fbpx
Wikipedia

Asgard (archaea)

Asgard or Asgardarchaeota[2] is a proposed superphylum consisting of a group of archaea that contain eukaryotic signature proteins.[3] It appears that the eukaryotes, the domain that contains the animals, plants, and fungi, emerged within the Asgard,[4] in a branch containing the Heimdallarchaeota.[5] This supports the two-domain system of classification over the three-domain system.[6][7]

Asgard
Scientific classification
Domain: Archaea
Kingdom: Proteoarchaeota
Superphylum: Asgard
Katarzyna Zaremba-Niedzwiedzka [Wikidata], et al. 2017
Phyla

see text

Synonyms
  • "Asgardarchaeota" Violette Da Cunha et al. 2017
  • "Asgardaeota" Whitman 2018
  • "Eukaryomorpha" Fournier & Poole 2018[1]

Discovery and nomenclature edit

In the summer of 2010, sediments were analysed from a gravity core taken in the rift valley on the Knipovich ridge in the Arctic Ocean, near the Loki's Castle hydrothermal vent site. Specific sediment horizons previously shown to contain high abundances of novel archaeal lineages were subjected to metagenomic analysis.[8][9] In 2015, an Uppsala University-led team proposed the Lokiarchaeota phylum based on phylogenetic analyses using a set of highly conserved protein-coding genes.[10] The group was named for the shape-shifting Norse god Loki, in an allusion to the hydrothermal vent complex from which the first genome sample originated.[11] The Loki of mythology has been described as "a staggeringly complex, confusing, and ambivalent figure who has been the catalyst of countless unresolved scholarly controversies",[12] analogous to the role of Lokiarchaeota in the debates about the origin of eukaryotes.[10][13]

In 2016, a University of Texas-led team discovered Thorarchaeota from samples taken from the White Oak River in North Carolina, named in reference to Thor, another Norse god.[14] Samples from Loki's Castle, Yellowstone National Park, Aarhus Bay, an aquifer near the Colorado River, New Zealand's Radiata Pool, hydrothermal vents near Taketomi Island, Japan, and the White Oak River estuary in the United States contained Odinarchaeota and Heimdallarchaeota;[3] following the Norse deity naming convention, these groups were named for Odin and Heimdallr respectively. Researchers therefore named the superphylum containing these microbes "Asgard", after the home of the gods in Norse mythology.[3] Two Lokiarchaeota specimens have been cultured, enabling a detailed insight into their morphology.[15]

Description edit

Proteins edit

Asgard members encode many eukaryotic signature proteins, including novel GTPases, membrane-remodelling proteins like ESCRT and SNF7, a ubiquitin modifier system, and N-glycosylation pathway homologs.[3]

Asgard archaeons have a regulated actin cytoskeleton, and the profilins and gelsolins they use can interact with eukaryotic actins.[16][17] In addition, Asgard archaea tubulin from hydrothermal-living Odinarchaeota ( OdinTubulin) was identified as a genuine tubulin. OdinTubulin forms protomers and protofilaments most similar to eukaryotic microtubules, yet assembles into ring systems more similar to FtsZ, indicating that OdinTubulin may represent an evolution intermediate between FtsZ and microtubule-forming tubulins.[18] They also seem to form vesicles under cryogenic electron microscopy. Some may have a PKD domain S-layer.[19] They also share the three-way ES39 expansion in LSU rRNA with eukaryotes.[20] Gene clusters or operons encoding ribosomal proteins are often less conserved in their organization in the Asgard group than in other Archaea, suggesting that the order of ribosomal protein coding genes may follow the phylogeny.[21]

Metabolism edit

Asgard archaea are generally obligate anaerobes, though Kariarchaeota, Gerdarchaeota and Hodarchaeota may be facultative aerobes.[23] They have a Wood–Ljungdahl pathway and perform glycolysis. Members can be autotrophs, heterotrophs, or phototrophs using heliorhodopsin.[22] One member, Candidatus Prometheoarchaeum syntrophicum, is syntrophic with a sulfur-reducing proteobacteria and a methanogenic archaea.[19]

The RuBisCO they have is not carbon-fixing, but likely used for nucleoside salvaging.[22]

Ecology edit

Asgard are widely distributed around the world, both geographically and by habitat. Many of the known clades are restricted to sediments, whereas Lokiarchaeota, Thorarchaeota and another clade occupy many different habitats. Salinity and depth are important ecological drivers for most Asgard archaea. Other habitats include the bodies of animals, the rhizosphere of plants, non-saline sediments and soils, the sea surface, and freshwater. In addition, Asgard are associated with several other microorganisms.[24]

Eukaryote-like features in subdivisions edit

The phylum Heimdallarchaeota was found in 2017 to have N-terminal core histone tails, a feature previously thought to be exclusively eukaryotic. Two other archaeal phyla, both outside of Asgard, were found to also have tails in 2018.[25]

