fbpx
Wikipedia

Ehrenfest paradox

The Ehrenfest paradox concerns the rotation of a "rigid" disc in the theory of relativity.

In its original 1909 formulation as presented by Paul Ehrenfest in relation to the concept of Born rigidity within special relativity,[1] it discusses an ideally rigid cylinder that is made to rotate about its axis of symmetry.[2] The radius R as seen in the laboratory frame is always perpendicular to its motion and should therefore be equal to its value R0 when stationary. However, the circumference (2πR) should appear Lorentz-contracted to a smaller value than at rest, by the usual factor γ. This leads to the contradiction that R = R0 and R < R0.[3]

The paradox has been deepened further by Albert Einstein, who showed that since measuring rods aligned along the periphery and moving with it should appear contracted, more would fit around the circumference, which would thus measure greater than 2πR. This indicates that geometry is non-Euclidean for rotating observers, and was important for Einstein's development of general relativity.[4]

Any rigid object made from real material that is rotating with a transverse velocity close to that material's speed of sound must exceed the point of rupture due to centrifugal force, because centrifugal pressure can not exceed the shear modulus of material.

where is speed of sound, is density and is shear modulus. Therefore, when considering relativistic speeds, it is only a thought experiment. Neutron-degenerate matter may allow velocities close to the speed of light, since the speed of a neutron-star oscillation is relativistic (though these bodies cannot strictly be said to be "rigid").

Essence of the paradox edit

Imagine a disk of radius R rotating with constant angular velocity  .

 
Ehrenfest paradox – Circumference of a rotating disk should contract but not the radius, as radius is perpendicular to the direction of motion.

The reference frame is fixed to the stationary center of the disk. Then the magnitude of the relative velocity of any point in the circumference of the disk is  . So the circumference will undergo Lorentz contraction by a factor of  .

However, since the radius is perpendicular to the direction of motion, it will not undergo any contraction. So

 

This is paradoxical, since in accordance with Euclidean geometry, it should be exactly equal to π.

Ehrenfest's argument edit

Ehrenfest considered an ideal Born-rigid cylinder that is made to rotate. Assuming that the cylinder does not expand or contract, its radius stays the same. But measuring rods laid out along the circumference   should be Lorentz-contracted to a smaller value than at rest, by the usual factor γ. This leads to the paradox that the rigid measuring rods would have to separate from one another due to Lorentz contraction; the discrepancy noted by Ehrenfest seems to suggest that a rotated Born rigid disk should shatter.

Thus Ehrenfest argued by reductio ad absurdum that Born rigidity is not generally compatible with special relativity. According to special relativity an object cannot be spun up from a non-rotating state while maintaining Born rigidity, but once it has achieved a constant nonzero angular velocity it does maintain Born rigidity without violating special relativity, and then (as Einstein later showed) a disk-riding observer will measure a circumference:[3]  

Einstein and general relativity edit

The rotating disc and its connection with rigidity was also an important thought experiment for Albert Einstein in developing general relativity.[4] He referred to it in several publications in 1912, 1916, 1917, 1922 and drew the insight from it, that the geometry of the disc becomes non-Euclidean for a co-rotating observer. Einstein wrote (1922):[5]

66ff: Imagine a circle drawn about the origin in the x'y' plane of K' and a diameter of this circle. Imagine, further, that we have given a large number of rigid rods, all equal to each other. We suppose these laid in series along the periphery and the diameter of the circle, at rest relatively to K'. If U is the number of these rods along the periphery, D the number along the diameter, then, if K' does not rotate relatively to K, we shall have  . But if K' rotates we get a different result. Suppose that at a definite time t of K we determine the ends of all the rods. With respect to K all the rods upon the periphery experience the Lorentz contraction, but the rods upon the diameter do not experience this contraction (along their lengths!). It therefore follows that  .

It therefore follows that the laws of configuration of rigid bodies with respect to K' do not agree with the laws of configuration of rigid bodies that are in accordance with Euclidean geometry. If, further, we place two similar clocks (rotating with K'), one upon the periphery, and the other at the centre of the circle, then, judged from K, the clock on the periphery will go slower than the clock at the centre. The same thing must take place, judged from K' if we define time with respect to K' in a not wholly unnatural way, that is, in such a way that the laws with respect to K' depend explicitly upon the time. Space and time, therefore, cannot be defined with respect to K' as they were in the special theory of relativity with respect to inertial systems. But, according to the principle of equivalence, K' is also to be considered as a system at rest, with respect to which there is a gravitational field (field of centrifugal force, and force of Coriolis). We therefore arrive at the result: the gravitational field influences and even determines the metrical laws of the space-time continuum. If the laws of configuration of ideal rigid bodies are to be expressed geometrically, then in the presence of a gravitational field the geometry is not Euclidean.

