fbpx
Wikipedia

Azurite

Azurite is a soft, deep-blue copper mineral produced by weathering of copper ore deposits. During the early 19th century, it was also known as chessylite, after the type locality at Chessy-les-Mines near Lyon, France.[3] The mineral, a basic carbonate with the chemical formula Cu3(CO3)2(OH)2, has been known since ancient times, and was mentioned in Pliny the Elder's Natural History under the Greek name kuanos (κυανός: "deep blue," root of English cyan) and the Latin name caeruleum.[5] Copper (Cu2+) gives it its blue color.[6] Since antiquity, azurite's exceptionally deep and clear blue has been associated with low-humidity desert and winter skies. The modern English name of the mineral reflects this association, since both azurite and azure are derived via Arabic from the Persian lazhward (لاژورد), an area known for its deposits of another deep-blue stone, lapis lazuli ("stone of azure").

Azurite
Azurite from New Nevada lode, La Sal, Utah, USA
General
CategoryCarbonate mineral
Formula
(repeating unit)
Cu3(CO3)2(OH)2
IMA symbolAzu[1]
Strunz classification5.BA.05
Crystal systemMonoclinic
Crystal classPrismatic (2/m)
(same H-M symbol)
Space groupP21/c
Unit cella = 5.01 Å, b = 5.85 Å
c = 10.35 Å; β = 92.43°; Z = 2
Identification
Formula mass344.67 g/mol
ColorAzure-blue, dark to pale blue; pale blue in transmitted light
Crystal habitMassive, prismatic, stalactitic, tabular
TwinningRare, twin planes {101}, {102} or {001}
CleavagePerfect on {011}, fair on {100}, poor on {110}
FractureConchoidal
Tenacitybrittle
Mohs scale hardness3.5 to 4
LusterVitreous
StreakLight blue
DiaphaneityTransparent to translucent
Specific gravity3.773 (measured), 3.78 (calculated)
Optical propertiesBiaxial (+)
Refractive indexnα = 1.730 nβ = 1.758 nγ = 1.838
Birefringenceδ = 0.108
PleochroismVisible shades of blue
2V angleMeasured: 68°, calculated: 64°
Dispersionrelatively weak
References[2][3][4]

Mineralogy

 
Chemical structure of azurite. Color code: red = O, green = Cu, gray = C, white = H)

Azurite has the formula Cu3(CO3)2(OH)2, with the copper(II) cations linked to two different anions, carbonate and hydroxide. It is one of two relatively common basic copper(II) carbonate minerals, the other being bright green malachite. Aurichalcite is a rare basic carbonate of copper and zinc.[7] Simple copper carbonate (CuCO3) is not known to exist in nature, due to the high affinity of the Cu2+
ion for the hydroxide anion HO
.[8]

Azurite crystallizes in the monoclinic system.[9] Large crystals are dark blue, often prismatic.[3][4][7] Azurite specimens can be massive to nodular or can occur as drusy crystals lining a cavity.[10]

Azurite is soft, with a Mohs hardness of only 3.5 to 4. The specific gravity of azurite is 3.77. Azurite is destroyed by heat, losing carbon dioxide and water to form black, copper(II) oxide powder. Characteristic of a carbonate, specimens effervesce upon treatment with hydrochloric acid. The combination of deep blue color and effervescence when moistened with hydrochloric acid are identifying characteristics of the mineral.[7][10]

Color

The optical properties (color, intensity) of minerals such as azurite and malachite are characteristic of copper(II). Many coordination complexes of copper(II) exhibit similar colors. According to crystal field theory, the color results from low energy d-d transitions associated with the d9 metal center.[11][12]

Weathering

Azurite is unstable in open air compared to malachite, and often is pseudomorphically replaced by malachite. This weathering process involves the replacement of some of the carbon dioxide (CO2) units with water (H2O), changing the carbonate:hydroxide ratio of azurite from 1:1 to the 1:2 ratio of malachite:[7]

2 Cu3(CO3)2(OH)2 + H2O → 3 Cu2(CO3)(OH)2 + CO2

From the above equation, the conversion of azurite into malachite is attributable to the low partial pressure of carbon dioxide in air.

