fbpx
Wikipedia

Atheroma

An atheroma, or atheromatous plaque, is an abnormal and reversible accumulation of material in the inner layer of an arterial wall.[1][2]

Atheroma
Other namesatheromata (plural), atheromas (plural), atheromatous plaque, plaque
Atherosclerotic plaque from a carotid endarterectomy specimen. This shows the division of the common into the internal and external carotid arteries.
SpecialtyCardiology 
ComplicationsThrombosis, embolism, atherosclerosis, arteriosclerosis
CausesHyperlipidemia, hypertriglyceridemia, hypercholesterolemia

The material consists of mostly macrophage cells,[3][4] or debris, containing lipids, calcium and a variable amount of fibrous connective tissue. The accumulated material forms a swelling in the artery wall, which may intrude into the lumen of the artery, narrowing it and restricting blood flow. Atheroma is the pathological basis for the disease entity atherosclerosis, a subtype of arteriosclerosis.[citation needed]

Signs and symptoms

For most people, the first symptoms result from atheroma progression within the heart arteries, most commonly resulting in a heart attack and ensuing debility. The heart arteries are difficult to track because they are small (from about 5 mm down to microscopic), they are hidden deep within the chest and they never stop moving. Additionally, all mass-applied clinical strategies focus on both minimal cost and the overall safety of the procedure. Therefore, existing diagnostic strategies for detecting atheroma and tracking response to treatment have been extremely limited. The methods most commonly relied upon, patient symptoms and cardiac stress testing, do not detect any symptoms of the problem until atheromatous disease is very advanced because arteries enlarge, not constrict, in response to increasing atheroma.[5] It is plaque ruptures, producing debris and clots which obstruct blood flow downstream, sometimes also locally (as seen on angiograms), which reduce/stop blood flow. Yet these events occur suddenly and are not revealed in advance by either stress tests or angiograms.[citation needed]

Mechanism

The healthy epicardial coronary artery consists of three layers, the tunica intima, media, and adventitia.[6][7] Atheroma and changes in the artery wall usually result in small aneurysms (enlargements) just large enough to compensate for the extra wall thickness with no change in the lumen diameter. However, eventually, typically as a result of rupture of vulnerable plaques and clots within the lumen over the plaque, stenosis (narrowing) of the vessel develops in some areas. Less frequently, the artery enlarges so much that a gross aneurysmal enlargement of the artery results. All three results are often observed, at different locations, within the same individual.[citation needed]

Stenosis and closure

Over time, atheromata usually progress in size and thickness and induce the surrounding muscular central region (the media) of the artery to stretch out, which is termed remodeling. Typically, remodeling occurs just enough to compensate for the atheroma's size such that the calibre of the artery opening (lumen) remains unchanged, until about 50% of the artery wall cross-sectional area consists of atheromatous tissue.[5]

 
Narrowed arterial blood vessel blocked with an atheroma (artist's conception).

If the muscular wall enlargement eventually fails to keep up with the enlargement of the atheroma volume, or a clot forms and organizes over the plaque, then the lumen of the artery becomes narrowed as a result of repeated ruptures, clots and fibrosis over the tissues separating the atheroma from the blood stream. This narrowing becomes more common after decades of living, increasingly more common after people are in their 30s to 40s.[citation needed]

The endothelium (the cell monolayer on the inside of the vessel) and covering tissue, termed fibrous cap, separate atheroma from the blood in the lumen. If a rupture (see vulnerable plaque) of the endothelium and fibrous cap occurs, then both a shower of debris from the plaque (debris larger than 5 micrometres are too large to pass through capillaries)) combined with a platelet and clotting response (an injury/repair response to both the debris and at the rupture site) begins within fractions of a second, eventually resulting in narrowing or sometimes closure of the lumen. Eventually downstream tissue damage occurs due to closure or obstruction of downstream microvessels and/or closure of the lumen at the rupture, both resulting in loss of blood flow to downstream tissues. This is the principal mechanism of myocardial infarction, stroke or other related cardiovascular disease problems.[citation needed]

While clots at the rupture site typically shrink in volume over time, some of the clot may become organized into fibrotic tissue resulting in narrowing of the artery lumen; the narrowings sometimes seen on angiography examinations, if severe enough. Since angiography methods can only reveal larger lumens, typically larger than 200 micrometres, angiography after a cardiovascular event commonly does not reveal what happened.[citation needed]

Artery enlargement

If the muscular wall enlargement is overdone over time, then a gross enlargement of the artery results, usually over decades of living. This is a less common outcome. Atheroma within aneurysmal enlargement (vessel bulging) can also rupture and shower debris of atheroma and clot downstream. If the arterial enlargement continues to 2 to 3 times the usual diameter, the walls often become weak enough that with just the stress of the pulse, a loss of wall integrity may occur leading to sudden hemorrhage (bleeding), major symptoms and debility; often rapid death. The main stimulus for aneurysm formation is pressure atrophy of the structural support of the muscle layers. The main structural proteins are collagen and elastin. This causes thinning and the wall balloons allowing gross enlargement to occur, as is common in the abdominal region of the aorta.[citation needed]

Histology

The accumulation (swelling) is always in the tunica intima, between the endothelium lining and the smooth muscle middle layer of the artery wall.[citation needed]While the early stages, based on gross appearance, have traditionally been termed fatty streaks by pathologists, they are not composed of fat cells but of accumulations of white blood cells, especially macrophages, that have taken up oxidized low-density lipoprotein (LDL).[citation needed]

After they accumulate large amounts of cytoplasmic membranes (with associated high cholesterol content) they are called foam cells. When foam cells die, their contents are released, which attracts more macrophages and creates an extracellular lipid core near the centre to inner surface of each atherosclerotic plaque.[citation needed]

Conversely, the outer, older portions of the plaque become more calcified, less metabolically active and more physically stiff over time.[citation needed]

Veins do not develop atheromata, because they are not subjected to the same haemodynamic pressure that arteries are,[8] unless surgically moved to function as an artery, as in bypass surgery.

Diagnosis

 
Illustration comparing a normal blood vessel and partially blocked vessel due to atherosclerotic plaque. Notice the enlargement & absence of much luminal narrowing.[5]

Because artery walls enlarge at locations with atheroma,[5] detecting atheroma before death and autopsy has long been problematic at best. Most methods have focused on the openings of arteries; while these methods are highly relevant, they totally miss the atheroma within the arterial lumen.[citation needed]

Historically, arterial wall fixation, staining and thin section has been the gold standard for detection and description of atheroma, after death and autopsy. With special stains and examination, micro calcifications[9] can be detected, typically within smooth muscle cells of the arterial media near the fatty streaks within a year or two of fatty streaks forming.