Brief history edit

Citations to the papers mentioned below (and many which are not) can be found in a paper by Øyvind Grøn which is available on-line.[3]

 
This figure shows the world line of a Langevin observer (red helical curve). The figure also depicts the light cones at several events with the frame field of the Langevin observer passing through that event.
  • 1909: Max Born introduces a notion of rigid motion in special relativity.[6]
  • 1909: After studying Born's notion of rigidity, Paul Ehrenfest demonstrated by means of a paradox about a cylinder that goes from rest to rotation, that most motions of extended bodies cannot be Born rigid.[1]
  • 1910: Gustav Herglotz and Fritz Noether independently elaborated on Born's model and showed (Herglotz–Noether theorem) that Born rigidity only allows three degrees of freedom for bodies in motion. For instance, it's possible that a rigid body is executing uniform rotation, yet accelerated rotation is impossible. So a Born rigid body cannot be brought from a state of rest into rotation, confirming Ehrenfest's result.[7][8]
  • 1910: Max Planck calls attention to the fact that one should not confuse the problem of the contraction of a disc due to spinning it up, with that of what disk-riding observers will measure as compared to stationary observers. He suggests that resolving the first problem will require introducing some material model and employing the theory of elasticity.[9]
  • 1910: Theodor Kaluza points out that there is nothing inherently paradoxical about the static and disk-riding observers obtaining different results for the circumference. This does however imply, Kaluza argues, that "the geometry of the rotating disk" is non-euclidean. He asserts without proof that this geometry is in fact essentially just the geometry of the hyperbolic plane.[10]
  • 1911: Vladimir Varićak argued that the paradox only occurs in the Lorentz standpoint, where rigid bodies contract, but not if the contraction is "caused by the manner of our clock-regulation and length-measurement". Einstein published a rebuttal, denying that his viewpoint was different from Lorentz's.
  • 1911: Max von Laue shows, that an accelerated body has an infinite number of degrees of freedom, thus no rigid bodies can exist in special relativity.[11]
  • 1916: While writing up his new general theory of relativity, Albert Einstein notices that disk-riding observers measure a longer circumference, C = 2πr/1−v2. That is, because rulers moving parallel to their length axis appear shorter as measured by static observers, the disk-riding observers can fit more smaller rulers of a given length around the circumference than stationary observers could.
  • 1922: In his seminal book "The Mathematical Theory of Relativity" (p. 113), A.S.Eddington calculates a contraction of the radius of the rotating disc (compared to stationary scales) of one quarter of the 'Lorentz contraction' factor applied to the circumference.
  • 1935: Paul Langevin essentially introduces a moving frame (or frame field in modern language) corresponding to the family of disk-riding observers, now called Langevin observers. (See the figure.) He also shows that distances measured by nearby Langevin observers correspond to a certain Riemannian metric, now called the Langevin-Landau-Lifschitz metric.[12]
  • 1937: Jan Weyssenhoff (now perhaps best known for his work on Cartan connections with zero curvature and nonzero torsion) notices that the Langevin observers are not hypersurface orthogonal. Therefore, the Langevin-Landau-Lifschitz metric is defined, not on some hyperslice of Minkowski spacetime, but on the quotient space obtained by replacing each world line with a point. This gives a three-dimensional smooth manifold which becomes a Riemannian manifold when we add the metric structure.
  • 1946: Nathan Rosen shows that inertial observers instantaneously comoving with Langevin observers also measure small distances given by Langevin-Landau-Lifschitz metric.
  • 1946: E. L. Hill analyzes relativistic stresses in a material in which (roughly speaking) the speed of sound equals the speed of light and shows these just cancel the radial expansion due to centrifugal force (in any physically realistic material, the relativistic effects lessen but do not cancel the radial expansion). Hill explains errors in earlier analyses by Arthur Eddington and others.[13]
  • 1952: C. Møller attempts to study null geodesics from the point of view of rotating observers (but incorrectly tries to use slices rather than the appropriate quotient space)
  • 1968: V. Cantoni provides a straightforward, purely kinematical explanation of the paradox by showing that "one of the assumptions implicitly contained in the statement of Ehrenfest's paradox is not correct, the assumption being that the geometry of Minkowski space-time allows the passage of the disk from rest to rotation in such a fashion that both the length of the radius and the length of the periphery, measured with respect to the comoving frame of reference, remain unchanged"
  • 1975: Øyvind Grøn writes a classic review paper about solutions of the "paradox".
  • 1977: Grünbaum and Janis introduce a notion of physically realizable "non-rigidity" which can be applied to the spin-up of an initially non-rotating disk (this notion is not physically realistic for real materials from which one might make a disk, but it is useful for thought experiments).[14]
  • 1981: Grøn notices that Hooke's law is not consistent with Lorentz transformations and introduces a relativistic generalization.
  • 1997: T. A. Weber explicitly introduces the frame field associated with Langevin observers.
  • 2000: Hrvoje Nikolić points out that the paradox disappears when (in accordance with general theory of relativity) each piece of the rotating disk is treated separately, as living in its own local non-inertial frame.
  • 2002: Rizzi and Ruggiero (and Bel) explicitly introduce the quotient manifold mentioned above.
  • 2024: Jitendra Kumar analyzes the paradox for a ring and points out that the resolution depends on how the ring is brought from rest to rotational motion, whether by keeping the rest length of the periphery constant (in which case the periphery tears) or by keeping periphery's length in the inertial frame constant (in which case the periphery physically stretches, increasing its rest length).[15]

