fbpx
Wikipedia

Bessel polynomials

In mathematics, the Bessel polynomials are an orthogonal sequence of polynomials. There are a number of different but closely related definitions. The definition favored by mathematicians is given by the series[1]: 101 

Another definition, favored by electrical engineers, is sometimes known as the reverse Bessel polynomials[2]: 8 [3]: 15 

The coefficients of the second definition are the same as the first but in reverse order. For example, the third-degree Bessel polynomial is

while the third-degree reverse Bessel polynomial is

The reverse Bessel polynomial is used in the design of Bessel electronic filters.

Properties edit

Definition in terms of Bessel functions edit

The Bessel polynomial may also be defined using Bessel functions from which the polynomial draws its name.

 
 
 

where Kn(x) is a modified Bessel function of the second kind, yn(x) is the ordinary polynomial, and θn(x) is the reverse polynomial .[2]: 7, 34  For example:[4]

 

Definition as a hypergeometric function edit

The Bessel polynomial may also be defined as a confluent hypergeometric function[5]: 8 

 

A similar expression holds true for the generalized Bessel polynomials (see below):[2]: 35 

 

The reverse Bessel polynomial may be defined as a generalized Laguerre polynomial:

 

from which it follows that it may also be defined as a hypergeometric function:

 

where (−2n)n is the Pochhammer symbol (rising factorial).

Generating function edit

The Bessel polynomials, with index shifted, have the generating function

 

Differentiating with respect to  , cancelling  , yields the generating function for the polynomials  

 

Similar generating function exists for the   polynomials as well:[1]: 106 

 

Upon setting  , one has the following representation for the exponential function:[1]: 107 

 

Recursion edit

The Bessel polynomial may also be defined by a recursion formula:

 
 
 

and

 
 
 

Differential equation edit

The Bessel polynomial obeys the following differential equation:

 

and

 

Orthogonality edit

The Bessel polynomials are orthogonal with respect to the weight   integrated over the unit circle of the complex plane.[1]: 104  In other words, if  ,

 

Generalization edit

Explicit Form edit

A generalization of the Bessel polynomials have been suggested in literature, as following:

 

the corresponding reverse polynomials are

 

The explicit coefficients of the   polynomials are:[1]: 108 

 

Consequently, the   polynomials can explicitly be written as follows:

 

For the weighting function

 

they are orthogonal, for the relation

 

holds for mn and c a curve surrounding the 0 point.

They specialize to the Bessel polynomials for α = β = 2, in which situation ρ(x) = exp(−2 / x).

Rodrigues formula for Bessel polynomials edit

The Rodrigues formula for the Bessel polynomials as particular solutions of the above differential equation is :

 

where a(α, β)
n
are normalization coefficients.

Associated Bessel polynomials edit

According to this generalization we have the following generalized differential equation for associated Bessel polynomials:

 

where  . The solutions are,

 

Zeros edit

If one denotes the zeros of   as  , and that of the   by  , then the following estimates exist:[2]: 82 

 

and

 

for all  . Moreover, all these zeros have negative real part.

Sharper results can be said if one resorts to more powerful theorems regarding the estimates of zeros of polynomials (more concretely, the Parabola Theorem of Saff and Varga, or differential equations techniques).[2]: 88 [6] One result is the following:[7]

 

Particular values edit

The Bessel polynomials   up to   are[8]

 

No Bessel polynomial can be factored into lower degree polynomials with rational coefficients.[9] The reverse Bessel polynomials are obtained by reversing the coefficients. Equivalently,  . This results in the following:

 