Interventional and non-interventional methods to detect atherosclerosis, specifically vulnerable plaque (non-occlusive or soft plaque), are widely used in research and clinical practice today.[citation needed]

Carotid Intima-media thickness Scan (CIMT can be measured by B-mode ultrasonography) measurement has been recommended by the American Heart Association as the most useful method to identify atherosclerosis and may now very well be the gold standard for detection.[citation needed]

Intravascular ultrasound is the current most sensitive method detecting and measuring more advanced atheroma within living individuals, but has had limited applications due to cost and body invasiveness.[10][11]

CT scans using state of the art higher resolution spiral, or the higher speed EBT, machines have been the most effective method for detecting calcification present in plaque. However, the atheroma have to be advanced enough to have relatively large areas of calcification within them to create large enough regions of ~130 Hounsfield units which a CT scanner's software can recognize as distinct from the other surrounding tissues. Typically, such regions start occurring within the heart arteries about 2–3 decades after atheroma start developing. The presence of smaller, spotty plaques may actually be more dangerous for progressing to acute myocardial infarction.[12]

Arterial ultrasound, especially of the carotid arteries, with measurement of the thickness of the artery wall, offers a way to partially track the disease progression. As of 2006, the thickness, commonly referred to as IMT for intimal-medial thickness, is not measured clinically though it has been used by some researchers since the mid-1990s to track changes in arterial walls. Traditionally, clinical carotid ultrasounds have only estimated the degree of blood lumen restriction, stenosis, a result of very advanced disease. The National Institute of Health did a five-year $5 million study, headed by medical researcher Kenneth Ouriel, to study intravascular ultrasound techniques regarding atherosclerotic plaque.[citation needed] More progressive clinicians have begun using IMT measurement as a way to quantify and track disease progression or stability within individual patients.[citation needed]

Angiography, since the 1960s, has been the traditional way of evaluating for atheroma. However, angiography is only motion or still images of dye mixed with the blood within the arterial lumen and never show atheroma; the wall of arteries, including atheroma within the arterial wall remain invisible. The limited exception to this rule is that with very advanced atheroma, with extensive calcification within the wall, a halo-like ring of radiodensity can be seen in most older humans, especially when arterial lumens are visualized end-on. On cine-floro, cardiologists and radiologists typically look for these calcification shadows to recognize arteries before they inject any contrast agent during angiograms.[citation needed]

Classification of lesions

  • Type I: Isolated macrophage foam cells[6][13]
  • Type II: Multiple foam cell layers[6][13]
  • Type III: Preatheroma, intermediate lesion[6][13]
  • Type IV: Atheroma[6][13]
  • Type V: Fibroatheroma[6][13]
  • Type VI: Fissured, ulcerated, hemorrhagic, thrombotic lesion[6][13]
  • Type VII: Calcific lesion[6][13]
  • Type VIII: Fibrotic lesion[6][13]

Treatment

Many approaches have been promoted[by whom?] as methods to reduce or reverse[14] atheroma progression:[citation needed]

  • eating a diet of raw fruits, vegetables, nuts, beans, berries, and grains;[14][15]
  • consuming foods containing omega−3 fatty acids such as fish, fish-derived supplements, as well as flax seed oil, borage oil, and other non-animal-based oils;
  • abdominal fat reduction;
  • aerobic exercise;[14]
  • inhibitors of cholesterol synthesis (known as statins);[14]
  • low normal blood glucose levels (glycated hemoglobin, also called HbA1c);
  • micronutrient (vitamins, potassium, and magnesium) consumption;
  • maintaining normal, or healthy, blood pressure levels;
  • aspirin supplement
  • mouse studies indicated that subcutaneous administration of oligosaccharide 2-hydroxypropyl-β-cyclodextrin (2HPβCD) can solubilize cholesterol, removing it from plaques.[16] However, later work concluded that "treatment with 2HPβCD is ineffective in inducing atherosclerosis regression".[17]

History of research

In developed countries, with improved public health, infection control and increasing life spans, atheroma processes have become an increasingly important problem and burden for society. Atheromata continue to be the primary underlying basis for disability and death, despite a trend for gradual improvement since the early 1960s (adjusted for patient age). Thus, increasing efforts towards better understanding, treating and preventing the problem are continuing to evolve.[citation needed]

According to United States data, 2004, for about 65% of men and 47% of women, the first symptom of cardiovascular disease is myocardial infarction (heart attack) or sudden death (death within one hour of symptom onset).[citation needed]

A significant proportion of artery flow-disrupting events occur at locations with less than 50% lumenal narrowing. Cardiac stress testing, traditionally the most commonly performed non-invasive testing method for blood flow limitations, generally only detects lumen narrowing greater than about 75%, although some physicians advocate nuclear stress tests that can sometimes detect as little as 50%.[citation needed]

The sudden nature of the complications of pre-existing atheroma, vulnerable plaque (non-occlusive or soft plaque), have led, since the 1950s, to the development of intensive care units and complex medical and surgical interventions. Angiography and later cardiac stress testing was begun to either visualize or indirectly detect stenosis. Next came bypass surgery, to plumb transplanted veins, sometimes arteries, around the stenoses and more recently angioplasty, now including stents, most recently drug coated stents, to stretch the stenoses more open.[citation needed]

Yet despite these medical advances, with success in reducing the symptoms of angina and reduced blood flow, atheroma rupture events remain the major problem and still sometimes result in sudden disability and death despite even the most rapid, massive and skilled medical and surgical intervention available anywhere today. According to some clinical trials, bypass surgery and angioplasty procedures have had at best a minimal effect, if any, on improving overall survival. Typically mortality of bypass operations is between 1 and 4%, of angioplasty between 1 and 1.5%.[citation needed]

Additionally, these vascular interventions are often done only after an individual is symptomatic, often already partially disabled, as a result of the disease. It is also clear that both angioplasty and bypass interventions do not prevent future heart attack.[citation needed]

The older methods for understanding atheroma, dating to before World War II, relied on autopsy data. Autopsy data has long shown initiation of fatty streaks in later childhood with slow asymptomatic progression over decades.[5]

One way to see atheroma is the very invasive and costly IVUS ultrasound technology; it gives us the precise volume of the inside intima plus the central media layers of about 25 mm (1 in) of artery length. Unfortunately, it gives no information about the structural strength of the artery. Angiography does not visualize atheroma; it only makes the blood flow within blood vessels visible. Alternative methods that are non or less physically invasive and less expensive per individual test have been used and are continuing to be developed, such as those using computed tomography (CT; led by the electron beam tomography form, given its greater speed) and magnetic resonance imaging (MRI). The most promising since the early 1990s has been EBT, detecting calcification within the atheroma before most individuals start having clinically recognized symptoms and debility. Statin therapy (to lower cholesterol) does not slow the speed of calcification as determined by CT scan. MRI coronary vessel wall imaging, although currently limited to research studies, has demonstrated the ability to detect vessel wall thickening in asymptomatic high risk individuals.[18] As a non-invasive, ionising radiation free technique, MRI based techniques could have future uses in monitoring disease progression and regression. Most visualization techniques are used in research, they are not widely available to most patients, have significant technical limitations, have not been widely accepted and generally are not covered by medical insurance carriers.[citation needed]