Azurite is quite stable under ordinary storage conditions, so that specimens retain their deep blue color for long periods of time.[13]

Occurrences

 
Azurite from Burra Mine, South Australia

Azurite is found in the same geologic settings as its sister mineral, malachite, though it is usually less abundant. Both minerals occur widely as supergene copper minerals, formed in the oxidized zone of copper ore deposits. Here they are associated with cuprite, native copper, and various iron oxide minerals.[7]

Fine specimens can be found at many locations. Among the best specimens are found at Bisbee, Arizona, and nearby locations, and have included clusters of crystals several inches long and spherical aggregates and rosettes up to 2 inches (51 mm) in diameter. Similar rosettes are found at Chessy, Rhône, France. The best crystals, up to 10 inches (250 mm) in length, are found at Tsumeb, Namibia. Other notable occurrences are in Utah; Mexico; the Ural and Altai Mountains; Sardinia; Laurion, Greece; Wallaroo, South Australia; and Broken Hill.[10]

Uses

Pigments

Azurite is unstable in air. However it was used as a blue pigment in antiquity.[14] Azurite is naturally occurring in Sinai and the Eastern Desert of Egypt. It was reported by F. C. J. Spurrell (1895) in the following examples; a shell used as a pallet in a Fourth Dynasty (2613 to 2494 BCE) context in Meidum, a cloth over the face of a Fifth Dynasty (2494 to 2345 BCE) mummy also at Meidum and a number of Eighteenth Dynasty (1543–1292 BCE) wall paintings.[15] Depending on the degree of fineness to which it was ground, and its basic content of copper carbonate, it gave a wide range of blues. It has been known as mountain blue, Armenian stone, and azurro della Magna (blue from Germany in Italian). When mixed with oil it turns slightly green. When mixed with egg yolk it turns green-grey. It is also known by the names blue bice and blue verditer, though verditer usually refers to a pigment made by chemical process. Older examples of azurite pigment may show a more greenish tint due to weathering into malachite. Much azurite was mislabeled lapis lazuli, a term applied to many blue pigments. As chemical analysis of paintings from the Middle Ages improves, azurite is being recognized as a major source of the blues used by medieval painters. Lapis lazuli (the pigment ultramarine) was chiefly supplied from Afghanistan during the Middle Ages, whereas azurite was a common mineral in Europe at the time. Sizable deposits were found near Lyons, France. It was mined since the 12th century in Saxony, in the silver mines located there.[16]

Heating can be used to distinguish azurite from purified natural ultramarine blue, a more expensive but more stable blue pigment, as described by Cennino D'Andrea Cennini. Ultramarine withstands heat, whereas azurite converts to black copper oxide.[17] However, gentle heating of azurite produces a deep blue pigment used in Japanese painting techniques.[18]

Azurite pigment can be synthesized by precipitating copper(II) hydroxide from a solution of copper(II) chloride with lime (calcium hydroxide) and treating the precipitate with a concentrated solution of potassium carbonate and lime. This pigment is likely to contain traces of basic copper(II) chlorides.[19]

Jewelry

Azurite is used occasionally as beads and as jewelry, and also as an ornamental stone.[20] However, its softness and tendency to lose its deep blue color as it weathers leaves it with fewer uses.[21] Heating destroys azurite easily, so all mounting of azurite specimens must be done at room temperature.

Collecting

The intense color of azurite makes it a popular collector's stone. The notion that specimens must be carefully protected from bright light, heat, and open air to retain their intensity of color over time may be an urban legend. Paul E. Desautels, former curator of gems and minerals at the Smithsonian Institution, has written that azurite is stable under ordinary storage conditions.[13]

Prospecting

While not a major ore of copper itself, the presence of azurite is a good surface indicator of the presence of weathered copper sulfide ores. It is usually found in association with the chemically similar malachite, producing a striking color combination of deep blue and bright green that is strongly indicative of the presence of copper ores.[7]

History

Azurite was known in the pre-classical ancient world. It was used in ancient Egypt as a pigment, obtained from mines in Sinai. Ancient Mesopotamian writers report the use of a special mortar and pestle for grinding it. It does not appear to have been used in ancient Roman wall paintings but Roman writers certainly knew about its use as a pigment.[22] The fusing of glass and azurite was developed in ancient Mesopotamia.[23]