Resolution of the paradox edit

Grøn states that the resolution of the paradox stems from the impossibility of synchronizing clocks in a rotating reference frame.[16] If observers on the rotating circumference try to synchronise their clocks around the circumference to establish disc time, there is a time difference between the two end points where they meet.

The modern resolution can be briefly summarized as follows:

  1. Small distances measured by disk-riding observers are described by the Langevin-Landau-Lifschitz metric, which is indeed well approximated (for small angular velocity) by the geometry of the hyperbolic plane, just as Kaluza had claimed.
  2. For physically reasonable materials, during the spin-up phase a real disk expands radially due to centrifugal forces; relativistic corrections partially counteract (but do not cancel) this Newtonian effect. After a steady-state rotation is achieved and the disk has been allowed to relax, the geometry "in the small" is approximately given by the Langevin–Landau–Lifschitz metric.

See also edit

Some other "paradoxes" in special relativity

Notes edit

Citations edit

Works cited edit

  • Einstein, Albert (1922). The Meaning of Relativity. Princeton University Press.
  • Fayngold, Moses (2008). Special Relativity and How it Works (illustrated ed.). John Wiley & Sons. p. 363. ISBN 978-3-527-40607-4.
  • Grøn, Øyvind; Hervik, Sigbjørn (2007). Einstein's General Theory of Relativity. Springer. p. 91. ISBN 978-0-387-69200-5.
  • Stachel, John (1980). "Einstein and the Rigidly Rotating Disk". In Held, A. (ed.). General Relativity and Gravitation. New York: Springer. ISBN 978-0306402661.

A few papers of historical interest edit

  • Born, Max (1909), "Die Theorie des starren Körpers in der Kinematik des Relativitätsprinzips" [The Theory of the Rigid Electron in the Kinematics of the Principle of Relativity], Annalen der Physik (in German), 335 (11): 1–56, Bibcode:1909AnP...335....1B, doi:10.1002/andp.19093351102
  • Ehrenfest, Paul (1909), "Gleichförmige Rotation starrer Körper und Relativitätstheorie"  [Uniform Rotation of Rigid Bodies and the Theory of Relativity], Physikalische Zeitschrift (in German), 10: 918, Bibcode:1909PhyZ...10..918E
  • Grøn, Øyvind (2004). "Space Geometry in a Rotating Reference Frame: A Historical Appraisal" (PDF). In Rizzi, G.; Ruggiero, M. (eds.). Relativity in Rotating Frames. Kluwer. pp. 285–334. ISBN 978-1402018053. (PDF) from the original on 15 June 2016. Retrieved 30 September 2013.
  • Grøn, Øyvind; Hervik, Sigbjørn (2007). Einstein's General Theory of Relativity. Springer. p. 91. ISBN 978-0-387-69200-5.
  • Herglotz, Gustav (1909), "Über den vom Standpunkt des Relativitätsprinzips aus als starr zu bezeichnenden Körper" [On bodies that are to be designated as "rigid" from the standpoint of the relativity principle], Annalen der Physik (in German), 336 (2): 393–415, Bibcode:1910AnP...336..393H, doi:10.1002/andp.19103360208
  • Kaluza, T. (1910). "Zur Relativitätstheorie" [On the Theory of Relativity]. Physikalische Zeitschrift (in German). 11: 977–978.
  • Langevin, P. (1935). "Remarques au sujet de la Note de Prunier". C. R. Acad. Sci. Paris (in French). 200: 48.
  • Laue, M.v. (1911). "Zur Diskussion über den starren Körper in der Relativitätstheorie"  [On the Discussion Concerning Rigid Bodies in the Theory of Relativity]. Physikalische Zeitschrift (in German). 12: 85–87.
  • Noether, Fritz (1910). "Zur Kinematik des starren Körpers in der Relativtheorie". Annalen der Physik (in German). 336 (5): 919–944. Bibcode:1910AnP...336..919N. doi:10.1002/andp.19103360504.
  • Planck, M. (1910). "Gleichförmige Rotation und Lorentz–Kontraktion" [Uniform Rotation and Lorentz Contraction]. Physikalische Zeitschrift (in German). 11: 294.