From human clinical trials, it has become increasingly evident that a more effective focus of treatment is slowing, stopping and even partially reversing the atheroma growth process.[15] There are several prospective epidemiologic studies including the Atherosclerosis Risk in Communities (ARIC) Study and the Cardiovascular Health Study (CHS), which have supported a direct correlation of Carotid Intima-media thickness (CIMT) with myocardial infarction and stroke risk in patients without cardiovascular disease history. The ARIC Study was conducted in 15,792 individuals between 5 and 65 years of age in four different regions of the US between 1987 and 1989. The baseline CIMT was measured and measurements were repeated at 4- to 7-year intervals by carotid B mode ultrasonography in this study. An increase in CIMT was correlated with an increased risk for CAD. The CHS was initiated in 1988, and the relationship of CIMT with risk of myocardial infarction and stroke was investigated in 4,476 subjects 65 years of age and below. At the end of approximately six years of follow-up, CIMT measurements were correlated with cardiovascular events.[citation needed]

Paroi artérielle et Risque Cardiovasculaire in Asia Africa/Middle East and Latin America (PARC-AALA) is another important large-scale study, in which 79 centres from countries in Asia, Africa, the Middle East, and Latin America participated, and the distribution of CIMT according to different ethnic groups and its association with the Framingham cardiovascular score was investigated. Multi-linear regression analysis revealed that an increased Framingham cardiovascular score was associated with CIMT, and carotid plaque independent of geographic differences.[citation needed]

Cahn et al. prospectively followed-up 152 patients with coronary artery disease for 6–11 months by carotid artery ultrasonography and noted 22 vascular events (myocardial infarction, transient ischemic attack, stroke, and coronary angioplasty) within this time period. They concluded that carotid atherosclerosis measured by this non-interventional method has prognostic significance in coronary artery patients.[citation needed]

In the Rotterdam Study, Bots et al. followed 7,983 patients >55 years of age for a mean period of 4.6 years, and reported 194 incident myocardial infarctions within this period. CIMT was significantly higher in the myocardial infarction group compared to the other group. Demircan et al. found that the CIMT of patients with acute coronary syndrome were significantly increased compared to patients with stable angina pectoris.[citation needed]

It has been reported in another study that a maximal CIMT value of 0.956 mm had 85.7% sensitivity and 85.1% specificity to predict angiographic CAD. The study group consisted of patients admitted to the cardiology outpatient clinic with symptoms of stable angina pectoris. The study showed CIMT was higher in patients with significant CAD than in patients with non-critical coronary lesions. Regression analysis revealed that thickening of the mean intima-media complex more than 1.0 was predictive of significant CAD our patients. There was incremental significant increase in CIMT with the number coronary vessel involved. In accordance with the literature, it was found that CIMT was significantly higher in the presence of CAD. Furthermore, CIMT was increased as the number of involved vessels increased and the highest CIMT values were noted in patients with left main coronary involvement. However, human clinical trials have been slow to provide clinical & medical evidence, partly because the asymptomatic nature of atheromata make them especially difficult to study. Promising results are found using carotid intima-media thickness scanning (CIMT can be measured by B-mode ultrasonography), B-vitamins that reduce a protein corrosive, homocysteine and that reduce neck carotid artery plaque volume and thickness, and stroke, even in late-stage disease.[citation needed]

Additionally, understanding what drives atheroma development is complex with multiple factors involved, only some of which, such as lipoproteins, more importantly lipoprotein subclass analysis, blood sugar levels and hypertension are best known and researched. More recently, some of the complex immune system patterns that promote, or inhibit, the inherent inflammatory macrophage triggering processes involved in atheroma progression are slowly being better elucidated in animal models of atherosclerosis.[citation needed]

