fbpx
Wikipedia

Hankel transform

In mathematics, the Hankel transform expresses any given function f(r) as the weighted sum of an infinite number of Bessel functions of the first kind Jν(kr). The Bessel functions in the sum are all of the same order ν, but differ in a scaling factor k along the r axis. The necessary coefficient Fν of each Bessel function in the sum, as a function of the scaling factor k constitutes the transformed function. The Hankel transform is an integral transform and was first developed by the mathematician Hermann Hankel. It is also known as the Fourier–Bessel transform. Just as the Fourier transform for an infinite interval is related to the Fourier series over a finite interval, so the Hankel transform over an infinite interval is related to the Fourier–Bessel series over a finite interval.

Definition edit

The Hankel transform of order   of a function f(r) is given by

 

where   is the Bessel function of the first kind of order   with  . The inverse Hankel transform of Fν(k) is defined as

 

which can be readily verified using the orthogonality relationship described below.

Domain of definition edit

Inverting a Hankel transform of a function f(r) is valid at every point at which f(r) is continuous, provided that the function is defined in (0, ∞), is piecewise continuous and of bounded variation in every finite subinterval in (0, ∞), and

 

However, like the Fourier transform, the domain can be extended by a density argument to include some functions whose above integral is not finite, for example  .

Alternative definition edit

An alternative definition says that the Hankel transform of g(r) is[1]

 

The two definitions are related:

If  , then  

This means that, as with the previous definition, the Hankel transform defined this way is also its own inverse:

 

The obvious domain now has the condition

 

but this can be extended. According to the reference given above, we can take the integral as the limit as the upper limit goes to infinity (an improper integral rather than a Lebesgue integral), and in this way the Hankel transform and its inverse work for all functions in L2(0, ∞).

Transforming Laplace's equation edit

The Hankel transform can be used to transform and solve Laplace's equation expressed in cylindrical coordinates. Under the Hankel transform, the Bessel operator becomes a multiplication by  .[2] In the axisymmetric case, the partial differential equation is transformed as

 

which is an ordinary differential equation in the transformed variable  .

Orthogonality edit

The Bessel functions form an orthogonal basis with respect to the weighting factor r:[3]

 

The Plancherel theorem and Parseval's theorem edit

If f(r) and g(r) are such that their Hankel transforms Fν(k) and Gν(k) are well defined, then the Plancherel theorem states

 

Parseval's theorem, which states

 

is a special case of the Plancherel theorem. These theorems can be proven using the orthogonality property.

Relation to the multidimensional Fourier transform edit

The Hankel transform appears when one writes the multidimensional Fourier transform in hyperspherical coordinates, which is the reason why the Hankel transform often appears in physical problems with cylindrical or spherical symmetry.

Consider a function   of a  -dimensional vector r. Its  -dimensional Fourier transform is defined as

 
To rewrite it in hyperspherical coordinates, we can use the decomposition of a plane wave into  -dimensional hyperspherical harmonics  :[4]
 
where   and   are the sets of all hyperspherical angles in the  -space and  -space. This gives the following expression for the  -dimensional Fourier transform in hyperspherical coordinates:
 
If we expand   and   in hyperspherical harmonics:
 
the Fourier transform in hyperspherical coordinates simplifies to
 
This means that functions with angular dependence in form of a hyperspherical harmonic retain it upon the multidimensional Fourier transform, while the radial part undergoes the Hankel transform (up to some extra factors like  ).

Special cases edit

Fourier transform in two dimensions edit

If a two-dimensional function f(r) is expanded in a multipole series,

 

then its two-dimensional Fourier transform is given by

 
where
 
is the  -th order Hankel transform of   (in this case   plays the role of the angular momentum, which was denoted by   in the previous section).

Fourier transform in three dimensions edit

If a three-dimensional function f(r) is expanded in a multipole series over spherical harmonics,

 

then its three-dimensional Fourier transform is given by

 
where
 
is the Hankel transform of   of order  .

This kind of Hankel transform of half-integer order is also known as the spherical Bessel transform.

Fourier transform in d dimensions (radially symmetric case) edit

If a d-dimensional function f(r) does not depend on angular coordinates, then its d-dimensional Fourier transform F(k) also does not depend on angular coordinates and is given by[5]

 
which is the Hankel transform of   of order   up to a factor of  .

2D functions inside a limited radius edit

If a two-dimensional function f(r) is expanded in a multipole series and the expansion coefficients fm are sufficiently smooth near the origin and zero outside a radius R, the radial part f(r)/rm may be expanded into a power series of 1 − (r/R)^2:

 

such that the two-dimensional Fourier transform of f(r) becomes

 

where the last equality follows from §6.567.1 of.[6] The expansion coefficients fm,t are accessible with discrete Fourier transform techniques:[7] if the radial distance is scaled with

 

the Fourier-Chebyshev series coefficients g emerge as

 

Using the re-expansion

 

yields fm,t expressed as sums of gm,j.

This is one flavor of fast Hankel transform techniques.

Relation to the Fourier and Abel transforms edit

The Hankel transform is one member of the FHA cycle of integral operators. In two dimensions, if we define A as the Abel transform operator, F as the Fourier transform operator, and H as the zeroth-order Hankel transform operator, then the special case of the projection-slice theorem for circularly symmetric functions states that

 

In other words, applying the Abel transform to a 1-dimensional function and then applying the Fourier transform to that result is the same as applying the Hankel transform to that function. This concept can be extended to higher dimensions.