A few classic "modern" references edit

  • Cantoni (1968). "What is wrong with Relativistic Kinematics?". Il Nuovo Cimento. 57 B (1): 220–223. Bibcode:1968NCimB..57..220C. doi:10.1007/bf02710332. S2CID 119490975.
  • Grøn, Ø. (1975). "Relativistic description of a rotating disk". Am. J. Phys. 43 (10): 869–876. Bibcode:1975AmJPh..43..869G. doi:10.1119/1.9969.
  • Grünbaum, Adolf; Janis, Allen I (1977). "The Geometry of the Rotating Disk in the Special Theory of Relativity". In Reichenbach, Hans (ed.). Hans Reichenbach: Logical Empiricist. Springer Netherlands. pp. 321–339. doi:10.1007/978-94-009-9404-1_11. ISBN 978-94-009-9406-5.
  • Hill, Edward L. (1946). "A note on the relativistic problem of uniform rotation". Physical Review. 69 (9–10)): 488. Bibcode:1946PhRv...69..488H. doi:10.1103/PhysRev.69.488.
  • Lifschitz, E. F.; Landau, L. D. (1980). The Classical Theory of Fields (4th ed.). London: Butterworth-Heinemann. ISBN 978-0-7506-2768-9. See Section 84 and the problem at the end of Section 89.
  • Reichenbach, Hans (1969). Axiomatization of the Theory of Relativity. Berkeley: University of California Press. LCCN 68021540.

Some experimental work and subsequent discussion edit

  • Ashworth, D. G.; Davies, P. A. (1979). "Transformations between inertial and rotating frames of reference". J. Phys. A: Math. Gen. 12 (9): 1425–40. Bibcode:1979JPhA...12.1425A. CiteSeerX 10.1.1.205.6181. doi:10.1088/0305-4470/12/9/011.
  • Ashworth, D. G.; Jennison, R. C. (1976). "Surveying in rotating systems". J. Phys. A: Math. Gen. 9 (1): 35–43. Bibcode:1976JPhA....9...35A. doi:10.1088/0305-4470/9/1/008.
  • Boone, P. F. (1977). "Relativity of rotation". J. Phys. A: Math. Gen. 10 (5): 727–44. Bibcode:1977JPhA...10..727B. doi:10.1088/0305-4470/10/5/007.
  • Davies, P. A. (1976). "Measurements in rotating systems". J. Phys. A: Math. Gen. 9 (6): 951–9. Bibcode:1976JPhA....9..951D. doi:10.1088/0305-4470/9/6/014.
  • Davies, P. A.; Jennison, R. C. (1975). "Experiments involving mirror transponders in rotating frames". J. Phys. A: Math. Gen. 8 (9): 1390–7. Bibcode:1975JPhA....8.1390D. doi:10.1088/0305-4470/8/9/007.

Selected recent sources edit

  • Nikolic, Hrvoje (2000). "Relativistic contraction and related effects in noninertial frames". Phys. Rev. A. 61 (3): 032109. arXiv:gr-qc/9904078. Bibcode:2000PhRvA..61c2109N. doi:10.1103/PhysRevA.61.032109. S2CID 5783649. Studies general non-inertial motion of a point particle and treats rotating disk as a collection of such non-inertial particles. See also the eprint version.
  • Pauri, Massimo; Vallisneri, Michele (2000). "Märzke–Wheeler coordinates for accelerated observers in special relativity". Found. Phys. Lett. 13 (5): 401–425. arXiv:gr-qc/0006095. Bibcode:2000gr.qc.....6095P. doi:10.1023/A:1007861914639. S2CID 15097773. Studies a coordinate chart constructed using radar distance "in the large" from a single Langevin observer. See also the eprint version.
  • Rizzi, G.; Ruggiero, M.L. (2002). "Space geometry of rotating platforms: an operational approach". Found. Phys. 32 (10): 1525–1556. arXiv:gr-qc/0207104. Bibcode:2002gr.qc.....7104R. doi:10.1023/A:1020427318877. S2CID 16826601. They give a precise definition of the "space of the disk" (non-Euclidean), and solve the paradox without extraneous dynamic considerations. See also the eprint version.
  • Ruggiero, M. L.; Rizzi, G. (2004). Relativity in Rotating Frames. Dordrecht: Kluwer. ISBN 978-1-4020-1805-3. This book contains a comprehensive historical survey by Øyvind Grøn, on which the "brief history" in this article is based, and some other papers on the Ehrenfest paradox and related controversies. Hundreds of additional references may be found in this book, particularly the paper by Grøn.
  • Kumar, Jitendra (2024). "Ehrenfest paradox: A careful examination". Am. J. Phys. 92 (2): 140–145. arXiv:2305.07953. Bibcode:2024AmJPh..92..140K. doi:10.1119/5.0153190. Considers two ways by which a ring is brought from rest to rotational motion and resolves the paradox for those two cases. See also the eprint version.