See also

References

  1. ^ Lusis, Aldons J. (September 2000). "Atherosclerosis". Nature. 407 (6801): 233–241. doi:10.1038/35025203. PMC 2826222. PMID 11001066.
  2. ^ Francis, Andrew A; Pierce, Grant N (2011). "An integrated approach for the mechanisms responsible for atherosclerotic plaque regression". Experimental & Clinical Cardiology. 16 (3): 77–86. ISSN 1205-6626. PMC 3209544. PMID 22065938.
  3. ^ Hotamisligil, Gökhan S (April 2010). "Endoplasmic reticulum stress and atherosclerosis". Nature Medicine. 16 (4): 396–399. doi:10.1038/nm0410-396. PMC 2897068. PMID 20376052.
  4. ^ Oh, Jisu; Riek, Amy E.; Weng, Sherry; Petty, Marvin; Kim, David; Colonna, Marco; Cella, Marina; Bernal-Mizrachi, Carlos (6 April 2012). "Endoplasmic Reticulum Stress Controls M2 Macrophage Differentiation and Foam Cell Formation". Journal of Biological Chemistry. 287 (15): 11629–11641. doi:10.1074/jbc.M111.338673. PMC 3320912. PMID 22356914.
  5. ^ a b c d e Glagov, Seymour; Weisenberg, Elliot; Zarins, Christopher K.; Stankunavicius, Regina; Kolettis, George J. (28 May 1987). "Compensatory Enlargement of Human Atherosclerotic Coronary Arteries". New England Journal of Medicine. 316 (22): 1371–1375. doi:10.1056/NEJM198705283162204. PMID 3574413.
  6. ^ a b c d e f g h i Coronary Artery Atherosclerosis at eMedicine
  7. ^ Waller, Bruce F.; Orr, Charles M.; Slack, John D.; Pinkerton, Cass A.; Van Tassel, James; Peters, Thomas (June 1992). "Anatomy, histology, and pathology of coronary arteries: A review relevant to new interventional and imaging techniques-Part I". Clinical Cardiology. 15 (6): 451–457. doi:10.1002/clc.4960150613. PMID 1617826. S2CID 12034096.
  8. ^ Zhang, Hongqi; Sun, Aijun; Shen, Yanguo; Jia, Jianguo; Wang, Shijun; Wang, Keqiang; Ge, Junbo (November 2004). "Artery interposed to vein did not develop atherosclerosis and underwent atrophic remodeling in cholesterol-fed rabbits". Atherosclerosis. 177 (1): 37–41. doi:10.1016/j.atherosclerosis.2004.06.019. PMID 15488863.
  9. ^ Roijers, Ruben B.; Debernardi, Nicola; Cleutjens, Jack P.M.; Schurgers, Leon J.; Mutsaers, Peter H.A.; van der Vusse, Ger J. (June 2011). "Microcalcifications in Early Intimal Lesions of Atherosclerotic Human Coronary Arteries". The American Journal of Pathology. 178 (6): 2879–2887. doi:10.1016/j.ajpath.2011.02.004. PMC 3124018. PMID 21531376.
  10. ^ Mintz, Gary S.; Nissen, Steven E. (April 2001). "American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS)". Journal of the American College of Cardiology. 37 (5): 1485. doi:10.1016/S0735-1097(01)01175-5. ISSN 0735-1097. PMID 11300468.
  11. ^ Tuzcu, E. Murat; Berkalp, Berktan; de Franco, Anthony C.; Ellis, Stephen G.; Goormastic, Marlene; Whitlow, Patrick L.; Franco, Irving; Raymond, Russell E.; Nissen, Steven E. (March 1996). "The Dilemma of Diagnosing Coronary Calcification: Angiography Versus Intravascular Ultrasound". Journal of the American College of Cardiology. 27 (4): 832–838. doi:10.1016/0735-1097(95)00537-4. ISSN 0735-1097. PMID 8613611.
  12. ^ Ehara, Shoichi; Kobayashi, Yoshiki; Yoshiyama, Minoru; Shimada, Kenei; Shimada, Yoshihisa; Fukuda, Daiju; Nakamura, Yasuhiro; Yamashita, Hajime; Yamagishi, Hiroyuki; Takeuchi, Kazuhide; Naruko, Takahiko; Haze, Kazuo; Becker, Anton E.; Yoshikawa, Junichi; Ueda, Makiko (30 November 2004). "Spotty Calcification Typifies the Culprit Plaque in Patients With Acute Myocardial Infarction: An Intravascular Ultrasound Study". Circulation. 110 (22): 3424–3429. doi:10.1161/01.CIR.0000148131.41425.E9. PMID 15557374. S2CID 11917149.
  13. ^ a b c d e f g h Stary, Herbert C. (2003). Atlas of atherosclerosis: progression and regression. Parthenon Pub. p. 16. ISBN 978-1-84214-153-3.
  14. ^ a b c d "Ask the doctor: Reversing atherosclerosis?". Harvard Health. November 2016.
  15. ^ a b Bodai, Balazs I.; Nakata, Therese E.; Wong, William T.; Clark, Dawn R.; Lawenda, Steven; Tsou, Christine; Liu, Raymond; Shiue, Linda; Cooper, Neil; Rehbein, Michael; Ha, Benjamin P.; McKeirnan, Anne; Misquitta, Rajiv; Vij, Pankaj; Klonecke, Andrew; Mejia, Carmelo S.; Dionysian, Emil; Hashmi, Sean; Greger, Michael; Stoll, Scott; Campbell, Thomas M. (2018). "Lifestyle Medicine: A Brief Review of Its Dramatic Impact on Health and Survival". The Permanente Journal. 22: 17–025. doi:10.7812/TPP/17-025. PMC 5638636. PMID 29035175.
  16. ^ Zimmer, Sebastian; Grebe, Alena; Bakke, Siril S.; Bode, Niklas; Halvorsen, Bente; Ulas, Thomas; Skjelland, Mona; De Nardo, Dominic; Labzin, Larisa I.; Kerksiek, Anja; Hempel, Chris; Heneka, Michael T.; Hawxhurst, Victoria; Fitzgerald, Michael L.; Trebicka, Jonel; Björkhem, Ingemar; Gustafsson, Jan-Åke; Westerterp, Marit; Tall, Alan R.; Wright, Samuel D.; Espevik, Terje; Schultze, Joachim L.; Nickenig, Georg; Lütjohann, Dieter; Latz, Eicke (6 April 2016). "Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming" (PDF). Science Translational Medicine. 8 (333): 333ra50. doi:10.1126/scitranslmed.aad6100. PMC 4878149. PMID 27053774.
  17. ^ Snip, Olga S.C.; Hoekstra, Menno; Zhang, Yiheng; Geerling, Janine J.; Van Eck, Miranda (31 August 2022). "2-Hydroxypropyl-beta-cyclodextrin Treatment Does Not Induce Atherosclerotic Lesion Regression in Western-Type Diet-Fed Apolipoprotein E Knockout Mice". Biomolecules. MDPI AG. 12 (9): 1205. doi:10.3390/biom12091205. ISSN 2218-273X. PMC 9496214. PMID 36139044.
  18. ^ Kim, W. Yong; Stuber, Matthias; Börnert, Peter; Kissinger, Kraig V.; Manning, Warren J.; Botnar, René M. (16 July 2002). "Three-Dimensional Black-Blood Cardiac Magnetic Resonance Coronary Vessel Wall Imaging Detects Positive Arterial Remodeling in Patients With Nonsignificant Coronary Artery Disease". Circulation. 106 (3): 296–299. doi:10.1161/01.cir.0000025629.85631.1e. PMID 12119242. S2CID 2294253.

Further reading

  • Ornish, D.; Brown, S.E.; Billings, J.H.; Scherwitz, L.W.; Armstrong, W.T.; Ports, T.A.; McLanahan, S.M.; Kirkeeide, R.L.; Gould, K.L.; Brand, R.J. (July 1990). "Can lifestyle changes reverse coronary heart disease?". The Lancet. 336 (8708): 129–133. doi:10.1016/0140-6736(90)91656-u. PMID 1973470. S2CID 4513736.
  • Gould, K. Lance; Ornish, D; Scherwitz, L; Brown, S; Edens, RP; Hess, MJ; Mullani, N; Bolomey, L; Dobbs, F; Armstrong, WT (20 September 1995). "Changes in Myocardial Perfusion Abnormalities by Positron Emission Tomography After Long-term, Intense Risk Factor Modification". JAMA. 274 (11): 894–901. doi:10.1001/jama.1995.03530110056036. PMID 7674504.
  • Ornish, Dean; Scherwitz, LW; Billings, JH; Brown, SE; Gould, KL; Merritt, TA; Sparler, S; Armstrong, WT; Ports, TA; Kirkeeide, RL; Hogeboom, C; Brand, RJ (16 December 1998). "Intensive Lifestyle Changes for Reversal of Coronary Heart Disease". JAMA. 280 (23): 2001–7. doi:10.1001/jama.280.23.2001. PMID 9863851. S2CID 21508600.
  • Ornish, Dean (November 1998). "Avoiding revascularization with lifestyle changes: the multicenter lifestyle demonstration project". The American Journal of Cardiology. 82 (10): 72–76. doi:10.1016/s0002-9149(98)00744-9. PMID 9860380.
  • Dod, Harvinder S.; Bhardwaj, Ravindra; Sajja, Venu; Weidner, Gerdi; Hobbs, Gerald R.; Konat, Gregory W.; Manivannan, Shanthi; Gharib, Wissam; Warden, Bradford E.; Nanda, Navin C.; Beto, Robert J.; Ornish, Dean; Jain, Abnash C. (February 2010). "Effect of Intensive Lifestyle Changes on Endothelial Function and on Inflammatory Markers of Atherosclerosis". The American Journal of Cardiology. 105 (3): 362–367. doi:10.1016/j.amjcard.2009.09.038. PMID 20102949.
  • Silberman, Anna; Banthia, Rajni; Estay, Ivette S.; Kemp, Colleen; Studley, Joli; Hareras, Dennis; Ornish, Dean (March 2010). "The Effectiveness and Efficacy of an Intensive Cardiac Rehabilitation Program in 24 Sites". American Journal of Health Promotion. 24 (4): 260–266. doi:10.4278/ajhp.24.4.arb. PMID 20232608. S2CID 25915559.
  • Glagov, Seymour; Weisenberg, Elliot; Zarins, Christopher K.; Stankunavicius, Regina; Kolettis, George J. (28 May 1987). "Compensatory Enlargement of Human Atherosclerotic Coronary Arteries". New England Journal of Medicine. 316 (22): 1371–1375. doi:10.1056/NEJM198705283162204. PMID 3574413.