Numerical evaluation edit

A simple and efficient approach to the numerical evaluation of the Hankel transform is based on the observation that it can be cast in the form of a convolution by a logarithmic change of variables[8]

 
In these new variables, the Hankel transform reads
 
where
 
 
 

Now the integral can be calculated numerically with   complexity using fast Fourier transform. The algorithm can be further simplified by using a known analytical expression for the Fourier transform of  :[9]

 
The optimal choice of parameters   depends on the properties of   in particular its asymptotic behavior at   and  

This algorithm is known as the "quasi-fast Hankel transform", or simply "fast Hankel transform".

Since it is based on fast Fourier transform in logarithmic variables,   has to be defined on a logarithmic grid. For functions defined on a uniform grid, a number of other algorithms exist, including straightforward quadrature, methods based on the projection-slice theorem, and methods using the asymptotic expansion of Bessel functions.[10]

Some Hankel transform pairs edit

[11]

   
   
   
   
   
   
   
   
   
 
   
   
   
   
   
   
   
  Expressable in terms of elliptic integrals.[12]
   

Kn(z) is a modified Bessel function of the second kind. K(z) is the complete elliptic integral of the first kind.

The expression

 

coincides with the expression for the Laplace operator in polar coordinates ( k, θ ) applied to a spherically symmetric function F0(k) .

The Hankel transform of Zernike polynomials are essentially Bessel Functions (Noll 1976):

 

for even nm ≥ 0.