External links edit

  • , by Michael Weiss (1995), from the sci.physics FAQ.
  • , by B. Crowell

ehrenfest, paradox, concerns, rotation, rigid, disc, theory, relativity, original, 1909, formulation, presented, paul, ehrenfest, relation, concept, born, rigidity, within, special, relativity, discusses, ideally, rigid, cylinder, that, made, rotate, about, ax. The Ehrenfest paradox concerns the rotation of a rigid disc in the theory of relativity In its original 1909 formulation as presented by Paul Ehrenfest in relation to the concept of Born rigidity within special relativity 1 it discusses an ideally rigid cylinder that is made to rotate about its axis of symmetry 2 The radius R as seen in the laboratory frame is always perpendicular to its motion and should therefore be equal to its value R0 when stationary However the circumference 2p R should appear Lorentz contracted to a smaller value than at rest by the usual factor g This leads to the contradiction that R R0 and R lt R0 3 The paradox has been deepened further by Albert Einstein who showed that since measuring rods aligned along the periphery and moving with it should appear contracted more would fit around the circumference which would thus measure greater than 2p R This indicates that geometry is non Euclidean for rotating observers and was important for Einstein s development of general relativity 4 Any rigid object made from real material that is rotating with a transverse velocity close to that material s speed of sound must exceed the point of rupture due to centrifugal force because centrifugal pressure can not exceed the shear modulus of material F S m v 2 r S lt m c s 2 r S m G r S r G displaystyle frac F S frac mv 2 rS lt frac mc s 2 rS approx frac mG rS rho approx G where c s displaystyle c s is speed of sound r displaystyle rho is density and G displaystyle G is shear modulus Therefore when considering relativistic speeds it is only a thought experiment Neutron degenerate matter may allow velocities close to the speed of light since the speed of a neutron star oscillation is relativistic though these bodies cannot strictly be said to be rigid Contents 1 Essence of the paradox 2 Ehrenfest s argument 3 Einstein and general relativity 4 Brief history 5 Resolution of the paradox 6 See also 7 Notes 7 1 Citations 8 Works cited 8 1 A few papers of historical interest 8 2 A few classic modern references 8 3 Some experimental work and subsequent discussion 8 4 Selected recent sources 9 External linksEssence of the paradox editImagine a disk of radius R rotating with constant angular velocity w displaystyle omega nbsp nbsp Ehrenfest paradox Circumference of a rotating disk should contract but not the radius as radius is perpendicular to the direction of motion The reference frame is fixed to the stationary center of the disk Then the magnitude of the relative velocity of any point in the circumference of the disk is w R displaystyle omega R nbsp So the circumference will undergo Lorentz contraction by a factor of 1 w R 2 c 2 displaystyle sqrt 1 omega R 2 c 2 nbsp However since the radius is perpendicular to the direction of motion it will not undergo any contraction So c i r c u m f e r e n c e d i a m e t e r 2 p R 1 w R 2 c 2 2 R p 1 w R 2 c 2 displaystyle frac mathrm circumference mathrm diameter frac 2 pi R sqrt 1 omega R 2 c 2 2R pi sqrt 1 omega R 2 c 2 nbsp This is paradoxical since in accordance with Euclidean geometry it should be exactly equal to p Ehrenfest s argument editEhrenfest considered an ideal Born rigid cylinder that is made to rotate Assuming that the cylinder does not expand or contract its radius stays the same But measuring rods laid out along the circumference 2 p R displaystyle 2 pi R nbsp should be Lorentz contracted to a smaller value than at rest by the usual factor g This leads to the paradox that the rigid measuring rods would have to separate from one another due to Lorentz contraction the discrepancy noted by Ehrenfest seems to suggest that a rotated Born rigid disk should shatter Thus Ehrenfest argued by reductio ad absurdum that Born rigidity is not generally compatible with special relativity According to special relativity an object cannot be spun up from a non rotating state while maintaining Born rigidity but once it has achieved a constant nonzero angular velocity it does maintain Born rigidity without violating special relativity and then as Einstein later showed a disk riding observer will measure a circumference 3 C 2 p R 1 v 2 c 2 displaystyle C prime frac 2 pi R sqrt 1 v 2 c 2 nbsp Einstein and general relativity editThe rotating disc and its connection with rigidity was also an important thought experiment for Albert Einstein in developing general relativity 4 He referred to it in several publications in 1912 1916 1917 1922 and drew the insight from it that the geometry of the disc becomes non Euclidean for a co rotating observer Einstein wrote 1922 5 66ff Imagine a circle drawn about the origin in the x y plane of K and a diameter of this circle Imagine further that we have given a large number of rigid rods all equal to each other We suppose these laid in series along the periphery and the diameter of the circle at rest relatively to K If U is the number of these rods along the