See also edit

References edit

  1. ^ a b c d e Krall, H. L.; Frink, O. (1948). "A New Class of Orthogonal Polynomials: The Bessel Polynomials". Trans. Amer. Math. Soc. 65 (1): 100–115. doi:10.2307/1990516.
  2. ^ a b c d e Grosswald, E. (1978). Bessel Polynomials (Lecture Notes in Mathematics). New York: Springer. ISBN 978-0-387-09104-4.
  3. ^ Berg, Christian; Vignat, Christophe (2008). "Linearization coefficients of Bessel polynomials and properties of Student-t distributions" (PDF). Constructive Approximation. 27: 15–32. doi:10.1007/s00365-006-0643-6. Retrieved 2006-08-16.
  4. ^ Wolfram Alpha example
  5. ^ Dita, Petre; Grama, Nicolae (May 14, 1997). "On Adomian's Decomposition Method for Solving Differential Equations". arXiv:solv-int/9705008.
  6. ^ Saff, E. B.; Varga, R. S. (1976). "Zero-free parabolic regions for sequences of polynomials". SIAM J. Math. Anal. 7 (3): 344–357. doi:10.1137/0507028.
  7. ^ de Bruin, M. G.; Saff, E. B.; Varga, R. S. (1981). "On the zeros of generalized Bessel polynomials. I". Indag. Math. 84 (1): 1–13.
  8. ^ *Sloane, N. J. A. (ed.). "Sequence A001498 (Triangle a(n,k) (n >= 0, 0 <= k <= n) of coefficients of Bessel polynomials y_n(x) (exponents in increasing order).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. ^ Filaseta, Michael; Trifinov, Ognian (August 2, 2002). "The Irreducibility of the Bessel Polynomials". Journal für die Reine und Angewandte Mathematik. 2002 (550): 125–140. CiteSeerX 10.1.1.6.9538. doi:10.1515/crll.2002.069.
  • Carlitz, Leonard (1957). "A Note on the Bessel Polynomials". Duke Math. J. 24 (2): 151–162. doi:10.1215/S0012-7094-57-02421-3. MR 0085360.
  • Fakhri, H.; Chenaghlou, A. (2006). "Ladder operators and recursion relations for the associated Bessel polynomials". Physics Letters A. 358 (5–6): 345–353. Bibcode:2006PhLA..358..345F. doi:10.1016/j.physleta.2006.05.070.
  • Roman, S. (1984). The Umbral Calculus (The Bessel Polynomials §4.1.7). New York: Academic Press. ISBN 978-0-486-44139-9.