External links

atheroma, atheroma, atheromatous, plaque, abnormal, reversible, accumulation, material, inner, layer, arterial, wall, other, namesatheromata, plural, atheromas, plural, atheromatous, plaque, plaqueatherosclerotic, plaque, from, carotid, endarterectomy, specime. An atheroma or atheromatous plaque is an abnormal and reversible accumulation of material in the inner layer of an arterial wall 1 2 AtheromaOther namesatheromata plural atheromas plural atheromatous plaque plaqueAtherosclerotic plaque from a carotid endarterectomy specimen This shows the division of the common into the internal and external carotid arteries SpecialtyCardiology ComplicationsThrombosis embolism atherosclerosis arteriosclerosisCausesHyperlipidemia hypertriglyceridemia hypercholesterolemiaThe material consists of mostly macrophage cells 3 4 or debris containing lipids calcium and a variable amount of fibrous connective tissue The accumulated material forms a swelling in the artery wall which may intrude into the lumen of the artery narrowing it and restricting blood flow Atheroma is the pathological basis for the disease entity atherosclerosis a subtype of arteriosclerosis citation needed Contents 1 Signs and symptoms 2 Mechanism 2 1 Stenosis and closure 2 2 Artery enlargement 3 Histology 4 Diagnosis 4 1 Classification of lesions 5 Treatment 6 History of research 7 See also 8 References 9 Further reading 10 External linksSigns and symptoms EditFor most people the first symptoms result from atheroma progression within the heart arteries most commonly resulting in a heart attack and ensuing debility The heart arteries are difficult to track because they are small from about 5 mm down to microscopic they are hidden deep within the chest and they never stop moving Additionally all mass applied clinical strategies focus on both minimal cost and the overall safety of the procedure Therefore existing diagnostic strategies for detecting atheroma and tracking response to treatment have been extremely limited The methods most commonly relied upon patient symptoms and cardiac stress testing do not detect any symptoms of the problem until atheromatous disease is very advanced because arteries enlarge not constrict in response to increasing atheroma 5 It is plaque ruptures producing debris and clots which obstruct blood flow downstream sometimes also locally as seen on angiograms which reduce stop blood flow Yet these events occur suddenly and are not revealed in advance by either stress tests or angiograms citation needed Mechanism EditThe healthy epicardial coronary artery consists of three layers the tunica intima media and adventitia 6 7 Atheroma and changes in the artery wall usually result in small aneurysms enlargements just large enough to compensate for the extra wall thickness with no change in the lumen diameter However eventually typically as a result of rupture of vulnerable plaques and clots within the lumen over the plaque stenosis narrowing of the vessel develops in some areas Less frequently the artery enlarges so much that a gross aneurysmal enlargement of the artery results All three results are often observed at different locations within the same individual citation needed Stenosis and closure Edit Over time atheromata usually progress in size and thickness and induce the surrounding muscular central region the media of the artery to stretch out which is termed remodeling Typically remodeling occurs just enough to compensate for the atheroma s size such that the calibre of the artery opening lumen remains unchanged until about 50 of the artery wall cross sectional area consists of atheromatous tissue 5 Narrowed arterial blood vessel blocked with an atheroma artist s conception If the muscular wall enlargement eventually fails to keep up with the enlargement of the atheroma volume or a clot forms and organizes over the plaque then the lumen of the artery becomes narrowed as a result of repeated ruptures clots and fibrosis over the tissues separating the atheroma from the blood stream This narrowing becomes more common after decades of living increasingly more common after people are in their 30s to 40s citation needed The endothelium the cell monolayer on the inside of the vessel and covering tissue termed fibrous cap separate atheroma from the blood in the lumen If a rupture see vulnerable plaque of the endothelium and fibrous cap occurs then both a shower of debris from the plaque debris larger than 5 micrometres are too large to pass through capillaries combined with a platelet and clotting response an injury repair response to both the debris and at the rupture site begins within fractions of a second eventually resulting in narrowing or sometimes closure of the lumen Eventually downstream tissue damage occurs due to closure or obstruction of downstream microvessels and or closure of the lumen at the rupture both resulting in loss of blood flow to downstream tissues This is the principal mechanism of myocardial infarction stroke or other related cardiovascular disease problems citation needed While clots at the rupture site typically shrink in volume over time some of the clot may become organized into fibrotic tissue resulting in narrowing of the artery lumen the narrowings sometimes seen on angiography examinations if severe enough Since angiography methods can only reveal larger lumens typically larger than 200 micrometres angiography after a cardiovascular event commonly does not reveal what happened citation needed Artery enlargement Edit If the muscular wall enlargement is overdone over time then a gross enlargement of the artery results usually over decades of living This is a less common outcome Atheroma within aneurysmal enlargement vessel bulging can also rupture and shower debris of atheroma and clot downstream If the arterial enlargement continues to 2 to 3 times the usual diameter the walls often become weak enough that with just the stress of the pulse a loss of wall integrity may occur leading to sudden hemorrhage bleeding major symptoms and debility often rapid death The main stimulus for aneurysm formation is pressure atrophy of the structural support of the muscle layers The main structural proteins are collagen and elastin This causes thinning and the wall balloons allowing gross enlargement to occur as is common in the abdominal region of the aorta citation needed Histology EditThe accumulation swelling is always in the tunica intima between the endothelium lining and the smooth muscle middle layer of the artery wall citation needed While the early stages based on gross appearance have traditionally been termed fatty streaks by pathologists they are not composed of fat cells but of accumulations of white blood cells especially macrophages that have taken up oxidized low density lipoprotein LDL citation needed After they accumulate large amounts of cytoplasmic membranes with associated high cholesterol content they are called foam cells When foam cells die their contents are released which attracts more macrophages and creates an extracellular lipid core near the centre to inner surface of each atherosclerotic plaque citation needed Conversely the outer older portions of the plaque become more calcified less metabolically active and more physically stiff over time citation needed Veins do not develop atheromata because they are not subjected