See also edit

References edit

  1. ^ Louis de Branges (1968). Hilbert spaces of entire functions. London: Prentice-Hall. p. 189. ISBN 978-0133889000.
  2. ^ Poularikas, Alexander D. (1996). The transforms and applications handbook. Boca Raton Fla.: CRC Press. ISBN 0-8493-8342-0. OCLC 32237017.
  3. ^ Ponce de Leon, J. (2015). "Revisiting the orthogonality of Bessel functions of the first kind on an infinite interval". European Journal of Physics. 36 (1): 015016. Bibcode:2015EJPh...36a5016P. doi:10.1088/0143-0807/36/1/015016.
  4. ^ Avery, James Emil. Hyperspherical harmonics and their physical applications. ISBN 978-981-322-930-3. OCLC 1013827621.
  5. ^ Faris, William G. (2008-12-06). "Radial functions and the Fourier transform: Notes for Math 583A, Fall 2008" (PDF). University of Arizona, Department of Mathematics. Retrieved 2015-04-25.
  6. ^ Gradshteyn, I. S.; Ryzhik, I. M. (2015). Zwillinger, Daniel (ed.). Table of Integrals, Series, and Products (Eighth ed.). Academic Press. p. 687. ISBN 978-0-12-384933-5.
  7. ^ Secada, José D. (1999). "Numerical evaluation of the Hankel transform". Comput. Phys. Commun. 116 (2–3): 278–294. Bibcode:1999CoPhC.116..278S. doi:10.1016/S0010-4655(98)00108-8.
  8. ^ Siegman, A.E. (1977-07-01). "Quasi fast Hankel transform". Optics Letters. 1 (1): 13. Bibcode:1977OptL....1...13S. doi:10.1364/ol.1.000013. ISSN 0146-9592. PMID 19680315.
  9. ^ Talman, James D. (October 1978). "Numerical Fourier and Bessel transforms in logarithmic variables". Journal of Computational Physics. 29 (1): 35–48. Bibcode:1978JCoPh..29...35T. doi:10.1016/0021-9991(78)90107-9. ISSN 0021-9991.
  10. ^ Cree, M. J.; Bones, P. J. (July 1993). "Algorithms to numerically evaluate the Hankel transform". Computers & Mathematics with Applications. 26 (1): 1–12. doi:10.1016/0898-1221(93)90081-6. ISSN 0898-1221.
  11. ^ Papoulis, Athanasios (1981). Systems and Transforms with Applications to Optics. Florida USA: Krieger Publishing Company. pp. 140–175. ISBN 978-0898743586.
  12. ^ Kausel, E.; Irfan Baig, M.M. (2012). "Laplace transform of products of Bessel functions: A visitation of earlier formulas" (PDF). Quarterly of Applied Mathematics. 70: 77–97. doi:10.1090/s0033-569x-2011-01239-2. hdl:1721.1/78923.
  • Gaskill, Jack D. (1978). Linear Systems, Fourier Transforms, and Optics. New York: John Wiley & Sons. ISBN 978-0-471-29288-3.
  • Polyanin, A. D.; Manzhirov, A. V. (1998). Handbook of Integral Equations. Boca Raton: CRC Press. ISBN 978-0-8493-2876-3.
  • Smythe, William R. (1968). Static and Dynamic Electricity (3rd ed.). New York: McGraw-Hill. pp. 179–223.
  • Offord, A. C. (1935). "On Hankel transforms". Proceedings of the London Mathematical Society. 39 (2): 49–67. doi:10.1112/plms/s2-39.1.49.
  • Eason, G.; Noble, B.; Sneddon, I. N. (1955). "On certain integrals of Lipschitz-Hankel type involving products of Bessel Functions". Philosophical Transactions of the Royal Society A. 247 (935): 529–551. Bibcode:1955RSPTA.247..529E. doi:10.1098/rsta.1955.0005. JSTOR 91565.
  • Kilpatrick, J. E.; Katsura, Shigetoshi; Inoue, Yuji (1967). "Calculation of integrals of products of Bessel functions". Mathematics of Computation. 21 (99): 407–412. doi:10.1090/S0025-5718-67-99149-1.
  • MacKinnon, Robert F. (1972). "The asymptotic expansions of Hankel transforms and related integrals". Mathematics of Computation. 26 (118): 515–527. doi:10.1090/S0025-5718-1972-0308695-9. JSTOR 2003243.
  • Linz, Peter; Kropp, T. E. (1973). "A note on the computation of integrals involving products of trigonometric and Bessel functions". Mathematics of Computation. 27 (124): 871–872. doi:10.2307/2005522. JSTOR 2005522.
  • Noll, Robert J (1976). "Zernike polynomials and atmospheric turbulence". Journal of the Optical Society of America. 66 (3): 207–211. Bibcode:1976JOSA...66..207N. doi:10.1364/JOSA.66.000207.
  • Siegman, A. E. (1977). "Quasi-fast Hankel transform". Opt. Lett. 1 (1): 13–15. Bibcode:1977OptL....1...13S. doi:10.1364/OL.1.000013. PMID 19680315.
  • Magni, Vittorio; Cerullo, Giulio; De Silverstri, Sandro (1992). "High-accuracy fast Hankel transform for optical beam propagation". J. Opt. Soc. Am. A. 9 (11): 2031–2033. Bibcode:1992JOSAA...9.2031M. doi:10.1364/JOSAA.9.002031.
  • Agnesi, A.; Reali, Giancarlo C.; Patrini, G.; Tomaselli, A. (1993). "Numerical evaluation of the Hankel transform: remarks". Journal of the Optical Society of America A. 10 (9): 1872. Bibcode:1993JOSAA..10.1872A. doi:10.1364/JOSAA.10.001872.
  • Barakat, Richard (1996). "Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy". Applied Mathematics Letters. 9 (5): 21–26. doi:10.1016/0893-9659(96)00067-5. MR 1415467.
  • Ferrari, José A.; Perciante, Daniel; Dubra, Alfredo (1999). "Fast Hankel transform of nth order". J. Opt. Soc. Am. A. 16 (10): 2581–2582. Bibcode:1999JOSAA..16.2581F. doi:10.1364/JOSAA.16.002581.
  • Wieder, Thomas (1999). "Algorithm 794: Numerical Hankel transform by the Fortran program HANKEL". ACM Trans. Math. Softw. 25 (2): 240–250. doi:10.1145/317275.317284.
  • Knockaert, Luc (2000). "Fast Hankel transform by fast sine and cosine transforms: the Mellin connection" (PDF). IEEE Trans. Signal Process. 48 (6): 1695–1701. Bibcode:2000ITSP...48.1695K. CiteSeerX 10.1.1.721.1633. doi:10.1109/78.845927.
  • Zhang, D. W.; Yuan, X.-C.; Ngo, N. Q.; Shum, P. (2002). "Fast Hankel transform and its application for studying the propagation of cylindrical electromagnetic fields". Opt. Express. 10 (12): 521–525. Bibcode:2002OExpr..10..521Z. doi:10.1364/oe.10.000521. PMID 19436390.
  • Markham, Joanne; Conchello, Jose-Angel (2003). "Numerical evaluation of Hankel transforms for oscillating functions". J. Opt. Soc. Am. A. 20 (4): 621–630. Bibcode:2003JOSAA..20..621M. doi:10.1364/JOSAA.20.000621. PMID 12683487.
  • Perciante, César D.; Ferrari, José A. (2004). "Fast Hankel transform of nth order with improved performance". J. Opt. Soc. Am. A. 21 (9): 1811–2. Bibcode:2004JOSAA..21.1811P. doi:10.1364/JOSAA.21.001811. PMID 15384449.
  • Gizar-Sicairos, Manuel; Guitierrez-Vega, Julio C. (2004). "Computation of quasi-discrete Hankel transform of integer order for propagating optical wave fields". J. Opt. Soc. Am. A. 21 (1): 53–58. Bibcode:2004JOSAA..21...53G. doi:10.1364/JOSAA.21.000053. PMID 14725397.
  • Cerjan, Charles (2007). "The Zernike-Bessel representation and its application to Hankel transforms". J. Opt. Soc. Am. A. 24 (6): 1609–1616. Bibcode:2007JOSAA..24.1609C. doi:10.1364/JOSAA.24.001609. PMID 17491628.