External links edit

bessel, polynomials, this, article, includes, list, general, references, lacks, sufficient, corresponding, inline, citations, please, help, improve, this, article, introducing, more, precise, citations, september, 2009, learn, when, remove, this, template, mes. This article includes a list of general references but it lacks sufficient corresponding inline citations Please help to improve this article by introducing more precise citations September 2009 Learn how and when to remove this template message In mathematics the Bessel polynomials are an orthogonal sequence of polynomials There are a number of different but closely related definitions The definition favored by mathematicians is given by the series 1 101 y n x k 0 n n k n k k x 2 k displaystyle y n x sum k 0 n frac n k n k k left frac x 2 right k Another definition favored by electrical engineers is sometimes known as the reverse Bessel polynomials 2 8 3 15 8 n x x n y n 1 x k 0 n n k n k k x n k 2 k displaystyle theta n x x n y n 1 x sum k 0 n frac n k n k k frac x n k 2 k The coefficients of the second definition are the same as the first but in reverse order For example the third degree Bessel polynomial is y 3 x 15 x 3 15 x 2 6 x 1 displaystyle y 3 x 15x 3 15x 2 6x 1 while the third degree reverse Bessel polynomial is 8 3 x x 3 6 x 2 15 x 15 displaystyle theta 3 x x 3 6x 2 15x 15 The reverse Bessel polynomial is used in the design of Bessel electronic filters Contents 1 Properties 1 1 Definition in terms of Bessel functions 1 2 Definition as a hypergeometric function 1 3 Generating function 1 4 Recursion 1 5 Differential equation 1 6 Orthogonality 2 Generalization 2 1 Explicit Form 2 2 Rodrigues formula for Bessel polynomials 2 3 Associated Bessel polynomials 3 Zeros 4 Particular values 5 See also 6 References 7 External linksProperties editDefinition in terms of Bessel functions edit The Bessel polynomial may also be defined using Bessel functions from which the polynomial draws its name y n x x n 8 n 1 x displaystyle y n x x n theta n 1 x nbsp y n x 2 p x e 1 x K n 1 2 1 x displaystyle y n x sqrt frac 2 pi x e 1 x K n frac 1 2 1 x nbsp 8 n x 2 p x n 1 2 e x K n 1 2 x displaystyle theta n x sqrt frac 2 pi x n 1 2 e x K n frac 1 2 x nbsp where Kn x is a modified Bessel function of the second kind yn x is the ordinary polynomial and 8n x is the reverse polynomial 2 7 34 For example 4 y 3 x 15 x 3 15 x 2 6 x 1 2 p x e 1 x K 3 1 2 1 x displaystyle y 3 x 15x 3 15x 2 6x 1 sqrt frac 2 pi x e 1 x K 3 frac 1 2 1 x nbsp Definition as a hypergeometric function edit The Bessel polynomial may also be defined as a confluent hypergeometric function 5 8 y n x 2 F 0 n n 1 x 2 2 x n U n 2 n 2 x 2 x n 1 U n 1 2 n 2 2 x displaystyle y n x 2 F 0 n n 1 x 2 left frac 2 x right n U left n 2n frac 2 x right left frac 2 x right n 1 U left n 1 2n 2 frac 2 x right nbsp A similar expression holds true for the generalized Bessel polynomials see below 2 35 y n x a b 2 F 0 n n a 1 x b b x n a 1 U n a 1 2 n a b x displaystyle y n x a b 2 F 0 n n a 1 x b left frac b x right n a 1 U left n a 1 2n a frac b x right nbsp The reverse Bessel polynomial may be defined as a generalized Laguerre polynomial 8 n x n 2 n L n 2 n 1 2 x displaystyle theta n x frac n 2 n L n 2n 1 2x nbsp from which it follows that it may also be defined as a hypergeometric function 8 n x 2 n n 2 n 1 F 1 n 2 n 2 x displaystyle theta n x frac 2n n 2 n 1 F 1 n 2n 2x nbsp where 2n n is the Pochhammer symbol rising factorial Generating function edit The Bessel polynomials with index shifted have the generating function n 0 2 p x n 1 2 e x K n 1 2 x t n n 1 x n 1 8 n 1 x t n n e x 1 1 2 t displaystyle sum n 0 infty sqrt frac 2 pi x n frac 1 2 e x K n frac 1 2 x frac t n n 1 x sum n 1 infty theta n 1 x frac t n n e x 1 sqrt 1 2t nbsp Differentiating with respect to t displaystyle t nbsp cancelling x displaystyle x nbsp yields the generating function for the polynomials 8 n n 0 displaystyle theta n n geq 0 nbsp n 0 8 n x t n n 1 1 2 t e x 1 1 2 t displaystyle sum n 0 infty theta n x frac t n n frac 