fbpx
Wikipedia

Neumann polynomial

In mathematics, the Neumann polynomials, introduced by Carl Neumann for the special case , are a sequence of polynomials in used to expand functions in term of Bessel functions.[1]

The first few polynomials are

A general form for the polynomial is

and they have the "generating function"

where J are Bessel functions.

To expand a function f in the form

for , compute

where and c is the distance of the nearest singularity of from .

Examples edit

An example is the extension

 

or the more general Sonine formula[2]

 

where   is Gegenbauer's polynomial. Then,[citation needed][original research?]

 
 

the confluent hypergeometric function

 

and in particular

 

the index shift formula

 

the Taylor expansion (addition formula)

 

(cf.[3][failed verification]) and the expansion of the integral of the Bessel function,

 

are of the same type.

See also edit

Notes edit

  1. ^ Abramowitz and Stegun, p. 363, 9.1.82 ff.
  2. ^ Erdélyi et al. 1955 II.7.10.1, p.64
  3. ^ Gradshteyn, Izrail Solomonovich; Ryzhik, Iosif Moiseevich; Geronimus, Yuri Veniaminovich; Tseytlin, Michail Yulyevich; Jeffrey, Alan (2015) [October 2014]. "8.515.1.". In Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products. Translated by Scripta Technica, Inc. (8 ed.). Academic Press, Inc. p. 944. ISBN 0-12-384933-0. LCCN 2014010276.