hankel, transform, confused, with, hankel, matrix, transform, mathematics, expresses, given, function, weighted, infinite, number, bessel, functions, first, kind, bessel, functions, same, order, differ, scaling, factor, along, axis, necessary, coefficient, eac. Not to be confused with Hankel matrix transform In mathematics the Hankel transform expresses any given function f r as the weighted sum of an infinite number of Bessel functions of the first kind Jn kr The Bessel functions in the sum are all of the same order n but differ in a scaling factor k along the r axis The necessary coefficient Fn of each Bessel function in the sum as a function of the scaling factor k constitutes the transformed function The Hankel transform is an integral transform and was first developed by the mathematician Hermann Hankel It is also known as the Fourier Bessel transform Just as the Fourier transform for an infinite interval is related to the Fourier series over a finite interval so the Hankel transform over an infinite interval is related to the Fourier Bessel series over a finite interval Contents 1 Definition 1 1 Domain of definition 1 2 Alternative definition 2 Transforming Laplace s equation 3 Orthogonality 4 The Plancherel theorem and Parseval s theorem 5 Relation to the multidimensional Fourier transform 5 1 Special cases 5 1 1 Fourier transform in two dimensions 5 1 2 Fourier transform in three dimensions 5 1 3 Fourier transform in d dimensions radially symmetric case 5 1 4 2D functions inside a limited radius 6 Relation to the Fourier and Abel transforms 7 Numerical evaluation 8 Some Hankel transform pairs 9 See also 10 ReferencesDefinition editThe Hankel transform of order n displaystyle nu nbsp of a function f r is given by F n k 0 f r J n k r r d r displaystyle F nu k int 0 infty f r J nu kr r mathrm d r nbsp where J n displaystyle J nu nbsp is the Bessel function of the first kind of order n displaystyle nu nbsp with n 1 2 displaystyle nu geq 1 2 nbsp The inverse Hankel transform of Fn k is defined as f r 0 F n k J n k r k d k displaystyle f r int 0 infty F nu k J nu kr k mathrm d k nbsp which can be readily verified using the orthogonality relationship described below Domain of definition edit Inverting a Hankel transform of a function f r is valid at every point at which f r is continuous provided that the function is defined in 0 is piecewise continuous and of bounded variation in every finite subinterval in 0 and 0 f r r 1 2 d r lt displaystyle int 0 infty f r r frac 1 2 mathrm d r lt infty nbsp However like the Fourier transform the domain can be extended by a density argument to include some functions whose above integral is not finite for example f r 1 r 3 2 displaystyle f r 1 r 3 2 nbsp Alternative definition edit An alternative definition says that the Hankel transform of g r is 1 h n k 0 g r J n k r k r d r displaystyle h nu k int 0 infty g r J nu kr sqrt kr mathrm d r nbsp The two definitions are related If g r f r r displaystyle g r f r sqrt r nbsp then h n k F n k k displaystyle h nu k F nu k sqrt k nbsp This means that as with the previous definition the Hankel transform defined this way is also its own inverse g r 0 h n k J n k r k r d k displaystyle g r int 0 infty h nu k J nu kr sqrt kr mathrm d k nbsp The obvious domain now has the condition 0 g r d r lt displaystyle int 0 infty g r mathrm d r lt infty nbsp but this can be extended According to the reference given above we can take the integral as the limit as the upper limit goes to infinity an improper integral rather than a Lebesgue integral and in this way the Hankel transform and its inverse work for all functions in L2 0 Transforming Laplace s equation editThe Hankel transform can be used to transform and solve Laplace s equation expressed in cylindrical coordinates Under the Hankel transform the Bessel operator becomes a multiplication by k 2 displaystyle k 2 nbsp 2 In the axisymmetric case the partial differential equation is transformed as H 0 2 u r 2 1 r u r 2 u z 2 k 2 U 2 z 2 U displaystyle mathcal H 0 left frac partial 2 u partial r 2 frac 1 r frac partial u partial r frac partial 2 u partial z 2 right k 2 U frac partial 2 partial z 2 U nbsp which is an ordinary differential equation in the transformed variable U displaystyle U nbsp Orthogonality editThe Bessel functions form an orthogonal basis with respect to the weighting factor r 3 0 J n k r J n k r r d r d k k k k k gt 0 displaystyle int 0 infty J nu kr J nu k r r mathrm d r frac delta k k k quad k k gt 0 nbsp The Plancherel theorem and Parseval s theorem editIf f r and g