In January 2020, scientists found Candidatus Prometheoarchaeum syntrophicum, a member of the Lokiarcheota, engaging in cross-feeding with two bacterial species. Drawing an analogy to symbiogenesis, they consider this relationship a possible link between the simple prokaryotic microorganisms and the complex eukaryotic microorganisms occurring approximately two billion years ago.[26][19]

Phylogeny edit

The phylogenetic relationships of the Asgard archaea have been studied by several teams in the 21st century.[5][4][27][23] Varying results have been obtained, for instance using 53 marker proteins from the Genome Taxonomy Database.[28][29][30] In 2023, Eme, Tamarit, Caceres and colleagues reported that the Eukaryota are deep within Asgard, as sister of Hodarchaeales within the Heimdallarchaeia.[31]

Proteoarchaeota

TACK

Asgard

Jordarchaeia

Odinarchaeia

Baldrarchaeia

Lokiarchaeales

Helarchaeales

Thorarcheaia

Hermodarcheaia

Sifarchaeia

Wukongarchaeia

Heimdallarchaeia 

Njordarchaeales

Gerdarchaeales

Heimdallarchaeales 

Heimdallarchaeaceae

Kariarchaeaceae

Hodarchaeales

Eukaryota

     

+ α─Proteobacteria

Taxonomy edit

 
In the theory of symbiogenesis, a merger of an archaean and an aerobic bacterium created the eukaryotes, with aerobic mitochondria; a second merger added chloroplasts, creating the green plants.[32]

In the depicted scenario, the Eukaryota are deep in the tree of Asgard. A favored scenario is syntrophy, where one organism depends on the feeding of the other. An α-proteobacterium was incorporated to become the mitochondrion.[33] In culture, extant Asgard archaea form various syntrophic dependencies.[34] Gregory Fournier and Anthony Poole have proposed that Asgard is part of "the Eukaryote tree", forming a superphylum they call "Eukaryomorpha" defined by "shared derived characters" (eukaryote signature proteins).[35]

The taxonomy is uncertain and the phylum names are therefore somewhat speculative. The list of phyla is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN)[36] and National Center for Biotechnology Information (NCBI).[37]

  • Phylum Baldrarchaeota Caceres 2019
  • Phylum Borrarchaeota Liu et al. 2021
  • Phylum Freyrarchaeota corrig. Caceres 2019
  • Phylum Friggarchaeota Caceres 2019
  • Phylum Gefionarchaeota Caceres 2019
  • Phylum Gerdarchaeota Cai et al. 2020
  • Phylum Heimdallarchaeota Zaremba-Niedzwiedzka et al. 2017
  • Phylum Helarchaeota Seitz et al. 2019
  • Phylum Hermodarchaeota Liu et al. 2021
  • Phylum Hodarchaeota Liu et al. 2021
  • Phylum Idunnarchaeota Caceres 2019
  • Phylum Kariarchaeota Liu et al. 2021
  • Phylum Lokiarchaeota Spang et al. 2015
  • Phylum Njordarchaeota Xie et al. 2022
  • Phylum Odinarchaeota Zaremba-Niedzwiedzka et al. 2017
  • Phylum Sifarchaeota Farag et al. 2020
  • Phylum Sigynarchaeota Xie et al. 2022
  • Phylum Thorarchaeota Baker 2015
  • Phylum Tyrarchaeota Xie et al. 2022
  • Phylum Wukongarchaeota Liu et al. 2021

Genomic elements edit

Viruses edit

Several family-level groups of viruses associated with Asgard archaea have been discovered using metagenomics.[38][39][40] The viruses were assigned to Lokiarchaeia, Thorarchaeia, Odinarchaeia and Helarchaeia hosts using CRISPR spacer matching to the corresponding protospacers within the viral genomes. Two groups of viruses (called 'verdandiviruses') are related to archaeal and bacterial viruses of the class Caudoviricetes, i.e., viruses with icosahedral capsids and helical tails;[38][40] two other distinct groups (called 'skuldviruses') are distantly related to tailless archaeal and bacterial viruses with icosahedral capsids of the realm Varidnaviria;[38][39] and the third group of viruses (called wyrdviruses) is related to archaea-specific viruses with lemon-shaped virus particles (family Halspiviridae).[38][39] The viruses have been identified in deep-sea sediments[38][40] and a terrestrial hot spring of the Yellowstone National Park.[39] All these viruses display very low sequence similarity to other known viruses but are generally related to the previously described prokaryotic viruses,[41] with no meaningful affinity to viruses of eukaryotes.[42][38]

Mobile genetic elements edit

In addition to viruses, several groups of cryptic mobile genetic elements have been discovered through CRISPR spacer matching to be associated with Asgard archaea of the Lokiarchaeia, Thorarchaeia and Heimdallarchaeia lineages.[38][43] These mobile elements do not encode recognizable viral hallmark proteins and could represent either novel types of viruses or plasmids.

