Roussy, Tanya S.; Ni, Yiqi; Zhou, Yan; Ye, Jun; Cornell, Eric A. (2017-10-09). "Precision Measurement of the Electron's Electric Dipole Moment Using Trapped Molecular Ions". Physical Review Letters. 119 (15): 153001. arXiv:1704.07928. Bibcode:2017PhRvL.119o3001C. doi:10.1103/PhysRevLett.119.153001. PMID 29077451. S2CID 44043558.
  14. ^ The ACME Collaboration (October 2018). "Improved Limit on the Electric Dipole Moment of the Electron" (PDF). Nature. 562 (7727): 355–360. Bibcode:2018Natur.562..355A. doi:10.1038/s41586-018-0599-8. PMID 30333583. S2CID 52985540.
  15. ^ Roussy, Tanya S.; Caldwell, Luke; Wright, Trevor; Cairncross, William B.; Shagam, Yuval; Ng, Kia Boon; Schlossberger, Noah; Park, Sun Yool; Wang, Anzhou; Ye, Jun; Cornell, Eric A. (2022-12-22). "A new bound on the electron's electric dipole moment". arXiv:2212.11841.
  16. ^ Roussy, Tanya S.; Caldwell, Luke; Wright, Trevor; Cairncross, William B.; Shagam, Yuval; Ng, Kia Boon; Schlossberger, Noah; Park, Sun Yool; Wang, Anzhou; Ye, Jun; Cornell, Eric A. (2023-07-06), "A new bound on the electron's electric dipole moment", Science, 381 (6653): 46–50, doi:10.1126/science.adg4084
  17. ^ "ACME Electron EDM".
  18. ^ Aggarwal, Parul; Bethlem, Hendrick L.; Borschevsky, Anastasia; Denis, Malika; Esajas, Kevin; Haase, Pi A.B.; Hao, Yongliang; Hoekstra, Steven; Jungmann, Klaus; Meijknecht, Thomas B.; Mooij, Maarten C.; Timmermans, Rob G.E.; Ubachs, Wim; Willmann, Lorenz; Zapara, Artem (2018). "Measuring the electric dipole moment of the electron in BaF". The European Physical Journal D. 72 (11). arXiv:1804.10012. doi:10.1140/epjd/e2018-90192-9. S2CID 96439955.
  19. ^ Kozyryev, Ivan; Hutzler, Nicholas R. (2017-09-28). "Precision Measurement of Time-Reversal Symmetry Violation with Laser-Cooled Polyatomic Molecules". Physical Review Letters. 119 (13): 133002. arXiv:1705.11020. Bibcode:2017PhRvL.119m3002K. doi:10.1103/PhysRevLett.119.133002. PMID 29341669. S2CID 33254969.
  20. ^ Vutha, A.C.; Horbatsch, M.; Hessels, E.A. (2018-01-05). "Oriented polar molecules in a solid inert-gas matrix: A proposed method for measuring the electric dipole moment of the electron". Atoms. 6 (1): 3. arXiv:1710.08785. Bibcode:2018Atoms...6....3V. doi:10.3390/atoms6010003. S2CID 3349485.
  21. ^ "Search for the Electron EDM Using Cs and Rb in Optical Lattice Traps". Penn State. Retrieved 2022-09-09.
  22. ^ "Report Summary | TRIUMF : Canada's National Laboratory for Particle and Nuclear Physics". mis.triumf.ca. Retrieved 2022-09-09.
  23. ^ "Moment dipolaire électrique des électrons à l'aide de Cs en matrice cryogénique - LAC". www.lac.universite-paris-saclay.fr. Retrieved 2022-09-09.