1 sqrt 1 2t e x 1 sqrt 1 2t nbsp Similar generating function exists for the y n displaystyle y n nbsp polynomials as well 1 106 n 0 y n 1 x t n n exp 1 1 2 x t x displaystyle sum n 0 infty y n 1 x frac t n n exp left frac 1 sqrt 1 2xt x right nbsp Upon setting t z x z 2 2 displaystyle t z xz 2 2 nbsp one has the following representation for the exponential function 1 107 e z n 0 y n 1 x z x z 2 2 n n displaystyle e z sum n 0 infty y n 1 x frac z xz 2 2 n n nbsp Recursion edit The Bessel polynomial may also be defined by a recursion formula y 0 x 1 displaystyle y 0 x 1 nbsp y 1 x x 1 displaystyle y 1 x x 1 nbsp y n x 2 n 1 x y n 1 x y n 2 x displaystyle y n x 2n 1 x y n 1 x y n 2 x nbsp and 8 0 x 1 displaystyle theta 0 x 1 nbsp 8 1 x x 1 displaystyle theta 1 x x 1 nbsp 8 n x 2 n 1 8 n 1 x x 2 8 n 2 x displaystyle theta n x 2n 1 theta n 1 x x 2 theta n 2 x nbsp Differential equation edit The Bessel polynomial obeys the following differential equation x 2 d 2 y n x d x 2 2 x 1 d y n x d x n n 1 y n x 0 displaystyle x 2 frac d 2 y n x dx 2 2 x 1 frac dy n x dx n n 1 y n x 0 nbsp and x d 2 8 n x d x 2 2 x n d 8 n x d x 2 n 8 n x 0 displaystyle x frac d 2 theta n x dx 2 2 x n frac d theta n x dx 2n theta n x 0 nbsp Orthogonality edit The Bessel polynomials are orthogonal with respect to the weight e 2 x displaystyle e 2 x nbsp integrated over the unit circle of the complex plane 1 104 In other words if n m displaystyle n neq m nbsp 0 2 p y n e i 8 y m e i 8 i e i 8 d 8 0 displaystyle int 0 2 pi y n left e i theta right y m left e i theta right ie i theta mathrm d theta 0 nbsp Generalization editExplicit Form edit A generalization of the Bessel polynomials have been suggested in literature as following y n x a b 1 n n x b n L n 1 2 n a b x displaystyle y n x alpha beta 1 n n left frac x beta right n L n 1 2n alpha left frac beta x right nbsp the corresponding reverse polynomials are 8 n x a b n b n L n 1 2 n a b x x n y n 1 x a b displaystyle theta n x alpha beta frac n beta n L n 1 2n alpha beta x x n y n left frac 1 x alpha beta right nbsp The explicit coefficients of the y n x a b displaystyle y n x alpha beta nbsp polynomials are 1 108 y n x a b k 0 n n k n k a 2 k x b k displaystyle y n x alpha beta sum k 0 n binom n k n k alpha 2 underline k left frac x beta right k nbsp Consequently the 8 n x a b displaystyle theta n x alpha beta nbsp polynomials can explicitly be written as follows 8 n x a b k 0 n n k 2 n k a 2 n k x k b n k displaystyle theta n x alpha beta sum k 0 n binom n k 2n k alpha 2 underline n k frac x k beta n k nbsp For the weighting function r x a b 1 F 1 1 a 1 b x displaystyle rho x alpha beta 1 F 1 left 1 alpha 1 frac beta x right nbsp they are orthogonal for the relation 0 c r x a b y n x a b y m x a b d x displaystyle 0 oint c rho x alpha beta y n x alpha beta y m x alpha beta mathrm d x nbsp holds for m n and c a curve surrounding the 0 point They specialize to the Bessel polynomials for a b 2 in which situation r x exp 2 x Rodrigues formula for Bessel polynomials edit The Rodrigues formula for the Bessel polynomials as particular solutions of the above differential equation is B n a b x a n a b x a e b x d d x n x a 2 n e b x displaystyle B n alpha beta x frac a n alpha beta x alpha e frac beta x left frac d dx right n x alpha 2n e frac beta x nbsp where a a b n are normalization coefficients Associated Bessel polynomials edit According to this generalization we have the following generalized differential equation for associated Bessel polynomials x 2 d 2 B n m a b x d x 2 a 2 x b d B n m a b x d x n a n 1 m b x B n m a b x 0 displaystyle x 2 frac d 2 B n m alpha beta x dx 2 alpha 2 x beta frac dB n m alpha beta x dx left n alpha n 1 frac m beta x right B n m alpha beta x 0 nbsp where 0 m n displaystyle 0 leq m leq n nbsp The solutions are B n m a b x a n m a b x a m e b x d d x n m x a 2 n e b x displaystyle B n m alpha beta x frac a n m alpha beta x alpha m e frac beta x left frac d dx right n m x alpha 2n e frac beta x nbsp Zeros editIf one denotes the zeros of y n x a b displaystyle y n x