r are such that their Hankel transforms Fn k and Gn k are well defined then the Plancherel theorem states 0 f r g r r d r 0 F n k G n k k d k displaystyle int 0 infty f r g r r mathrm d r int 0 infty F nu k G nu k k mathrm d k nbsp Parseval s theorem which states 0 f r 2 r d r 0 F n k 2 k d k displaystyle int 0 infty f r 2 r mathrm d r int 0 infty F nu k 2 k mathrm d k nbsp is a special case of the Plancherel theorem These theorems can be proven using the orthogonality property Relation to the multidimensional Fourier transform editThe Hankel transform appears when one writes the multidimensional Fourier transform in hyperspherical coordinates which is the reason why the Hankel transform often appears in physical problems with cylindrical or spherical symmetry Consider a function f r displaystyle f mathbf r nbsp of a d textstyle d nbsp dimensional vector r Its d textstyle d nbsp dimensional Fourier transform is defined asF k R d f r e i k r d r displaystyle F mathbf k int mathbb R d f mathbf r e i mathbf k cdot mathbf r mathrm d mathbf r nbsp To rewrite it in hyperspherical coordinates we can use the decomposition of a plane wave into d textstyle d nbsp dimensional hyperspherical harmonics Y l m displaystyle Y l m nbsp 4 e i k r 2 p d 2 k r 1 d 2 l 0 i l J d 2 1 l k r m Y l m W k Y l m W r displaystyle e i mathbf k cdot mathbf r 2 pi d 2 kr 1 d 2 sum l 0 infty i l J d 2 1 l kr sum m Y l m Omega mathbf k Y l m Omega mathbf r nbsp where W r textstyle Omega mathbf r nbsp and W k textstyle Omega mathbf k nbsp are the sets of all hyperspherical angles in the r displaystyle mathbf r nbsp space and k displaystyle mathbf k nbsp space This gives the following expression for the d textstyle d nbsp dimensional Fourier transform in hyperspherical coordinates F k 2 p d 2 k 1 d 2 l 0 i l m Y l m W k 0 J d 2 1 l k r r d 2 d r f r Y l m W r d W r displaystyle F mathbf k 2 pi d 2 k 1 d 2 sum l 0 infty i l sum m Y l m Omega mathbf k int 0 infty J d 2 1 l kr r d 2 mathrm d r int f mathbf r Y l m Omega mathbf r mathrm d Omega mathbf r nbsp If we expand f r displaystyle f mathbf r nbsp and F k displaystyle F mathbf k nbsp in hyperspherical harmonics f r l 0 m f l m r Y l m W r F k l 0 m F l m k Y l m W k displaystyle f mathbf r sum l 0 infty sum m f l m r Y l m Omega mathbf r quad F mathbf k sum l 0 infty sum m F l m k Y l m Omega mathbf k nbsp the Fourier transform in hyperspherical coordinates simplifies tok d 2 1 F l m k 2 p d 2 i l 0 r d 2 1 f l m r J d 2 1 l k r r d r displaystyle k d 2 1 F l m k 2 pi d 2 i l int 0 infty r d 2 1 f l m r J d 2 1 l kr r mathrm d r nbsp This means that functions with angular dependence in form of a hyperspherical harmonic retain it upon the multidimensional Fourier transform while the radial part undergoes the Hankel transform up to some extra factors like r d 2 1 textstyle r d 2 1 nbsp Special cases edit Fourier transform in two dimensions edit If a two dimensional function f r is expanded in a multipole series f r 8 m f m r e i m 8 r displaystyle f r theta sum m infty infty f m r e im theta mathbf r nbsp then its two dimensional Fourier transform is given byF k 2 p m i m e i m 8 k F m k displaystyle F mathbf k 2 pi sum m i m e im theta mathbf k F m k nbsp whereF m k 0 f m r J m k r r d r displaystyle F m k int 0 infty f m r J m kr r mathrm d r nbsp is the m textstyle m nbsp th order Hankel transform of f m r displaystyle f m r nbsp in this case m textstyle m nbsp plays the role of the angular momentum which was denoted by l textstyle l nbsp in the previous section Fourier transform in three dimensions edit If a three dimensional function f r is expanded in a multipole series over spherical harmonics f r 8 r f r l 0 m l l f l m r Y l m 8 r f r displaystyle f r theta mathbf r varphi mathbf r sum l 0 infty sum m l l f l m r Y l m theta mathbf r varphi mathbf r nbsp then its three dimensional Fourier transform is given byF k 8 k f k 2 p 3 2 l 0 i l m l l F l m k Y l m 8 k f k displaystyle F k theta mathbf k varphi mathbf k 2 pi 3 2 sum l 0 infty i l sum m l l F l m k Y l m theta mathbf k varphi mathbf k nbsp wherek F l m k 0 r f l m r J l 1 2 k r r d r displaystyle sqrt k F l m k int 0 infty sqrt r f l m r J l 1 2 kr r mathrm d r nbsp is the Hankel transform of r f l m r displaystyle sqrt r f l m r nbsp of order l 1 2 textstyle l 1 2 nbsp This kind of Hankel transform of half integer order is also known as the spherical Bessel transform Fourier transform in d dimensions radially symmetric case edit If a d dimensional function f r does not depend on angular coordinates then its d dimensional