electron, electric, dipole, moment, electron, electric, dipole, moment, intrinsic, property, electron, such, that, potential, energy, linearly, related, strength, electric, field, displaystyle, mathbf, cdot, mathbf, electron, electric, dipole, moment, must, co. The electron electric dipole moment de is an intrinsic property of an electron such that the potential energy is linearly related to the strength of the electric field U d e E displaystyle U mathbf d rm e cdot mathbf E The electron s electric dipole moment EDM must be collinear with the direction of the electron s magnetic moment spin 1 Within the Standard Model of elementary particle physics such a dipole is predicted to be non zero but very small at most 10 38 e cm 2 where e stands for the elementary charge The discovery of a substantially larger electron electric dipole moment would imply a violation of both parity invariance and time reversal invariance 3 4 Contents 1 Implications for Standard Model and extensions 2 Formal definition 3 Experimental measurements 3 1 Future proposed experiments 4 See also 5 Footnotes 6 ReferencesImplications for Standard Model and extensions editIn the Standard Model the electron EDM arises from the CP violating components of the CKM matrix The moment is very small because the CP violation involves quarks not electrons directly so it can only arise by quantum processes where virtual quarks are created interact with the electron and then are annihilated 2 a If neutrinos are Majorana particles a larger EDM around 10 33 e cm is possible in the Standard Model 2 Many extensions to the Standard Model have been proposed in the past two decades These extensions generally predict larger values for the electron EDM For instance the various technicolor models predict de that ranges from 10 27 to 10 29 e cm citation needed Some supersymmetric models predict that de gt 10 26 e cm 5 but some other parameter choices or other supersymmetric models lead to smaller predicted values The present experimental limit therefore eliminates some of these technicolor supersymmetric theories but not all Further improvements or a positive result 6 would place further limits on which theory takes precedence Formal definition editAs the electron has a net charge the definition of its electric dipole moment is ambiguous in that d e r r 0 r r d 3 r displaystyle mathbf d rm e int mathbf r mathbf r 0 rho mathbf r d 3 mathbf r nbsp depends on the point r 0 displaystyle mathbf r 0 nbsp about which the moment of the charge distribution r r displaystyle rho mathbf r nbsp is taken If we were to choose r 0 displaystyle mathbf r 0 nbsp to be the center of charge then d e displaystyle mathbf d rm e nbsp would be identically zero A more interesting choice would be to take r 0 displaystyle mathbf r 0 nbsp as the electron s center of mass evaluated in the frame in which the electron is at rest Classical notions such as the center of charge and mass are however hard to make precise for a quantum elementary particle In practice the definition used by experimentalists comes from the form factors F i q 2 displaystyle F i q 2 nbsp appearing in the matrix element 7 p f j m p i u p f F 1 q 2 g m i s m n 2 m e q n F 2 q 2 i ϵ m n r s s r s q n F 3 q 2 1 2 m e q m q 2 2 m e g m g 5 F 4 q 2 u p i displaystyle langle p f j mu p i rangle bar u p f left F 1 q 2 gamma mu frac i sigma mu nu 2m rm e q nu F 2 q 2 i epsilon mu nu rho sigma sigma rho sigma q nu F 3 q 2 frac 1 2m rm e left q mu frac q 2 2m e gamma mu right gamma 5 F 4 q 2 right u p i nbsp of the electromagnetic current operator between two on shell states with Lorentz invariant phase space normalization in which p f p i 2 E 2 p 3 d 3 p f p i displaystyle langle p f vert p i rangle 2E 2 pi 3 delta 3 bf p f bf p i nbsp Here u p i displaystyle u p i nbsp and u p f displaystyle bar u p f nbsp are 4 spinor solutions of the Dirac equation normalized so that u u 2 m e displaystyle bar u u 2m e nbsp and q m p f m p i m displaystyle q mu p f mu p i mu nbsp is the momentum transfer from the