Gallery of azurite mineral specimens

See also

References

  1. ^ Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43. S2CID 235729616.
  2. ^ Handbook of Mineralogy
  3. ^ a b c Mindat.org
  4. ^ a b Webmineral.com Webmineral Data
  5. ^ The Ancient Library: Smith, Dictionary of Greek and Roman Antiquities, p.321, right col., under BLUE December 20, 2005, at the Wayback Machine
  6. ^ "Minerals Colored by Metal Ions". minerals.gps.caltech.edu. Retrieved 2023-03-01.
  7. ^ a b c d e f Klein, Cornelis; Hurlbut, Cornelius S. Jr. (1993). Manual of mineralogy : (after James D. Dana) (21st ed.). New York: Wiley. pp. 417–418. ISBN 047157452X.
  8. ^ Ahmad, Zaki (2006). Principles of Corrosion Engineering and Corrosion Control. Oxford: Butterworth-Heinemann. pp. 120–270. ISBN 9780750659246.
  9. ^ Zigan, F.; Schuster, H.D. (1972). "Verfeinerung der Struktur von Azurit, Cu3(OH)2(CO3)2, durch Neutronenbeugung". Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie. 135 (5–6): 416–436. Bibcode:1972ZK....135..416Z. doi:10.1524/zkri.1972.135.5-6.416. S2CID 95738208.
  10. ^ a b c Sinkankas, John (1964). Mineralogy for amateurs. Princeton, N.J.: Van Nostrand. pp. 379–381. ISBN 0442276249.
  11. ^ Nassau, K. (1978). "The origins of color in minerals". American Mineralogist. 63 (3–4): 219–229.
  12. ^ Klein & Hurlbut 1993, pp. 260–263.
  13. ^ a b Desautels, Paul E. (January 1991). "Some Thoughts about Azurite". Rocks & Minerals. 66 (1): 14–23. doi:10.1080/00357529.1991.11761595.
  14. ^ Gettens, R.J. and Fitzhugh, E.W., Azurite and Blue Verditer, in Artists’ Pigments. A Handbook of Their History and Characteristics, Vol. 2: A. Roy (Ed.) Oxford University Press 1993, p. 23–24
  15. ^ Nicholson, Paul; Shaw, Ian (2000). Ancient Egyptian Materials and Technology. Cambridge University Press. ISBN 978-0521452571.
  16. ^ Andersen, Frank J. Riches of the Earth. W.H. Smith Publishers, New York, 1981, ISBN 0-8317-7739-7
  17. ^ Muller, Norman E. (January 1978). "Three Methods of Modelling the Virgin's Mantle in Early Itallan Painting". Journal of the American Institute for Conservation. 17 (2): 10–18. doi:10.1179/019713678806029166.
  18. ^ Nishio, Yoshiyuki (January 1987). "Pigments Used in Japanese Paintings". The Paper Conservator. 11 (1): 39–45. doi:10.1080/03094227.1987.9638544.
  19. ^ Orna, Mary Virginia; Low, Manfred J. D.; Baer, Norbert S. (May 1980). "Synthetic Blue Pigments: Ninth to Sixteenth Centuries. I. Literature". Studies in Conservation. 25 (2): 53. doi:10.2307/1505860. JSTOR 1505860.
  20. ^ Mueller, Wolfgang (31 January 2012). "Arizona Gemstones". Rocks & Minerals. 87 (1): 64–70. doi:10.1080/00357529.2012.636241. ISSN 0035-7529. S2CID 219714562.
  21. ^ Schumann, Walter (2009). Gemstones of the world (4th, newly rev. & expanded ed.). New York: Sterling. ISBN 9781402768293. Retrieved 18 September 2021.
  22. ^ Robert James Forbes, Studies in Ancient Technology, vol. 1, p. 216, Leiden: E. J. Brill, 1955 OCLC 312267983.
  23. ^ Emmerich Paszthory, "Electricity generation or magic? The analysis of an unusual group of finds from Mesopotamia", p. 34 in, Stuart J. Fleming, Helen R. Schenck, History of Technology: The Role of Metals, University of Pennsylvania Museum of Archaeology, 1989 ISBN 0924171952.