Fourier transform F k also does not depend on angular coordinates and is given by 5 k d 2 1 F k 2 p d 2 0 r d 2 1 f r J d 2 1 k r r d r displaystyle k d 2 1 F k 2 pi d 2 int 0 infty r d 2 1 f r J d 2 1 kr r mathrm d r nbsp which is the Hankel transform of r d 2 1 f r displaystyle r d 2 1 f r nbsp of order d 2 1 textstyle d 2 1 nbsp up to a factor of 2 p d 2 displaystyle 2 pi d 2 nbsp 2D functions inside a limited radius edit If a two dimensional function f r is expanded in a multipole series and the expansion coefficients fm are sufficiently smooth near the origin and zero outside a radius R the radial part f r rm may be expanded into a power series of 1 r R 2 f m r r m t 0 f m t 1 r R 2 t 0 r R displaystyle f m r r m sum t geq 0 f m t left 1 left tfrac r R right 2 right t quad 0 leq r leq R nbsp such that the two dimensional Fourier transform of f r becomes F k 2 p m i m e i m 8 k t f m t 0 R r m 1 r R 2 t J m k r r d r 2 p m i m e i m 8 k R m 2 t f m t 0 1 x m 1 1 x 2 t J m k x R d x x r R 2 p m i m e i m 8 k R m 2 t f m t t 2 t k R 1 t J m t 1 k R displaystyle begin aligned F mathbf k amp 2 pi sum m i m e im theta k sum t f m t int 0 R r m left 1 left tfrac r R right 2 right t J m kr r mathrm d r amp amp amp 2 pi sum m i m e im theta k R m 2 sum t f m t int 0 1 x m 1 1 x 2 t J m kxR mathrm d x amp amp x tfrac r R amp 2 pi sum m i m e im theta k R m 2 sum t f m t frac t 2 t kR 1 t J m t 1 kR end aligned nbsp where the last equality follows from 6 567 1 of 6 The expansion coefficients fm t are accessible with discrete Fourier transform techniques 7 if the radial distance is scaled with r R sin 8 1 r R 2 cos 2 8 displaystyle r R equiv sin theta quad 1 r R 2 cos 2 theta nbsp the Fourier Chebyshev series coefficients g emerge as f r r m j g m j cos j 8 r m j g m j T j cos 8 displaystyle f r equiv r m sum j g m j cos j theta r m sum j g m j T j cos theta nbsp Using the re expansion cos j 8 2 j 1 cos j 8 j 1 2 j 3 cos j 2 8 j 2 j 3 1 2 j 5 cos j 4 8 j 3 j 4 2 2 j 7 cos j 6 8 displaystyle cos j theta 2 j 1 cos j theta frac j 1 2 j 3 cos j 2 theta frac j 2 binom j 3 1 2 j 5 cos j 4 theta frac j 3 binom j 4 2 2 j 7 cos j 6 theta cdots nbsp yields fm t expressed as sums of gm j This is one flavor of fast Hankel transform techniques Relation to the Fourier and Abel transforms editThe Hankel transform is one member of the FHA cycle of integral operators In two dimensions if we define A as the Abel transform operator F as the Fourier transform operator and H as the zeroth order Hankel transform operator then the special case of the projection slice theorem for circularly symmetric functions states that F A H displaystyle FA H nbsp In other words applying the Abel transform to a 1 dimensional function and then applying the Fourier transform to that result is the same as applying the Hankel transform to that function This concept can be extended to higher dimensions Numerical evaluation editA simple and efficient approach to the numerical evaluation of the Hankel transform is based on the observation that it can be cast in the form of a convolution by a logarithmic change of variables 8 r r 0 e r k k 0 e k displaystyle r r 0 e rho quad k k 0 e kappa nbsp In these new variables the Hankel transform reads F n k f r J n k r d r displaystyle tilde F nu kappa int infty infty tilde f rho tilde J nu kappa rho mathrm d rho nbsp where f r r 0 e r 1 n f r 0 e r displaystyle tilde f rho left r 0 e rho right 1 n f r 0 e rho nbsp F n k k 0 e k 1 n F n k 0 e k displaystyle tilde F nu kappa left k 0 e kappa right 1 n F nu k 0 e kappa nbsp J n k r k 0 r 0 e k r 1 n J n k 0 r 0 e k r displaystyle tilde J nu kappa rho left k 0 r 0 e kappa rho right 1 n J nu k 0 r 0 e kappa rho nbsp Now the integral can be calculated numerically with O N log N textstyle O N log N nbsp complexity using fast Fourier transform The algorithm can be further simplified by using a known analytical expression for the Fourier transform of J n displaystyle tilde J nu nbsp 9 J n x e i q x d x G n 1 n i q 2 G n 1 n i q 2 2 n i q e i q ln k 0 r 0 displaystyle int infty infty tilde J nu x e iqx mathrm d x frac Gamma left frac nu 1 n iq 2 right Gamma left frac nu 1 n iq 2 right 2 n iq e iq ln k 0 r 0 nbsp The optimal choice of parameters r 0 k 0 n displaystyle r 0 k 0 n nbsp depends on the properties of f r displaystyle f r nbsp in particular its asymptotic behavior at r 0 displaystyle r to 0 nbsp and r displaystyle r to infty nbsp This algorithm is known as the quasi fast Hankel transform or simply fast Hankel transform Since it is based on fast Fourier transform in