current to the electron The q 2 0 displaystyle q 2 0 nbsp form factor F 1 0 Q displaystyle F 1 0 Q nbsp is the electron s charge m F 1 0 F 2 0 2 m e displaystyle mu tfrac F 1 0 F 2 0 2m rm e nbsp is its static magnetic dipole moment and F 3 0 2 m e displaystyle tfrac F 3 0 2m rm e nbsp provides the formal definition of the electron s electric dipole moment The remaining form factor F 4 q 2 displaystyle F 4 q 2 nbsp would if nonzero be the anapole moment Experimental measurements editElectron EDMs are usually not measured on free electrons but instead on bound unpaired valence electrons inside atoms and molecules In these one can observe the effect of U d e E displaystyle U mathbf d rm e cdot mathbf E nbsp as a slight shift of spectral lines The sensitivity to d e displaystyle mathbf d rm e nbsp scales approximately with the nuclear charge cubed 8 For this reason electron EDM searches almost always are conducted on systems involving heavy elements To date no experiment has found a non zero electron EDM As of 2020 the Particle Data Group publishes its value as de lt 0 11 10 28 e cm 9 Here is a list of some electron EDM experiments after 2000 with published results List of Electron EDM Experiments Year Location Principal Investigators Method Species Experimental upper limit on de 2002 University of California Berkeley Eugene Commins David DeMille Atomic beam Tl 1 6 10 27 e cm 10 2011 Imperial College London Edward Hinds Ben Sauer Molecular beam YbF 1 1 10 27 e cm 11 2014 Harvard Yale ACME I experiment David DeMille John Doyle Gerald Gabrielse Molecular beam ThO 8 7 10 29 e cm 12 2017 JILA Eric Cornell Jun Ye Ion trap HfF 1 3 10 28 e cm 13 2018 Harvard Yale ACME II experiment David DeMille John Doyle Gerald Gabrielse Molecular beam ThO 1 1 10 29 e cm 14 2022 JILA Eric Cornell Jun Ye Ion trap HfF 4 1 10 30 e cm 15 16 The ACME collaboration is as of 2020 developing a further version of the ACME experiment series The latest experiment is called Advanced ACME or ACME III and it aims to improve the limit on electron EDM by one to two orders of magnitude 17 Future proposed experiments edit Besides the above groups electron EDM experiments are being pursued or proposed by the following groups University of Groningen BaF molecular beam 18 John Doyle Harvard University Nicholas Hutzler California Institute of Technology and Timothy Steimle Arizona State University YbOH molecular trap 19 Amar Vutha University of Toronto Eric Hessels York University oriented polar molecules in an inert gas matrix 20 Pennsylvania State University Cs and Rb atoms trapped inside an optical lattice 21 TRIUMF Fountain of laser cooled Fr 22 EDMMA collaboration Cs in an inert gas matrix 23 See also editNeutron electric dipole moment Electron magnetic moment Anomalous electric dipole moment Anomalous magnetic dipole moment Electric dipole spin resonance Parity physics Parity violation CP violation Charge conjugation T symmetryFootnotes edit More precisely a non zero EDM does not arise until the level of four loop Feynman diagrams and higher 2 References edit Eckel S Sushkov A O Lamoreaux S K 2012 Limit on the electron electric dipole moment using paramagnetic ferroelectric Eu0 5Ba0 5TiO3 Physical Review Letters 109 19 193003 arXiv 1208 4420 Bibcode 2012PhRvL 109s3003E doi 10 1103 PhysRevLett 109 193003 PMID 23215379 S2CID 35411253 a b c d Pospelov M Ritz A 2005 Electric dipole moments as probes of new physics Annals of Physics 318 1 119 169 arXiv hep ph 0504231 Bibcode 2005AnPhy 318 119P doi 10 1016 j aop 2005 04 002 S2CID 13827759 Khriplovich I B Lamoreaux S K 1997 CP violation without strangeness Electric dipole moments of particles atoms and molecules Springer Verlag P R Bunker and P Jensen 2005 Fundamentals of Molecular Symmetry CRC Press ISBN 0 7503 0941 5 1 Chapter 15 Arnowitt R Dutta B Santoso Y 2001 Supersymmetric phases the electron electric dipole moment and the muon magnetic moment Physical Review D 64 11 113010 arXiv hep ph 0106089 Bibcode 2001PhRvD 64k3010A doi 10 1103 PhysRevD 64 113010 S2CID 17341766 