periphery D the number along the diameter then if K does not rotate relatively to K we shall have U D p displaystyle U D pi nbsp But if K rotates we get a different result Suppose that at a definite time t of K we determine the ends of all the rods With respect to K all the rods upon the periphery experience the Lorentz contraction but the rods upon the diameter do not experience this contraction along their lengths It therefore follows that U D gt p displaystyle U D gt pi nbsp It therefore follows that the laws of configuration of rigid bodies with respect to K do not agree with the laws of configuration of rigid bodies that are in accordance with Euclidean geometry If further we place two similar clocks rotating with K one upon the periphery and the other at the centre of the circle then judged from K the clock on the periphery will go slower than the clock at the centre The same thing must take place judged from K if we define time with respect to K in a not wholly unnatural way that is in such a way that the laws with respect to K depend explicitly upon the time Space and time therefore cannot be defined with respect to K as they were in the special theory of relativity with respect to inertial systems But according to the principle of equivalence K is also to be considered as a system at rest with respect to which there is a gravitational field field of centrifugal force and force of Coriolis We therefore arrive at the result the gravitational field influences and even determines the metrical laws of the space time continuum If the laws of configuration of ideal rigid bodies are to be expressed geometrically then in the presence of a gravitational field the geometry is not Euclidean Brief history editCitations to the papers mentioned below and many which are not can be found in a paper by Oyvind Gron which is available on line 3 nbsp This figure shows the world line of a Langevin observer red helical curve The figure also depicts the light cones at several events with the frame field of the Langevin observer passing through that event 1909 Max Born introduces a notion of rigid motion in special relativity 6 1909 After studying Born s notion of rigidity Paul Ehrenfest demonstrated by means of a paradox about a cylinder that goes from rest to rotation that most motions of extended bodies cannot be Born rigid 1 1910 Gustav Herglotz and Fritz Noether independently elaborated on Born s model and showed Herglotz Noether theorem that Born rigidity only allows three degrees of freedom for bodies in motion For instance it s possible that a rigid body is executing uniform rotation yet accelerated rotation is impossible So a Born rigid body cannot be brought from a state of rest into rotation confirming Ehrenfest s result 7 8 1910 Max Planck calls attention to the fact that one should not confuse the problem of the contraction of a disc due to spinning it up with that of what disk riding observers will measure as compared to stationary observers He suggests that resolving the first problem will require introducing some material model and employing the theory of elasticity 9 1910 Theodor Kaluza points out that there is nothing inherently paradoxical about the static and disk riding observers obtaining different results for the circumference This does however imply Kaluza argues that the geometry of the rotating disk is non euclidean He asserts without proof that this geometry is in fact essentially just the geometry of the hyperbolic plane 10 1911 Vladimir Varicak argued that the paradox only occurs in the Lorentz standpoint where rigid bodies contract but not if the contraction is caused by the manner of our clock regulation and length measurement Einstein published a rebuttal denying that his viewpoint was different from Lorentz s 1911 Max von Laue shows that an accelerated body has an infinite number of degrees of freedom thus no rigid bodies can exist in special relativity 11 1916 While writing up his new general theory of relativity Albert Einstein notices that disk riding observers measure a longer circumference C 2pr 1 v2 That is because rulers moving parallel to their length axis appear shorter as measured by static observers the disk riding observers can fit more smaller rulers of a given length around the circumference than stationary observers could 1922 In his seminal book The Mathematical Theory of Relativity p 113 A S Eddington calculates a contraction of the radius of the rotating disc compared to stationary scales of one quarter of the Lorentz contraction factor applied to the circumference 1935 Paul Langevin essentially introduces a moving frame or frame field in modern language corresponding to the family of disk riding observers now called Langevin observers See the figure He also shows that distances measured by nearby Langevin observers correspond to a certain Riemannian metric now called the Langevin Landau Lifschitz metric 12 1937 Jan Weyssenhoff now perhaps best known for his work on Cartan connections with zero curvature and nonzero torsion notices that the Langevin observers are not hypersurface orthogonal Therefore the Langevin Landau Lifschitz metric is defined not on some hyperslice of Minkowski spacetime but on the quotient space obtained by replacing each