to the same haemodynamic pressure that arteries are 8 unless surgically moved to function as an artery as in bypass surgery Diagnosis Edit Illustration comparing a normal blood vessel and partially blocked vessel due to atherosclerotic plaque Notice the enlargement amp absence of much luminal narrowing 5 Because artery walls enlarge at locations with atheroma 5 detecting atheroma before death and autopsy has long been problematic at best Most methods have focused on the openings of arteries while these methods are highly relevant they totally miss the atheroma within the arterial lumen citation needed Historically arterial wall fixation staining and thin section has been the gold standard for detection and description of atheroma after death and autopsy With special stains and examination micro calcifications 9 can be detected typically within smooth muscle cells of the arterial media near the fatty streaks within a year or two of fatty streaks forming Interventional and non interventional methods to detect atherosclerosis specifically vulnerable plaque non occlusive or soft plaque are widely used in research and clinical practice today citation needed Carotid Intima media thickness Scan CIMT can be measured by B mode ultrasonography measurement has been recommended by the American Heart Association as the most useful method to identify atherosclerosis and may now very well be the gold standard for detection citation needed Intravascular ultrasound is the current most sensitive method detecting and measuring more advanced atheroma within living individuals but has had limited applications due to cost and body invasiveness 10 11 CT scans using state of the art higher resolution spiral or the higher speed EBT machines have been the most effective method for detecting calcification present in plaque However the atheroma have to be advanced enough to have relatively large areas of calcification within them to create large enough regions of 130 Hounsfield units which a CT scanner s software can recognize as distinct from the other surrounding tissues Typically such regions start occurring within the heart arteries about 2 3 decades after atheroma start developing The presence of smaller spotty plaques may actually be more dangerous for progressing to acute myocardial infarction 12 Arterial ultrasound especially of the carotid arteries with measurement of the thickness of the artery wall offers a way to partially track the disease progression As of 2006 the thickness commonly referred to as IMT for intimal medial thickness is not measured clinically though it has been used by some researchers since the mid 1990s to track changes in arterial walls Traditionally clinical carotid ultrasounds have only estimated the degree of blood lumen restriction stenosis a result of very advanced disease The National Institute of Health did a five year 5 million study headed by medical researcher Kenneth Ouriel to study intravascular ultrasound techniques regarding atherosclerotic plaque citation needed More progressive clinicians have begun using IMT measurement as a way to quantify and track disease progression or stability within individual patients citation needed Angiography since the 1960s has been the traditional way of evaluating for atheroma However angiography is only motion or still images of dye mixed with the blood within the arterial lumen and never show atheroma the wall of arteries including atheroma within the arterial wall remain invisible The limited exception to this rule is that with very advanced atheroma with extensive calcification within the wall a halo like ring of radiodensity can be seen in most older humans especially when arterial lumens are visualized end on On cine floro cardiologists and radiologists typically look for these calcification shadows to recognize arteries before they inject any contrast agent during angiograms citation needed Classification of lesions Edit Type I Isolated macrophage foam cells 6 13 Type II Multiple foam cell layers 6 13 Type III Preatheroma intermediate lesion 6 13 Type IV Atheroma 6 13 Type V Fibroatheroma 6 13 Type VI Fissured ulcerated hemorrhagic thrombotic lesion 6 13 Type VII Calcific lesion 6 13 Type VIII Fibrotic lesion 6 13 Treatment EditThis section needs more medical references for verification or relies too heavily on primary sources specifically Out of ten points only 4 are referenced and among those only one is a primary peer reviewed reference Without the medical refs it s unclear how reliable each advised approach is pertaining to treating the disease even if it is a good general advice Please review the contents of the section and add the appropriate references if you can Unsourced or poorly sourced material may be challenged and removed Find sources Atheroma news newspapers books scholar JSTOR October 2019 Many approaches have been promoted by whom as methods to reduce or reverse 14 atheroma progression citation needed eating a diet of raw fruits vegetables nuts beans berries and grains 14 15 consuming foods containing omega 3 fatty acids such as fish fish derived supplements as well as flax seed oil borage oil and other non animal based oils abdominal fat reduction aerobic exercise 14 inhibitors of cholesterol synthesis known as statins 14 low normal blood glucose levels glycated hemoglobin also called HbA1c micronutrient vitamins potassium and magnesium consumption maintaining normal or healthy blood pressure levels aspirin supplement mouse studies indicated that subcutaneous administration of oligosaccharide 2 hydroxypropyl b cyclodextrin 2HPbCD can solubilize cholesterol removing it from plaques 16 However later work concluded that treatment with 2HPbCD is ineffective in inducing atherosclerosis regression 17 History of research EditIn developed countries with improved public health infection control and increasing life spans atheroma processes have become an increasingly important problem and burden for society Atheromata continue to be the primary underlying basis for disability and death despite a trend for gradual improvement since the early 1960s adjusted for patient age Thus increasing efforts towards better understanding treating and preventing the problem are continuing to evolve citation needed According to United States data 2004 for about 65 of men and 47 of women the first symptom of cardiovascular disease is myocardial infarction heart attack or sudden death death within one hour of symptom onset citation needed A significant proportion of artery flow disrupting events occur at locations with less than 50 lumenal narrowing Cardiac stress testing traditionally the most commonly performed non invasive testing method for blood flow limitations generally only detects lumen narrowing greater than about 75 although some physicians advocate nuclear stress tests that can sometimes detect as little as 50 citation needed The sudden nature of the complications of pre existing atheroma vulnerable plaque non occlusive or soft plaque have led since the 1950s to the development of intensive care units and complex medical and surgical interventions Angiography and later cardiac stress testing was begun to either visualize or indirectly detect stenosis Next came bypass surgery to plumb transplanted veins sometimes arteries around the stenoses and more recently angioplasty now including stents