Ultracold Atomic Physics Group Physics U Texas Retrieved 13 November 2015 Nowakowski M Paschos E A Rodriguez J M 2005 All electromagnetic form factors European Journal of Physics 26 4 545 560 arXiv physics 0402058 Bibcode 2005EJPh 26 545N doi 10 1088 0143 0807 26 4 001 S2CID 119097762 Alarcon Ricardo Alexander Jim Anastassopoulos Vassilis Aoki Takatoshi Baartman Rick Baessler Stefan Bartoszek Larry Beck Douglas H Bedeschi Franco Berger Robert Berz Martin Bethlem Hendrick L Bhattacharya Tanmoy Blaskiewicz Michael Blum Thomas 2022 04 04 Electric dipole moments and the search for new physics arXiv 2203 08103 hep ph Electron listing PDF Particle Data Group Lawrence Berkeley Laboratory 2020 Regan B C Commins Eugene D Schmidt Christian J DeMille David 1 February 2002 New Limit on the Electron Electric Dipole Moment Physical Review Letters 88 7 071805 Bibcode 2002PhRvL 88g1805R doi 10 1103 PhysRevLett 88 071805 PMID 11863886 S2CID 32396668 Hudson J J Kara D M Smallman I J Sauer B E Tarbutt M R Hinds E A 2011 Improved measurement of the shape of the electron PDF Nature 473 7348 493 496 Bibcode 2011Natur 473 493H doi 10 1038 nature10104 hdl 10044 1 19405 PMID 21614077 S2CID 205224996 The ACME Collaboration January 2014 Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron PDF Science 343 6168 269 272 arXiv 1310 7534 Bibcode 2014Sci 343 269B doi 10 1126 science 1248213 PMID 24356114 S2CID 564518 Archived from the original PDF on 2015 04 27 Retrieved 2014 06 24 Cairncross William B Gresh Daniel N Grau Matt Cossel Kevin C Roussy Tanya S Ni Yiqi Zhou Yan Ye Jun Cornell Eric A 2017 10 09 Precision Measurement of the Electron s Electric Dipole Moment Using Trapped Molecular Ions Physical Review Letters 119 15 153001 arXiv 1704 07928 Bibcode 2017PhRvL 119o3001C doi 10 1103 PhysRevLett 119 153001 PMID 29077451 S2CID 44043558 The ACME Collaboration October 2018 Improved Limit on the Electric Dipole Moment of the Electron PDF Nature 562 7727 355 360 Bibcode 2018Natur 562 355A doi 10 1038 s41586 018 0599 8 PMID 30333583 S2CID 52985540 Roussy Tanya S Caldwell Luke Wright Trevor Cairncross William B Shagam Yuval Ng Kia Boon Schlossberger Noah Park Sun Yool Wang Anzhou Ye Jun Cornell Eric A 2022 12 22 A new bound on the electron s electric dipole moment arXiv 2212 11841 Roussy Tanya S Caldwell Luke Wright Trevor Cairncross William B Shagam Yuval Ng Kia Boon Schlossberger Noah Park Sun Yool Wang Anzhou Ye Jun Cornell Eric A 2023 07 06 A new bound on the electron s electric dipole moment Science 381 6653 46 50 doi 10 1126 science adg4084 ACME Electron EDM Aggarwal Parul Bethlem Hendrick L Borschevsky Anastasia Denis Malika Esajas Kevin Haase Pi A B Hao Yongliang Hoekstra Steven Jungmann Klaus Meijknecht Thomas B Mooij Maarten C Timmermans Rob G E Ubachs Wim Willmann Lorenz Zapara Artem 2018 Measuring the electric dipole moment of the electron in BaF The European Physical Journal D 72 11 arXiv 1804 10012 doi 10 1140 epjd e2018 90192 9 S2CID 96439955 Kozyryev Ivan Hutzler Nicholas R 2017 09 28 Precision Measurement of Time Reversal Symmetry Violation with Laser Cooled Polyatomic Molecules Physical Review Letters 119 13 133002 arXiv 1705 11020 Bibcode 2017PhRvL 119m3002K doi 10 1103 PhysRevLett 119 133002 PMID 29341669 S2CID 33254969 Vutha A C Horbatsch M Hessels E A 2018 01 05 Oriented polar molecules in a solid inert gas matrix A proposed method for measuring the electric dipole moment of the electron Atoms 6 1 3 arXiv 1710 08785 Bibcode 2018Atoms 6 3V doi 10 3390 atoms6010003 S2CID 3349485 Search for the Electron EDM Using Cs and Rb in Optical Lattice Traps Penn State Retrieved 2022 09 09 Report Summary TRIUMF Canada s National Laboratory for Particle and Nuclear Physics mis triumf ca Retrieved 2022 09 09 Moment dipolaire electrique des electrons a l aide de Cs en matrice cryogenique LAC www lac universite paris saclay fr Retrieved 2022 09 09 Retrieved from https en wikipedia org w index php title Electron electric dipole moment amp oldid 1179618964, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.