External links

azurite, this, article, about, carbonate, mineral, fdpso, vessel, fdpso, green, fluorescent, protein, derivative, green, fluorescent, protein, derivatives, mountain, peak, soft, deep, blue, copper, mineral, produced, weathering, copper, deposits, during, early. This article is about the carbonate mineral For the FDPSO vessel see Azurite FDPSO For the green fluorescent protein derivative see Green fluorescent protein GFP derivatives For the mountain see Azurite Peak Azurite is a soft deep blue copper mineral produced by weathering of copper ore deposits During the early 19th century it was also known as chessylite after the type locality at Chessy les Mines near Lyon France 3 The mineral a basic carbonate with the chemical formula Cu3 CO3 2 OH 2 has been known since ancient times and was mentioned in Pliny the Elder s Natural History under the Greek name kuanos kyanos deep blue root of English cyan and the Latin name caeruleum 5 Copper Cu2 gives it its blue color 6 Since antiquity azurite s exceptionally deep and clear blue has been associated with low humidity desert and winter skies The modern English name of the mineral reflects this association since both azurite and azure are derived via Arabic from the Persian lazhward لاژورد an area known for its deposits of another deep blue stone lapis lazuli stone of azure AzuriteAzurite from New Nevada lode La Sal Utah USAGeneralCategoryCarbonate mineralFormula repeating unit Cu3 CO3 2 OH 2IMA symbolAzu 1 Strunz classification5 BA 05Crystal systemMonoclinicCrystal classPrismatic 2 m same H M symbol Space groupP21 cUnit cella 5 01 A b 5 85 A c 10 35 A b 92 43 Z 2IdentificationFormula mass344 67 g molColorAzure blue dark to pale blue pale blue in transmitted lightCrystal habitMassive prismatic stalactitic tabularTwinningRare twin planes 1 01 1 02 or 001 CleavagePerfect on 011 fair on 100 poor on 110 FractureConchoidalTenacitybrittleMohs scale hardness3 5 to 4LusterVitreousStreakLight blueDiaphaneityTransparent to translucentSpecific gravity3 773 measured 3 78 calculated Optical propertiesBiaxial Refractive indexna 1 730 nb 1 758 ng 1 838Birefringenced 0 108PleochroismVisible shades of blue2V angleMeasured 68 calculated 64 Dispersionrelatively weakReferences 2 3 4 Contents 1 Mineralogy 1 1 Color 1 2 Weathering 1 3 Occurrences 2 Uses 2 1 Pigments 2 2 Jewelry 2 3 Collecting 2 4 Prospecting 3 History 4 Gallery of azurite mineral specimens 5 See also 6 References 7 External linksMineralogy Edit Chemical structure of azurite Color code red O green Cu gray C white H Azurite has the formula Cu3 CO3 2 OH 2 with the copper II cations linked to two different anions carbonate and hydroxide It is one of two relatively common basic copper II carbonate minerals the other being bright green malachite Aurichalcite is a rare basic carbonate of copper and zinc 7 Simple copper carbonate CuCO3 is not known to exist in nature due to the high affinity of the Cu2 ion for the hydroxide anion HO 8 Azurite crystallizes in the monoclinic system 9 Large crystals are dark blue often prismatic 3 4 7 Azurite specimens can be massive to nodular or can occur as drusy crystals lining a cavity 10 Azurite is soft with a Mohs hardness of only 3 5 to 4 The specific gravity of azurite is 3 77 Azurite is destroyed by heat losing carbon dioxide and water to form black copper II oxide powder Characteristic of a carbonate specimens effervesce upon treatment with hydrochloric acid The combination of deep blue color and effervescence when moistened with hydrochloric acid are identifying characteristics of the mineral 7 10 Color Edit The optical properties color intensity of minerals such as azurite and malachite are characteristic of copper II Many coordination complexes of copper II exhibit similar colors According to crystal field theory the color results from low energy d d transitions associated with the d9 metal center 11 12 Weathering Edit Azurite is unstable in open air compared to malachite and often is pseudomorphically replaced by malachite This weathering process involves the replacement of some of the carbon dioxide CO2 units with water H2O changing the carbonate hydroxide ratio of azurite from 1 1 to the 1 2 ratio of malachite 7 2 Cu3 CO3 2 OH 2 H2O 3 Cu2 CO3 OH 2 CO2From the above equation the conversion of azurite into malachite is attributable to the low partial pressure of carbon dioxide in air Azurite is quite stable under ordinary