most recently drug coated stents to stretch the stenoses more open citation needed Yet despite these medical advances with success in reducing the symptoms of angina and reduced blood flow atheroma rupture events remain the major problem and still sometimes result in sudden disability and death despite even the most rapid massive and skilled medical and surgical intervention available anywhere today According to some clinical trials bypass surgery and angioplasty procedures have had at best a minimal effect if any on improving overall survival Typically mortality of bypass operations is between 1 and 4 of angioplasty between 1 and 1 5 citation needed Additionally these vascular interventions are often done only after an individual is symptomatic often already partially disabled as a result of the disease It is also clear that both angioplasty and bypass interventions do not prevent future heart attack citation needed The older methods for understanding atheroma dating to before World War II relied on autopsy data Autopsy data has long shown initiation of fatty streaks in later childhood with slow asymptomatic progression over decades 5 One way to see atheroma is the very invasive and costly IVUS ultrasound technology it gives us the precise volume of the inside intima plus the central media layers of about 25 mm 1 in of artery length Unfortunately it gives no information about the structural strength of the artery Angiography does not visualize atheroma it only makes the blood flow within blood vessels visible Alternative methods that are non or less physically invasive and less expensive per individual test have been used and are continuing to be developed such as those using computed tomography CT led by the electron beam tomography form given its greater speed and magnetic resonance imaging MRI The most promising since the early 1990s has been EBT detecting calcification within the atheroma before most individuals start having clinically recognized symptoms and debility Statin therapy to lower cholesterol does not slow the speed of calcification as determined by CT scan MRI coronary vessel wall imaging although currently limited to research studies has demonstrated the ability to detect vessel wall thickening in asymptomatic high risk individuals 18 As a non invasive ionising radiation free technique MRI based techniques could have future uses in monitoring disease progression and regression Most visualization techniques are used in research they are not widely available to most patients have significant technical limitations have not been widely accepted and generally are not covered by medical insurance carriers citation needed From human clinical trials it has become increasingly evident that a more effective focus of treatment is slowing stopping and even partially reversing the atheroma growth process 15 There are several prospective epidemiologic studies including the Atherosclerosis Risk in Communities ARIC Study and the Cardiovascular Health Study CHS which have supported a direct correlation of Carotid Intima media thickness CIMT with myocardial infarction and stroke risk in patients without cardiovascular disease history The ARIC Study was conducted in 15 792 individuals between 5 and 65 years of age in four different regions of the US between 1987 and 1989 The baseline CIMT was measured and measurements were repeated at 4 to 7 year intervals by carotid B mode ultrasonography in this study An increase in CIMT was correlated with an increased risk for CAD The CHS was initiated in 1988 and the relationship of CIMT with risk of myocardial infarction and stroke was investigated in 4 476 subjects 65 years of age and below At the end of approximately six years of follow up CIMT measurements were correlated with cardiovascular events citation needed Paroi arterielle et Risque Cardiovasculaire in Asia Africa Middle East and Latin America PARC AALA is another important large scale study in which 79 centres from countries in Asia Africa the Middle East and Latin America participated and the distribution of CIMT according to different ethnic groups and its association with the Framingham cardiovascular score was investigated Multi linear regression analysis revealed that an increased Framingham cardiovascular score was associated with CIMT and carotid plaque independent of geographic differences citation needed Cahn et al prospectively followed up 152 patients with coronary artery disease for 6 11 months by carotid artery ultrasonography and noted 22 vascular events myocardial infarction transient ischemic attack stroke and coronary angioplasty within this time period They concluded that carotid atherosclerosis measured by this non interventional method has prognostic significance in coronary artery patients citation needed In the Rotterdam Study Bots et al followed 7 983 patients gt 55 years of age for a mean period of 4 6 years and reported 194 incident myocardial infarctions within this period CIMT was significantly higher in the myocardial infarction group compared to the other group Demircan et al found that the CIMT of patients with acute coronary syndrome were significantly increased compared to patients with stable angina pectoris citation needed It has been reported in another study that a maximal CIMT value of 0 956 mm had 85 7 sensitivity and 85 1 specificity to predict angiographic CAD The study group consisted of patients admitted to the cardiology outpatient clinic with symptoms of stable angina pectoris The study showed CIMT was higher in patients with significant CAD than in patients with non critical coronary lesions Regression analysis revealed that thickening of the mean intima media complex more than 1 0 was predictive of significant CAD our patients There was incremental significant increase in CIMT with the number coronary vessel involved In accordance with the literature it was found that CIMT was significantly higher in the presence of CAD Furthermore CIMT was increased as the number of involved vessels increased and the highest CIMT values were noted in patients with left main coronary involvement However human clinical trials have been slow to provide clinical amp medical evidence partly because the asymptomatic nature of atheromata make them especially difficult to study Promising results are found using carotid intima media thickness scanning CIMT can be measured by B mode ultrasonography B vitamins that reduce a protein corrosive homocysteine and that reduce neck carotid artery plaque volume and thickness and stroke even in late stage disease citation needed Additionally understanding what drives atheroma development is complex with multiple factors involved only some of which such as lipoproteins more importantly lipoprotein subclass analysis blood sugar levels and hypertension are best known and researched More recently some of the complex immune system patterns that promote or inhibit the inherent inflammatory macrophage triggering processes involved in atheroma progression are slowly being better elucidated in animal models of atherosclerosis citation needed See also EditAngiogram ApoA 1 Milano Atherosclerosis Atherothrombosis Coronary circulation Coronary catheterization EBT Hemorheologic Hemodynamic Theory of Atherosclerosis Lipoprotein LDL HDL IDL and VLDLReferences Edit Lusis Aldons J September 2000 Atherosclerosis