alpha beta nbsp as a k n a b displaystyle alpha k n alpha beta nbsp and that of the 8 n x a b displaystyle theta n x alpha beta nbsp by b k n a b displaystyle beta k n alpha beta nbsp then the following estimates exist 2 82 2 n n a 1 a k n a 2 2 n a 1 displaystyle frac 2 n n alpha 1 leq alpha k n alpha 2 leq frac 2 n alpha 1 nbsp and n a 1 2 b k n a 2 n n a 1 2 displaystyle frac n alpha 1 2 leq beta k n alpha 2 leq frac n n alpha 1 2 nbsp for all a 2 displaystyle alpha geq 2 nbsp Moreover all these zeros have negative real part Sharper results can be said if one resorts to more powerful theorems regarding the estimates of zeros of polynomials more concretely the Parabola Theorem of Saff and Varga or differential equations techniques 2 88 6 One result is the following 7 2 2 n a 2 3 a k n a 2 2 n a 1 displaystyle frac 2 2n alpha frac 2 3 leq alpha k n alpha 2 leq frac 2 n alpha 1 nbsp Particular values editThe Bessel polynomials y n x displaystyle y n x nbsp up to n 5 displaystyle n 5 nbsp are 8 y 0 x 1 y 1 x x 1 y 2 x 3 x 2 3 x 1 y 3 x 15 x 3 15 x 2 6 x 1 y 4 x 105 x 4 105 x 3 45 x 2 10 x 1 y 5 x 945 x 5 945 x 4 420 x 3 105 x 2 15 x 1 displaystyle begin aligned y 0 x amp 1 y 1 x amp x 1 y 2 x amp 3x 2 3x 1 y 3 x amp 15x 3 15x 2 6x 1 y 4 x amp 105x 4 105x 3 45x 2 10x 1 y 5 x amp 945x 5 945x 4 420x 3 105x 2 15x 1 end aligned nbsp No Bessel polynomial can be factored into lower degree polynomials with rational coefficients 9 The reverse Bessel polynomials are obtained by reversing the coefficients Equivalently 8 k x x k y k 1 x textstyle theta k x x k y k 1 x nbsp This results in the following 8 0 x 1 8 1 x x 1 8 2 x x 2 3 x 3 8 3 x x 3 6 x 2 15 x 15 8 4 x x 4 10 x 3 45 x 2 105 x 105 8 5 x x 5 15 x 4 105 x 3 420 x 2 945 x 945 displaystyle begin aligned theta 0 x amp 1 theta 1 x amp x 1 theta 2 x amp x 2 3x 3 theta 3 x amp x 3 6x 2 15x 15 theta 4 x amp x 4 10x 3 45x 2 105x 105 theta 5 x amp x 5 15x 4 105x 3 420x 2 945x 945 end aligned nbsp See also editBessel function Neumann polynomial Lommel polynomial Hankel transform Fourier Bessel seriesReferences edit a b c d e Krall H L Frink O 1948 A New Class of Orthogonal Polynomials The Bessel Polynomials Trans Amer Math Soc 65 1 100 115 doi 10 2307 1990516 a b c d e Grosswald E 1978 Bessel Polynomials Lecture Notes in Mathematics New York Springer ISBN 978 0 387 09104 4 Berg Christian Vignat Christophe 2008 Linearization coefficients of Bessel polynomials and properties of Student t distributions PDF Constructive Approximation 27 15 32 doi 10 1007 s00365 006 0643 6 Retrieved 2006 08 16 Wolfram Alpha example Dita Petre Grama Nicolae May 14 1997 On Adomian s Decomposition Method for Solving Differential Equations arXiv solv int 9705008 Saff E B Varga R S 1976 Zero free parabolic regions for sequences of polynomials SIAM J Math Anal 7 3 344 357 doi 10 1137 0507028 de Bruin M G Saff E B Varga R S 1981 On the zeros of generalized Bessel polynomials I Indag Math 84 1 1 13 Sloane N J A ed Sequence A001498 Triangle a n k n gt 0 0 lt k lt n of coefficients of Bessel polynomials y n x exponents in increasing order The On Line Encyclopedia of Integer Sequences OEIS Foundation Filaseta Michael Trifinov Ognian August 2 2002 The Irreducibility of the Bessel Polynomials Journal fur die Reine und Angewandte Mathematik 2002 550 125 140 CiteSeerX 10 1 1 6 9538 doi 10 1515 crll 2002 069 Carlitz Leonard 1957 A Note on the Bessel Polynomials Duke Math J 24 2 151 162 doi 10 1215 S0012 7094 57 02421 3 MR 0085360 Fakhri H Chenaghlou A 2006 Ladder operators and recursion relations for the associated Bessel polynomials Physics Letters A 358 5 6 345 353 Bibcode 2006PhLA 358 345F doi 10 1016 j physleta 2006 05 070 Roman S 1984 The Umbral Calculus The Bessel Polynomials 4 1 7 New York Academic Press ISBN 978 0 486 44139 9 External links edit Bessel polynomials Encyclopedia of Mathematics EMS Press 2001 1994 Weisstein Eric W Bessel Polynomial MathWorld Retrieved from https en wikipedia org w index php title Bessel polynomials amp oldid 1136445156, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.