logarithmic variables f r displaystyle f r nbsp has to be defined on a logarithmic grid For functions defined on a uniform grid a number of other algorithms exist including straightforward quadrature methods based on the projection slice theorem and methods using the asymptotic expansion of Bessel functions 10 Some Hankel transform pairs edit 11 f r displaystyle f r nbsp F 0 k displaystyle F 0 k nbsp 1 displaystyle 1 nbsp d k k displaystyle frac delta k k nbsp 1 r displaystyle frac 1 r nbsp 1 k displaystyle frac 1 k nbsp r displaystyle r nbsp 1 k 3 displaystyle frac 1 k 3 nbsp r 3 displaystyle r 3 nbsp 9 k 5 displaystyle frac 9 k 5 nbsp r m displaystyle r m nbsp 2 m 1 G m 2 1 k m 2 G m 2 2 lt R e m lt 1 2 displaystyle frac 2 m 1 Gamma left tfrac m 2 1 right k m 2 Gamma left tfrac m 2 right quad 2 lt mathcal R e m lt tfrac 1 2 nbsp 1 r 2 z 2 displaystyle frac 1 sqrt r 2 z 2 nbsp e k z k displaystyle frac e k z k nbsp 1 z 2 r 2 displaystyle frac 1 z 2 r 2 nbsp K 0 k z z C displaystyle K 0 kz quad z in mathbb C nbsp e i a r r displaystyle frac e iar r nbsp i a 2 k 2 a gt 0 k lt a displaystyle frac i sqrt a 2 k 2 quad a gt 0 k lt a nbsp 1 k 2 a 2 a gt 0 k gt a displaystyle frac 1 sqrt k 2 a 2 quad a gt 0 k gt a nbsp e 1 2 a 2 r 2 displaystyle e frac 1 2 a 2 r 2 nbsp 1 a 2 e k 2 2 a 2 displaystyle frac 1 a 2 e tfrac k 2 2 a 2 nbsp 1 r J 0 l r e s r displaystyle frac 1 r J 0 lr e sr nbsp 2 p k l 2 s 2 K 4 k l k l 2 s 2 displaystyle frac 2 pi sqrt k l 2 s 2 K left sqrt frac 4kl k l 2 s 2 right nbsp r 2 f r displaystyle r 2 f r nbsp d 2 F 0 d k 2 1 k d F 0 d k displaystyle frac mathrm d 2 F 0 mathrm d k 2 frac 1 k frac mathrm d F 0 mathrm d k nbsp f r displaystyle f r nbsp F n k displaystyle F nu k nbsp r s displaystyle r s nbsp 2 s 1 k s 2 G 1 2 2 n s G 1 2 n s displaystyle frac 2 s 1 k s 2 frac Gamma left tfrac 1 2 2 nu s right Gamma tfrac 1 2 nu s nbsp r n 2 s G s r 2 h displaystyle r nu 2s Gamma s r 2 h nbsp 1 2 k 2 2 s n 2 g 1 s n k 2 4 h displaystyle tfrac 1 2 left tfrac k 2 right 2s nu 2 gamma left 1 s nu tfrac k 2 4h right nbsp e r 2 r n U a b r 2 displaystyle e r 2 r nu U a b r 2 nbsp G 2 n b 2 G 2 n b a k 2 n e k 2 4 1 F 1 a 2 a b n k 2 4 displaystyle frac Gamma 2 nu b 2 Gamma 2 nu b a left tfrac k 2 right nu e frac k 2 4 1 F 1 left a 2 a b nu tfrac k 2 4 right nbsp r n J m l r e s r displaystyle r n J mu lr e sr nbsp Expressable in terms of elliptic integrals 12 r 2 f r displaystyle r 2 f r nbsp d 2 F n d k 2 1 k d F n d k n 2 k 2 F n displaystyle frac mathrm d 2 F nu mathrm d k 2 frac 1 k frac mathrm d F nu mathrm d k frac nu 2 k 2 F nu nbsp Kn z is a modified Bessel function of the second kind K z is the complete elliptic integral of the first kind The expression d 2 F 0 d k 2 1 k d F 0 d k displaystyle frac mathrm d 2 F 0 mathrm d k 2 frac 1 k frac mathrm d F 0 mathrm d k nbsp coincides with the expression for the Laplace operator in polar coordinates k 8 applied to a spherically symmetric function F0 k The Hankel transform of Zernike polynomials are essentially Bessel Functions Noll 1976 R n m r 1 n m 2 0 J n 1 k J m k r d k displaystyle R n m r 1 frac n m 2 int 0 infty J n 1 k J m kr mathrm d k nbsp for even n m 0 See also editFourier transform Integral transform Abel transform Fourier Bessel series Neumann polynomial Y and H transformsReferences edit Louis de Branges 1968 Hilbert spaces of entire functions London Prentice Hall p 189 ISBN 978 0133889000 Poularikas Alexander D 1996 The transforms and applications handbook Boca Raton Fla CRC Press ISBN 0 8493 8342 0 OCLC 32237017 Ponce de Leon J 2015 Revisiting the orthogonality of Bessel functions of the first kind on an infinite interval European Journal of Physics 36 1 015016 Bibcode 2015EJPh 36a5016P doi 10 1088 0143 0807 36 1 015016 Avery James Emil Hyperspherical harmonics and their physical applications ISBN 978 981 322 930 3 OCLC 1013827621 Faris William G 2008 12 06 Radial functions and the Fourier transform Notes for Math 583A Fall 2008 PDF University of Arizona Department of Mathematics Retrieved 2015 04 25 Gradshteyn I S Ryzhik I M 2015 Zwillinger Daniel ed Table of Integrals Series and Products Eighth ed Academic Press p 687 ISBN 978 0 12 384933 5 Secada Jose D 1999 Numerical evaluation of the Hankel transform Comput Phys Commun 116 2 3 278 294 Bibcode 1999CoPhC 116 278S doi 10 1016 S0010 4655 98 00108 8 Siegman A E 1977 07 01 Quasi fast Hankel transform Optics Letters 1 1 13 Bibcode 1977OptL 1 13S doi 10 1364 ol 1 000013 ISSN 0146 9592 PMID 19680315 Talman James D October 1978 Numerical Fourier and Bessel transforms in logarithmic variables