Nature 407 6801 233 241 doi 10 1038 35025203 PMC 2826222 PMID 11001066 Francis Andrew A Pierce Grant N 2011 An integrated approach for the mechanisms responsible for atherosclerotic plaque regression Experimental amp Clinical Cardiology 16 3 77 86 ISSN 1205 6626 PMC 3209544 PMID 22065938 Hotamisligil Gokhan S April 2010 Endoplasmic reticulum stress and atherosclerosis Nature Medicine 16 4 396 399 doi 10 1038 nm0410 396 PMC 2897068 PMID 20376052 Oh Jisu Riek Amy E Weng Sherry Petty Marvin Kim David Colonna Marco Cella Marina Bernal Mizrachi Carlos 6 April 2012 Endoplasmic Reticulum Stress Controls M2 Macrophage Differentiation and Foam Cell Formation Journal of Biological Chemistry 287 15 11629 11641 doi 10 1074 jbc M111 338673 PMC 3320912 PMID 22356914 a b c d e Glagov Seymour Weisenberg Elliot Zarins Christopher K Stankunavicius Regina Kolettis George J 28 May 1987 Compensatory Enlargement of Human Atherosclerotic Coronary Arteries New England Journal of Medicine 316 22 1371 1375 doi 10 1056 NEJM198705283162204 PMID 3574413 a b c d e f g h i Coronary Artery Atherosclerosis at eMedicine Waller Bruce F Orr Charles M Slack John D Pinkerton Cass A Van Tassel James Peters Thomas June 1992 Anatomy histology and pathology of coronary arteries A review relevant to new interventional and imaging techniques Part I Clinical Cardiology 15 6 451 457 doi 10 1002 clc 4960150613 PMID 1617826 S2CID 12034096 Zhang Hongqi Sun Aijun Shen Yanguo Jia Jianguo Wang Shijun Wang Keqiang Ge Junbo November 2004 Artery interposed to vein did not develop atherosclerosis and underwent atrophic remodeling in cholesterol fed rabbits Atherosclerosis 177 1 37 41 doi 10 1016 j atherosclerosis 2004 06 019 PMID 15488863 Roijers Ruben B Debernardi Nicola Cleutjens Jack P M Schurgers Leon J Mutsaers Peter H A van der Vusse Ger J June 2011 Microcalcifications in Early Intimal Lesions of Atherosclerotic Human Coronary Arteries The American Journal of Pathology 178 6 2879 2887 doi 10 1016 j ajpath 2011 02 004 PMC 3124018 PMID 21531376 Mintz Gary S Nissen Steven E April 2001 American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition Measurement and Reporting of Intravascular Ultrasound Studies IVUS Journal of the American College of Cardiology 37 5 1485 doi 10 1016 S0735 1097 01 01175 5 ISSN 0735 1097 PMID 11300468 Tuzcu E Murat Berkalp Berktan de Franco Anthony C Ellis Stephen G Goormastic Marlene Whitlow Patrick L Franco Irving Raymond Russell E Nissen Steven E March 1996 The Dilemma of Diagnosing Coronary Calcification Angiography Versus Intravascular Ultrasound Journal of the American College of Cardiology 27 4 832 838 doi 10 1016 0735 1097 95 00537 4 ISSN 0735 1097 PMID 8613611 Ehara Shoichi Kobayashi Yoshiki Yoshiyama Minoru Shimada Kenei Shimada Yoshihisa Fukuda Daiju Nakamura Yasuhiro Yamashita Hajime Yamagishi Hiroyuki Takeuchi Kazuhide Naruko Takahiko Haze Kazuo Becker Anton E Yoshikawa Junichi Ueda Makiko 30 November 2004 Spotty Calcification Typifies the Culprit Plaque in Patients With Acute Myocardial Infarction An Intravascular Ultrasound Study Circulation 110 22 3424 3429 doi 10 1161 01 CIR 0000148131 41425 E9 PMID 15557374 S2CID 11917149 a b c d e f g h Stary Herbert C 2003 Atlas of atherosclerosis progression and regression Parthenon Pub p 16 ISBN 978 1 84214 153 3 a b c d Ask the doctor Reversing atherosclerosis Harvard Health November 2016 a b Bodai Balazs I Nakata Therese E Wong William T Clark Dawn R Lawenda Steven Tsou Christine Liu Raymond Shiue Linda Cooper Neil Rehbein Michael Ha Benjamin P McKeirnan Anne Misquitta Rajiv Vij Pankaj Klonecke Andrew Mejia Carmelo S Dionysian Emil Hashmi Sean Greger Michael Stoll Scott Campbell Thomas M 2018 Lifestyle Medicine A Brief Review of Its Dramatic Impact on Health and Survival The Permanente Journal 22 17 025 doi 10 7812 TPP 17 025 PMC 5638636 PMID 29035175 Zimmer Sebastian Grebe Alena Bakke Siril S Bode Niklas Halvorsen Bente Ulas Thomas Skjelland Mona De Nardo Dominic Labzin Larisa I Kerksiek Anja Hempel Chris Heneka Michael T Hawxhurst Victoria Fitzgerald Michael L Trebicka Jonel Bjorkhem Ingemar Gustafsson Jan Ake Westerterp Marit Tall Alan R Wright Samuel D Espevik Terje Schultze Joachim L Nickenig Georg Lutjohann Dieter Latz Eicke 6 April 2016 Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming PDF Science Translational Medicine 8 333 333ra50 doi 10 1126 scitranslmed aad6100 PMC 4878149 PMID 27053774 Snip Olga S C Hoekstra Menno Zhang Yiheng Geerling Janine J Van Eck Miranda 31 August 2022 2 Hydroxypropyl beta cyclodextrin Treatment Does Not Induce Atherosclerotic Lesion Regression in Western Type Diet Fed Apolipoprotein E Knockout Mice Biomolecules MDPI AG 12 9 1205 doi 10 3390 biom12091205 ISSN 2218 273X PMC 9496214 PMID 36139044 Kim W Yong Stuber Matthias Bornert Peter Kissinger Kraig V Manning Warren J Botnar Rene M 16 July 2002 Three Dimensional Black Blood Cardiac Magnetic Resonance Coronary Vessel Wall Imaging Detects Positive Arterial Remodeling in Patients With Nonsignificant Coronary Artery Disease Circulation 106 3 296 299 doi 10 1161 01 cir 0000025629 85631 1e PMID 12119242 S2CID 2294253 Further reading EditOrnish D Brown S E Billings J H Scherwitz L W Armstrong W T Ports T A McLanahan S M Kirkeeide R L Gould K L Brand R J July 1990 Can lifestyle changes reverse coronary heart disease The Lancet 336 8708 129 133 doi 10 1016 0140 6736 90 91656 u PMID 1973470 S2CID 4513736 Gould K Lance Ornish D Scherwitz L Brown S Edens RP Hess MJ Mullani N Bolomey L Dobbs F Armstrong WT 20 September 1995 Changes in Myocardial Perfusion Abnormalities by Positron Emission Tomography After Long term Intense Risk Factor Modification JAMA 274 11 894 901 doi 10 1001 jama 1995 03530110056036 PMID 7674504 Ornish Dean Scherwitz LW Billings JH Brown SE Gould KL Merritt TA Sparler S Armstrong WT Ports TA Kirkeeide RL Hogeboom C Brand RJ 16 December 1998 Intensive Lifestyle Changes for Reversal of Coronary Heart Disease JAMA 280 23 2001 7 doi 10 1001 jama 280 23 2001 PMID 9863851 S2CID 21508600 Ornish Dean November 1998 Avoiding revascularization with lifestyle changes the multicenter lifestyle demonstration project The American Journal of Cardiology 82 10 72 76 doi 10 1016 s0002 9149 98 00744 9 PMID 9860380 Dod Harvinder S Bhardwaj Ravindra Sajja Venu Weidner Gerdi Hobbs Gerald R Konat Gregory W Manivannan Shanthi Gharib Wissam Warden Bradford E Nanda Navin C Beto Robert J Ornish Dean Jain Abnash C February 2010 Effect of Intensive Lifestyle Changes on Endothelial Function and on Inflammatory Markers of Atherosclerosis The American Journal of Cardiology 105 3 362 367 doi 10 1016 j amjcard 2009 09 038 PMID 20102949 Silberman Anna Banthia Rajni Estay Ivette S Kemp Colleen Studley Joli Hareras Dennis Ornish Dean March 2010 The Effectiveness and Efficacy of an Intensive Cardiac Rehabilitation Program in 24 Sites American Journal of Health Promotion 24 4 260 266 doi 10 4278 ajhp 24 4 arb PMID 20232608 S2CID 25915559 Glagov Seymour Weisenberg Elliot Zarins Christopher K Stankunavicius Regina Kolettis George J 28 May 1987 Compensatory Enlargement of Human Atherosclerotic Coronary Arteries New England Journal of Medicine 316 22 1371 1375 doi 10 1056 NEJM198705283162204 PMID 3574413 External links Edit Retrieved from https en wikipedia org w index php title Atheroma amp oldid 1128114444, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.