storage conditions so that specimens retain their deep blue color for long periods of time 13 Occurrences Edit Azurite from Burra Mine South Australia Azurite is found in the same geologic settings as its sister mineral malachite though it is usually less abundant Both minerals occur widely as supergene copper minerals formed in the oxidized zone of copper ore deposits Here they are associated with cuprite native copper and various iron oxide minerals 7 Fine specimens can be found at many locations Among the best specimens are found at Bisbee Arizona and nearby locations and have included clusters of crystals several inches long and spherical aggregates and rosettes up to 2 inches 51 mm in diameter Similar rosettes are found at Chessy Rhone France The best crystals up to 10 inches 250 mm in length are found at Tsumeb Namibia Other notable occurrences are in Utah Mexico the Ural and Altai Mountains Sardinia Laurion Greece Wallaroo South Australia and Broken Hill 10 Uses EditPigments Edit Azurite is unstable in air However it was used as a blue pigment in antiquity 14 Azurite is naturally occurring in Sinai and the Eastern Desert of Egypt It was reported by F C J Spurrell 1895 in the following examples a shell used as a pallet in a Fourth Dynasty 2613 to 2494 BCE context in Meidum a cloth over the face of a Fifth Dynasty 2494 to 2345 BCE mummy also at Meidum and a number of Eighteenth Dynasty 1543 1292 BCE wall paintings 15 Depending on the degree of fineness to which it was ground and its basic content of copper carbonate it gave a wide range of blues It has been known as mountain blue Armenian stone and azurro della Magna blue from Germany in Italian When mixed with oil it turns slightly green When mixed with egg yolk it turns green grey It is also known by the names blue bice and blue verditer though verditer usually refers to a pigment made by chemical process Older examples of azurite pigment may show a more greenish tint due to weathering into malachite Much azurite was mislabeled lapis lazuli a term applied to many blue pigments As chemical analysis of paintings from the Middle Ages improves azurite is being recognized as a major source of the blues used by medieval painters Lapis lazuli the pigment ultramarine was chiefly supplied from Afghanistan during the Middle Ages whereas azurite was a common mineral in Europe at the time Sizable deposits were found near Lyons France It was mined since the 12th century in Saxony in the silver mines located there 16 Heating can be used to distinguish azurite from purified natural ultramarine blue a more expensive but more stable blue pigment as described by Cennino D Andrea Cennini Ultramarine withstands heat whereas azurite converts to black copper oxide 17 However gentle heating of azurite produces a deep blue pigment used in Japanese painting techniques 18 Azurite pigment can be synthesized by precipitating copper II hydroxide from a solution of copper II chloride with lime calcium hydroxide and treating the precipitate with a concentrated solution of potassium carbonate and lime This pigment is likely to contain traces of basic copper II chlorides 19 Ground azurite for use as a pigment The background of Lady with a Squirrel by Hans Holbein the Younger was painted with Azurite The greenish tint of the Madonna s mantle in Raphael s Madonna and Child Enthroned with Saints is due to azurite weathering to malachiteJewelry Edit Azurite is used occasionally as beads and as jewelry and also as an ornamental stone 20 However its softness and tendency to lose its deep blue color as it weathers leaves it with fewer uses 21 Heating destroys azurite easily so all mounting of azurite specimens must be done at room temperature Collecting Edit The intense color of azurite makes it a popular collector s stone The notion that specimens must be carefully protected from bright light heat and open air to retain their intensity of color over time may be an urban legend Paul E Desautels former curator of gems and minerals at the Smithsonian Institution has written that azurite is stable under ordinary storage conditions 13 Prospecting Edit While not a major ore of copper itself the presence of azurite is a good surface indicator of the presence of weathered copper sulfide ores It is usually found in association with the chemically similar malachite producing a striking color combination of deep blue and bright green that is