world line with a point This gives a three dimensional smooth manifold which becomes a Riemannian manifold when we add the metric structure 1946 Nathan Rosen shows that inertial observers instantaneously comoving with Langevin observers also measure small distances given by Langevin Landau Lifschitz metric 1946 E L Hill analyzes relativistic stresses in a material in which roughly speaking the speed of sound equals the speed of light and shows these just cancel the radial expansion due to centrifugal force in any physically realistic material the relativistic effects lessen but do not cancel the radial expansion Hill explains errors in earlier analyses by Arthur Eddington and others 13 1952 C Moller attempts to study null geodesics from the point of view of rotating observers but incorrectly tries to use slices rather than the appropriate quotient space 1968 V Cantoni provides a straightforward purely kinematical explanation of the paradox by showing that one of the assumptions implicitly contained in the statement of Ehrenfest s paradox is not correct the assumption being that the geometry of Minkowski space time allows the passage of the disk from rest to rotation in such a fashion that both the length of the radius and the length of the periphery measured with respect to the comoving frame of reference remain unchanged 1975 Oyvind Gron writes a classic review paper about solutions of the paradox 1977 Grunbaum and Janis introduce a notion of physically realizable non rigidity which can be applied to the spin up of an initially non rotating disk this notion is not physically realistic for real materials from which one might make a disk but it is useful for thought experiments 14 1981 Gron notices that Hooke s law is not consistent with Lorentz transformations and introduces a relativistic generalization 1997 T A Weber explicitly introduces the frame field associated with Langevin observers 2000 Hrvoje Nikolic points out that the paradox disappears when in accordance with general theory of relativity each piece of the rotating disk is treated separately as living in its own local non inertial frame 2002 Rizzi and Ruggiero and Bel explicitly introduce the quotient manifold mentioned above 2024 Jitendra Kumar analyzes the paradox for a ring and points out that the resolution depends on how the ring is brought from rest to rotational motion whether by keeping the rest length of the periphery constant in which case the periphery tears or by keeping periphery s length in the inertial frame constant in which case the periphery physically stretches increasing its rest length 15 Resolution of the paradox editGron states that the resolution of the paradox stems from the impossibility of synchronizing clocks in a rotating reference frame 16 If observers on the rotating circumference try to synchronise their clocks around the circumference to establish disc time there is a time difference between the two end points where they meet The modern resolution can be briefly summarized as follows Small distances measured by disk riding observers are described by the Langevin Landau Lifschitz metric which is indeed well approximated for small angular velocity by the geometry of the hyperbolic plane just as Kaluza had claimed For physically reasonable materials during the spin up phase a real disk expands radially due to centrifugal forces relativistic corrections partially counteract but do not cancel this Newtonian effect After a steady state rotation is achieved and the disk has been allowed to relax the geometry in the small is approximately given by the Langevin Landau Lifschitz metric See also editBorn coordinates for a coordinate chart adapted to observers riding on a rigidly rotating disk Length contraction Relativistic diskSome other paradoxes in special relativity Bell s spaceship paradox Ladder paradox Physical paradox Supplee s paradox Twin paradoxNotes editCitations edit a b Ehrenfest 1909 p 918 Fayngold 2008 p 363 a b c Gron 2004 a b Stachel 1980 Einstein 1922 Born 1909 pp 1 56 Herglotz 1909 pp 393 415 Noether 1910 Planck 1910 Kaluza 1910 Laue 1911 Langevin 1935 Hill 1946 Grunbaum amp Janis 1977 Kumar 2024 Gron amp Hervik 2007 Works cited editEinstein Albert 1922 The Meaning of Relativity Princeton University Press Fayngold Moses 2008 Special Relativity and How it Works illustrated ed John Wiley amp Sons p 363 ISBN 978 3 527 40607 4 Gron Oyvind Hervik Sigbjorn 2007 Einstein s General Theory of Relativity Springer p 91 ISBN 978 0 387 69200 5 Stachel John 1980 Einstein and the Rigidly Rotating Disk In Held A ed General Relativity and Gravitation New York Springer ISBN 978 0306402661 A few papers of historical interest edit Born Max 1909 Die Theorie des starren Korpers in der Kinematik des Relativitatsprinzips The Theory of the Rigid Electron in the Kinematics of the Principle of Relativity Annalen der Physik in German 335 11 1 56 Bibcode 1909AnP 335 1B doi 10 1002 andp 19093351102 Ehrenfest Paul 1909 Gleichformige Rotation starrer Korper und Relativitatstheorie Uniform Rotation of Rigid Bodies and the Theory of Relativity Physikalische Zeitschrift in German 10 918 Bibcode 1909PhyZ 10 918E Gron Oyvind 2004 Space Geometry in a Rotating Reference Frame A Historical Appraisal PDF In Rizzi G Ruggiero