Journal of Computational Physics 29 1 35 48 Bibcode 1978JCoPh 29 35T doi 10 1016 0021 9991 78 90107 9 ISSN 0021 9991 Cree M J Bones P J July 1993 Algorithms to numerically evaluate the Hankel transform Computers amp Mathematics with Applications 26 1 1 12 doi 10 1016 0898 1221 93 90081 6 ISSN 0898 1221 Papoulis Athanasios 1981 Systems and Transforms with Applications to Optics Florida USA Krieger Publishing Company pp 140 175 ISBN 978 0898743586 Kausel E Irfan Baig M M 2012 Laplace transform of products of Bessel functions A visitation of earlier formulas PDF Quarterly of Applied Mathematics 70 77 97 doi 10 1090 s0033 569x 2011 01239 2 hdl 1721 1 78923 Gaskill Jack D 1978 Linear Systems Fourier Transforms and Optics New York John Wiley amp Sons ISBN 978 0 471 29288 3 Polyanin A D Manzhirov A V 1998 Handbook of Integral Equations Boca Raton CRC Press ISBN 978 0 8493 2876 3 Smythe William R 1968 Static and Dynamic Electricity 3rd ed New York McGraw Hill pp 179 223 Offord A C 1935 On Hankel transforms Proceedings of the London Mathematical Society 39 2 49 67 doi 10 1112 plms s2 39 1 49 Eason G Noble B Sneddon I N 1955 On certain integrals of Lipschitz Hankel type involving products of Bessel Functions Philosophical Transactions of the Royal Society A 247 935 529 551 Bibcode 1955RSPTA 247 529E doi 10 1098 rsta 1955 0005 JSTOR 91565 Kilpatrick J E Katsura Shigetoshi Inoue Yuji 1967 Calculation of integrals of products of Bessel functions Mathematics of Computation 21 99 407 412 doi 10 1090 S0025 5718 67 99149 1 MacKinnon Robert F 1972 The asymptotic expansions of Hankel transforms and related integrals Mathematics of Computation 26 118 515 527 doi 10 1090 S0025 5718 1972 0308695 9 JSTOR 2003243 Linz Peter Kropp T E 1973 A note on the computation of integrals involving products of trigonometric and Bessel functions Mathematics of Computation 27 124 871 872 doi 10 2307 2005522 JSTOR 2005522 Noll Robert J 1976 Zernike polynomials and atmospheric turbulence Journal of the Optical Society of America 66 3 207 211 Bibcode 1976JOSA 66 207N doi 10 1364 JOSA 66 000207 Siegman A E 1977 Quasi fast Hankel transform Opt Lett 1 1 13 15 Bibcode 1977OptL 1 13S doi 10 1364 OL 1 000013 PMID 19680315 Magni Vittorio Cerullo Giulio De Silverstri Sandro 1992 High accuracy fast Hankel transform for optical beam propagation J Opt Soc Am A 9 11 2031 2033 Bibcode 1992JOSAA 9 2031M doi 10 1364 JOSAA 9 002031 Agnesi A Reali Giancarlo C Patrini G Tomaselli A 1993 Numerical evaluation of the Hankel transform remarks Journal of the Optical Society of America A 10 9 1872 Bibcode 1993JOSAA 10 1872A doi 10 1364 JOSAA 10 001872 Barakat Richard 1996 Numerical evaluation of the zero order Hankel transform using Filon quadrature philosophy Applied Mathematics Letters 9 5 21 26 doi 10 1016 0893 9659 96 00067 5 MR 1415467 Ferrari Jose A Perciante Daniel Dubra Alfredo 1999 Fast Hankel transform of nth order J Opt Soc Am A 16 10 2581 2582 Bibcode 1999JOSAA 16 2581F doi 10 1364 JOSAA 16 002581 Wieder Thomas 1999 Algorithm 794 Numerical Hankel transform by the Fortran program HANKEL ACM Trans Math Softw 25 2 240 250 doi 10 1145 317275 317284 Knockaert Luc 2000 Fast Hankel transform by fast sine and cosine transforms the Mellin connection PDF IEEE Trans Signal Process 48 6 1695 1701 Bibcode 2000ITSP 48 1695K CiteSeerX 10 1 1 721 1633 doi 10 1109 78 845927 Zhang D W Yuan X C Ngo N Q Shum P 2002 Fast Hankel transform and its application for studying the propagation of cylindrical electromagnetic fields Opt Express 10 12 521 525 Bibcode 2002OExpr 10 521Z doi 10 1364 oe 10 000521 PMID 19436390 Markham Joanne Conchello Jose Angel 2003 Numerical evaluation of Hankel transforms for oscillating functions J Opt Soc Am A 20 4 621 630 Bibcode 2003JOSAA 20 621M doi 10 1364 JOSAA 20 000621 PMID 12683487 Perciante Cesar D Ferrari Jose A 2004 Fast Hankel transform of nth order with improved performance J Opt Soc Am A 21 9 1811 2 Bibcode 2004JOSAA 21 1811P doi 10 1364 JOSAA 21 001811 PMID 15384449 Gizar Sicairos Manuel Guitierrez Vega Julio C 2004 Computation of quasi discrete Hankel transform of integer order for propagating optical wave fields J Opt Soc Am A 21 1 53 58 Bibcode 2004JOSAA 21 53G doi 10 1364 JOSAA 21 000053 PMID 14725397 Cerjan Charles 2007 The Zernike Bessel representation and its application to Hankel transforms J Opt Soc Am A 24 6 1609 1616 Bibcode 2007JOSAA 24 1609C doi 10 1364 JOSAA 24 001609 PMID 17491628 Retrieved from https en wikipedia org w index php title Hankel transform amp oldid 1183922308, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.