strongly indicative of the presence of copper ores 7 History EditAzurite was known in the pre classical ancient world It was used in ancient Egypt as a pigment obtained from mines in Sinai Ancient Mesopotamian writers report the use of a special mortar and pestle for grinding it It does not appear to have been used in ancient Roman wall paintings but Roman writers certainly knew about its use as a pigment 22 The fusing of glass and azurite was developed in ancient Mesopotamia 23 Gallery of azurite mineral specimens Edit Azurite crystals from China Azurite from Arizona collected by Dr John Hunter in the 18th century Hunterian Museum Glasgow Fresh unweathered azurite crystals showing the deep blue of unaltered azurite From Spania Dolina Slovakia Azurite with Malachite Copper Queen mine Bisbee Arizona Azurite from Touissit Morocco Azurite Morenci Arizona Azurite in siltstone Malbunka mine Northern Territory Australia Azurite from Tsumeb Namibia Azurite cross section through merged stalactites Bisbee Arizona Azurite crystal from the minerals collection at the Natural History Museum London Spheroidal azurite specimens from UtahSee also EditBasic copper carbonate List of inorganic pigments List of minerals Blue pigmentsReferences Edit Warr L N 2021 IMA CNMNC approved mineral symbols Mineralogical Magazine 85 3 291 320 Bibcode 2021MinM 85 291W doi 10 1180 mgm 2021 43 S2CID 235729616 Handbook of Mineralogy a b c Mindat org a b Webmineral com Webmineral Data The Ancient Library Smith Dictionary of Greek and Roman Antiquities p 321 right col under BLUE Archived December 20 2005 at the Wayback Machine Minerals Colored by Metal Ions minerals gps caltech edu Retrieved 2023 03 01 a b c d e f Klein Cornelis Hurlbut Cornelius S Jr 1993 Manual of mineralogy after James D Dana 21st ed New York Wiley pp 417 418 ISBN 047157452X Ahmad Zaki 2006 Principles of Corrosion Engineering and Corrosion Control Oxford Butterworth Heinemann pp 120 270 ISBN 9780750659246 Zigan F Schuster H D 1972 Verfeinerung der Struktur von Azurit Cu3 OH 2 CO3 2 durch Neutronenbeugung Zeitschrift fur Kristallographie Kristallgeometrie Kristallphysik Kristallchemie 135 5 6 416 436 Bibcode 1972ZK 135 416Z doi 10 1524 zkri 1972 135 5 6 416 S2CID 95738208 a b c Sinkankas John 1964 Mineralogy for amateurs Princeton N J Van Nostrand pp 379 381 ISBN 0442276249 Nassau K 1978 The origins of color in minerals American Mineralogist 63 3 4 219 229 Klein amp Hurlbut 1993 pp 260 263 a b Desautels Paul E January 1991 Some Thoughts about Azurite Rocks amp Minerals 66 1 14 23 doi 10 1080 00357529 1991 11761595 Gettens R J and Fitzhugh E W Azurite and Blue Verditer in Artists Pigments A Handbook of Their History and Characteristics Vol 2 A Roy Ed Oxford University Press 1993 p 23 24 Nicholson Paul Shaw Ian 2000 Ancient Egyptian Materials and Technology Cambridge University Press ISBN 978 0521452571 Andersen Frank J Riches of the Earth W H Smith Publishers New York 1981 ISBN 0 8317 7739 7 Muller Norman E January 1978 Three Methods of Modelling the Virgin s Mantle in Early Itallan Painting Journal of the American Institute for Conservation 17 2 10 18 doi 10 1179 019713678806029166 Nishio Yoshiyuki January 1987 Pigments Used in Japanese Paintings The Paper Conservator 11 1 39 45 doi 10 1080 03094227 1987 9638544 Orna Mary Virginia Low Manfred J D Baer Norbert S May 1980 Synthetic Blue Pigments Ninth to Sixteenth Centuries I Literature Studies in Conservation 25 2 53 doi 10 2307 1505860 JSTOR 1505860 Mueller Wolfgang 31 January 2012 Arizona Gemstones Rocks amp Minerals 87 1 64 70 doi 10 1080 00357529 2012 636241 ISSN 0035 7529 S2CID 219714562 Schumann Walter 2009 Gemstones of the world 4th newly rev amp expanded ed New York Sterling ISBN 9781402768293 Retrieved 18 September 2021 Robert James Forbes Studies in Ancient Technology vol 1 p 216 Leiden E J Brill 1955 OCLC 312267983 Emmerich Paszthory Electricity generation or magic The analysis of an unusual group of finds from Mesopotamia p 34 in Stuart J Fleming Helen R Schenck History of Technology The Role of Metals University of Pennsylvania Museum of Archaeology 1989 ISBN 0924171952 External links Edit Wikimedia Commons has media related to Azurite Spencer Leonard James 1911 Azurite Encyclopaedia Britannica Vol 3 11th ed p 86 Azurite Colourlex Retrieved from https en wikipedia org w index php title Azurite amp oldid 1151797415, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.