M eds Relativity in Rotating Frames Kluwer pp 285 334 ISBN 978 1402018053 Archived PDF from the original on 15 June 2016 Retrieved 30 September 2013 Gron Oyvind Hervik Sigbjorn 2007 Einstein s General Theory of Relativity Springer p 91 ISBN 978 0 387 69200 5 Herglotz Gustav 1909 Uber den vom Standpunkt des Relativitatsprinzips aus als starr zu bezeichnenden Korper On bodies that are to be designated as rigid from the standpoint of the relativity principle Annalen der Physik in German 336 2 393 415 Bibcode 1910AnP 336 393H doi 10 1002 andp 19103360208 Kaluza T 1910 Zur Relativitatstheorie On the Theory of Relativity Physikalische Zeitschrift in German 11 977 978 Langevin P 1935 Remarques au sujet de la Note de Prunier C R Acad Sci Paris in French 200 48 Laue M v 1911 Zur Diskussion uber den starren Korper in der Relativitatstheorie On the Discussion Concerning Rigid Bodies in the Theory of Relativity Physikalische Zeitschrift in German 12 85 87 Noether Fritz 1910 Zur Kinematik des starren Korpers in der Relativtheorie Annalen der Physik in German 336 5 919 944 Bibcode 1910AnP 336 919N doi 10 1002 andp 19103360504 Planck M 1910 Gleichformige Rotation und Lorentz Kontraktion Uniform Rotation and Lorentz Contraction Physikalische Zeitschrift in German 11 294 A few classic modern references edit Cantoni 1968 What is wrong with Relativistic Kinematics Il Nuovo Cimento 57 B 1 220 223 Bibcode 1968NCimB 57 220C doi 10 1007 bf02710332 S2CID 119490975 Gron O 1975 Relativistic description of a rotating disk Am J Phys 43 10 869 876 Bibcode 1975AmJPh 43 869G doi 10 1119 1 9969 Grunbaum Adolf Janis Allen I 1977 The Geometry of the Rotating Disk in the Special Theory of Relativity In Reichenbach Hans ed Hans Reichenbach Logical Empiricist Springer Netherlands pp 321 339 doi 10 1007 978 94 009 9404 1 11 ISBN 978 94 009 9406 5 Hill Edward L 1946 A note on the relativistic problem of uniform rotation Physical Review 69 9 10 488 Bibcode 1946PhRv 69 488H doi 10 1103 PhysRev 69 488 Lifschitz E F Landau L D 1980 The Classical Theory of Fields 4th ed London Butterworth Heinemann ISBN 978 0 7506 2768 9 See Section 84 and the problem at the end of Section 89 Reichenbach Hans 1969 Axiomatization of the Theory of Relativity Berkeley University of California Press LCCN 68021540 Some experimental work and subsequent discussion edit Ashworth D G Davies P A 1979 Transformations between inertial and rotating frames of reference J Phys A Math Gen 12 9 1425 40 Bibcode 1979JPhA 12 1425A CiteSeerX 10 1 1 205 6181 doi 10 1088 0305 4470 12 9 011 Ashworth D G Jennison R C 1976 Surveying in rotating systems J Phys A Math Gen 9 1 35 43 Bibcode 1976JPhA 9 35A doi 10 1088 0305 4470 9 1 008 Boone P F 1977 Relativity of rotation J Phys A Math Gen 10 5 727 44 Bibcode 1977JPhA 10 727B doi 10 1088 0305 4470 10 5 007 Davies P A 1976 Measurements in rotating systems J Phys A Math Gen 9 6 951 9 Bibcode 1976JPhA 9 951D doi 10 1088 0305 4470 9 6 014 Davies P A Jennison R C 1975 Experiments involving mirror transponders in rotating frames J Phys A Math Gen 8 9 1390 7 Bibcode 1975JPhA 8 1390D doi 10 1088 0305 4470 8 9 007 Selected recent sources edit Nikolic Hrvoje 2000 Relativistic contraction and related effects in noninertial frames Phys Rev A 61 3 032109 arXiv gr qc 9904078 Bibcode 2000PhRvA 61c2109N doi 10 1103 PhysRevA 61 032109 S2CID 5783649 Studies general non inertial motion of a point particle and treats rotating disk as a collection of such non inertial particles See also the eprint version Pauri Massimo Vallisneri Michele 2000 Marzke Wheeler coordinates for accelerated observers in special relativity Found Phys Lett 13 5 401 425 arXiv gr qc 0006095 Bibcode 2000gr qc 6095P doi 10 1023 A 1007861914639 S2CID 15097773 Studies a coordinate chart constructed using radar distance in the large from a single Langevin observer See also the eprint version Rizzi G Ruggiero M L 2002 Space geometry of rotating platforms an operational approach Found Phys 32 10 1525 1556 arXiv gr qc 0207104 Bibcode 2002gr qc 7104R doi 10 1023 A 1020427318877 S2CID 16826601 They give a precise definition of the space of the disk non Euclidean and solve the paradox without extraneous dynamic considerations See also the eprint version Ruggiero M L Rizzi G 2004 Relativity in Rotating Frames Dordrecht Kluwer ISBN 978 1 4020 1805 3 This book contains a comprehensive historical survey by Oyvind Gron on which the brief history in this article is based and some other papers on the Ehrenfest paradox and related controversies Hundreds of additional references may be found in this book particularly the paper by Gron Kumar Jitendra 2024 Ehrenfest paradox A careful examination Am J Phys 92 2 140 145 arXiv 2305 07953 Bibcode 2024AmJPh 92 140K doi 10 1119 5 0153190 Considers two ways by which a ring is brought from rest to rotational motion and resolves the paradox for those two cases See also the eprint version External links edit nbsp Wikimedia Commons has media related to Ehrenfest paradox The Rigid Rotating Disk in Relativity by Michael Weiss 1995 from the sci physics FAQ Einstein s Carousel section 3 5 4 by B Crowell Retrieved from https en wikipedia org w index php title Ehrenfest paradox amp oldid 1207841350, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.