neumann, polynomial, mathematics, introduced, carl, neumann, special, case, displaystyle, alpha, sequence, polynomials, displaystyle, used, expand, functions, term, bessel, functions, first, polynomials, displaystyle, alpha, frac, displaystyle, alpha, frac, al. In mathematics the Neumann polynomials introduced by Carl Neumann for the special case a 0 displaystyle alpha 0 are a sequence of polynomials in 1 t displaystyle 1 t used to expand functions in term of Bessel functions 1 The first few polynomials are O 0 a t 1 t displaystyle O 0 alpha t frac 1 t O 1 a t 2 a 1 t 2 displaystyle O 1 alpha t 2 frac alpha 1 t 2 O 2 a t 2 a t 4 2 a 1 a t 3 displaystyle O 2 alpha t frac 2 alpha t 4 frac 2 alpha 1 alpha t 3 O 3 a t 2 1 a 3 a t 2 8 1 a 2 a 3 a t 4 displaystyle O 3 alpha t 2 frac 1 alpha 3 alpha t 2 8 frac 1 alpha 2 alpha 3 alpha t 4 O 4 a t 1 a 4 a 2 t 4 1 a 2 a 4 a t 3 16 1 a 2 a 3 a 4 a t 5 displaystyle O 4 alpha t frac 1 alpha 4 alpha 2t 4 frac 1 alpha 2 alpha 4 alpha t 3 16 frac 1 alpha 2 alpha 3 alpha 4 alpha t 5 A general form for the polynomial is O n a t a n 2 a k 0 n 2 1 n k n k k a n k 2 t n 1 2 k displaystyle O n alpha t frac alpha n 2 alpha sum k 0 lfloor n 2 rfloor 1 n k frac n k k alpha choose n k left frac 2 t right n 1 2k and they have the generating function z 2 a G a 1 1 t z n 0 O n a t J a n z displaystyle frac left frac z 2 right alpha Gamma alpha 1 frac 1 t z sum n 0 O n alpha t J alpha n z where J are Bessel functions To expand a function f in the form f z n 0 a n J a n z displaystyle f z sum n 0 a n J alpha n z for z lt c displaystyle z lt c compute a n 1 2 p i z c G a 1 z 2 a f z O n a z d z displaystyle a n frac 1 2 pi i oint z c frac Gamma alpha 1 left frac z 2 right alpha f z O n alpha z dz where c lt c displaystyle c lt c and c is the distance of the nearest singularity of z a f z displaystyle z alpha f z from z 0 displaystyle z 0 Examples editAn example is the extension 1 2 z s G s k 0 1 k J s 2 k z s 2 k s k displaystyle left tfrac 1 2 z right s Gamma s cdot sum k 0 1 k J s 2k z s 2k s choose k nbsp or the more general Sonine formula 2 e i g z G s k 0 i k C k s g s k J s k z z 2 s displaystyle e i gamma z Gamma s cdot sum k 0 i k C k s gamma s k frac J s k z left frac z 2 right s nbsp where C k s displaystyle C k s nbsp is Gegenbauer s polynomial Then citation needed original research z 2 2 k 2 k 1 J s z i k 1 i k i k 1 2 k 1 i k s 1 2 k 1 s 2 i J s 2 i z displaystyle frac left frac z 2 right 2k 2k 1 J s z sum i k 1 i k i k 1 choose 2k 1 i k s 1 choose 2k 1 s 2i J s 2i z nbsp n 0 t n J s n z e t z 2 t s j 0 z 2 t j j g j s t z 2 G j s 0 e z x 2 2 t z x t J s z 1 x 2 1 x 2 s d x displaystyle sum n 0 t n J s n z frac e frac tz 2 t s sum j 0 frac left frac z 2t right j j frac gamma left j s frac tz 2 right Gamma j s int 0 infty e frac zx 2 2t frac zx t frac J s z sqrt 1 x 2 sqrt 1 x 2 s dx nbsp the confluent hypergeometric function M a s z G s k 0 1 t k L k a k t J s k 1 2 t z t z s k 1 displaystyle M a s z Gamma s sum k 0 infty left frac 1 t right k L k a k t frac J s k 1 left 2 sqrt tz right sqrt tz s k 1 nbsp and in particular J s 2 z z s 4 s G s 1 2 p e 2 i z k 0 L k s 1 2 k i t 4 4 i z k J 2 s k 2 t z t z 2 s k displaystyle frac J s 2z z s frac 4 s Gamma left s frac 1 2 right sqrt pi e 2iz sum k 0 L k s 1 2 k left frac it 4 right 4iz k frac J 2s k left 2 sqrt tz right sqrt tz 2s k nbsp the index shift formula G n m J n z G m 1 n 0 G n m n n G n n 1 z 2 n m n J m n z displaystyle Gamma nu mu J nu z Gamma mu 1 sum n 0 frac Gamma nu mu n n Gamma nu n 1 left frac z 2 right nu mu n J mu n z nbsp the Taylor expansion addition formula J s z 2 2 u z z 2 2 u z s k 0 u k k J s k z z s displaystyle frac J s left sqrt z 2 2uz right left sqrt z 2 2uz right pm s sum k 0 frac pm u k k frac J s pm k z z pm s nbsp cf 3 failed verification and the expansion of the integral of the Bessel function J s z d z 2 k 0 J s 2 k 1 z displaystyle int J s z dz 2 sum k 0 J s 2k 1 z nbsp are of the same type See also editBessel function Bessel polynomial Lommel polynomial Hankel transform Fourier Bessel series Schlafli polynomialNotes edit Abramowitz and Stegun p 363 9 1 82 ff Erdelyi et al 1955harvnb error no target CITEREFErdelyiMagnusOberhettingerTricomi1955 help II 7 10 1 p 64 Gradshteyn Izrail Solomonovich Ryzhik Iosif Moiseevich Geronimus Yuri Veniaminovich Tseytlin Michail Yulyevich Jeffrey Alan 2015 October 2014 8 515 1 In Zwillinger Daniel Moll Victor Hugo eds Table of Integrals Series and Products Translated by Scripta Technica Inc 8 ed Academic Press Inc p 944 ISBN 0 12 384933 0 LCCN 2014010276 Retrieved from https en wikipedia org w index php title Neumann polynomial amp oldid 1069139071, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.