See also edit

References edit

  1. ^ Fournier, G.P.; Poole, A.M. (2018). "A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree". Frontiers in Microbiology. 9: 1896. doi:10.3389/fmicb.2018.01896. PMC 6104171. PMID 30158917.
  2. ^ Da Cunha, Violette; Gaia, Morgan; Gadelle, Daniele; et al. (June 2017). "Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes". PLOS Genetics. 13 (6): e1006810. doi:10.1371/journal.pgen.1006810. PMC 5484517. PMID 28604769.
  3. ^ a b c d Zaremba-Niedzwiedzka, Katarzyna; Caceres, Eva F.; Saw, Jimmy H.; et al. (January 2017). "Asgard archaea illuminate the origin of eukaryotic cellular complexity". Nature. 541 (7637): 353–358. Bibcode:2017Natur.541..353Z. doi:10.1038/nature21031. OSTI 1580084. PMID 28077874. S2CID 4458094.
  4. ^ a b Eme, Laura; Spang, Anja; Lombard, Jonathan; Stairs, Courtney W.; Ettema, Thijs J. G. (November 2017). "Archaea and the origin of eukaryotes". Nature Reviews. Microbiology. 15 (12): 711–723. doi:10.1038/nrmicro.2017.133. PMID 29123225. S2CID 8666687.
  5. ^ a b Williams, Tom A.; Cox, Cymon J.; Foster, Peter G.; Szöllősi, Gergely J.; Embley, T. Martin (January 2020). "Phylogenomics provides robust support for a two-domains tree of life". Nature Ecology & Evolution. 4 (1): 138–147. doi:10.1038/s41559-019-1040-x. PMC 6942926. PMID 31819234.
  6. ^ Nobs, Stephanie-Jane; MacLeod, Fraser I.; Wong, Hon Lun; Burns, Brendan P. (May 2022). "Eukarya the chimera: eukaryotes, a secondary innovation of the two domains of life?". Trends in Microbiology. 30 (5): 421–431. doi:10.1016/j.tim.2021.11.003. PMID 34863611. S2CID 244823103.
  7. ^ Doolittle, W. Ford (February 2020). "Evolution: Two Domains of Life or Three?". Current Biology. 30 (4): R177–R179. doi:10.1016/j.cub.2020.01.010. PMID 32097647.
  8. ^ Jørgensen, Steffen Leth; Hannisdal, Bjarte; Lanzen, Anders; et al. (October 2012). "Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge". PNAS. 109 (42): E2846–E2855. doi:10.1073/pnas.1207574109. PMC 3479504. PMID 23027979.
  9. ^ Jørgensen, Steffen Leth; Thorseth, Ingunn H.; Pedersen, Rolf B.; et al. (October 4, 2013). "Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge". Frontiers in Microbiology. 4: 299. doi:10.3389/fmicb.2013.00299. PMC 3790079. PMID 24109477.
  10. ^ a b Spang, Anja; Saw, Jimmy H.; Jørgensen, Steffen L.; et al. (May 2015). "Complex archaea that bridge the gap between prokaryotes and eukaryotes". Nature. 521 (7551): 173–179. Bibcode:2015Natur.521..173S. doi:10.1038/nature14447. PMC 4444528. PMID 25945739.
  11. ^ Yong, Ed. "Break in the Search for the Origin of Complex Life". The Atlantic. Retrieved 2018-03-21.
  12. ^ von Schnurbein, Stefanie (November 2000). "The Function of Loki in Snorri Sturluson's "Edda"". History of Religions. 40 (2): 109–124. doi:10.1086/463618.
  13. ^ Spang, Anja; Eme, Laura; Saw, Jimmy H.; et al. (March 2018). "Asgard archaea are the closest prokaryotic relatives of eukaryotes". PLOS Genetics. 14 (3): e1007080. doi:10.1371/journal.pgen.1007080. PMC 5875740. PMID 29596421.
  14. ^ Seitz, Kiley W.; Lazar, Cassandre S.; Hinrichs, Kai-Uwe; et al. (July 2016). "Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction". The ISME Journal. 10 (7): 1696–1705. doi:10.1038/ismej.2015.233. PMC 4918440. PMID 26824177.
  15. ^ Rodrigues-Oliveira, Thiago; Wollweber, Florian; Ponce-Toledo, Rafael I.; et al. (2023-01-12). "Actin cytoskeleton and complex cell architecture in an Asgard archaeon". Nature. 613 (7943): 332–339. Bibcode:2023Natur.613..332R. doi:10.1038/s41586-022-05550-y. ISSN 0028-0836. PMC 9834061. PMID 36544020.
  16. ^ Akıl, Caner; Robinson, Robert C. (October 2018). "Genomes of Asgard archaea encode profilins that regulate actin". Nature. 562 (7727): 439–443. Bibcode:2018Natur.562..439A. doi:10.1038/s41586-018-0548-6. PMID 30283132. S2CID 52917038.
  17. ^ Akıl, Caner; Tran, Linh T.; Orhant-Prioux, Magali; Baskaran, Yohendran; Manser, Edward; Blanchoin, Laurent; Robinson, Robert C. (August 2020). "Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea". Proceedings of the National Academy of Sciences of the United States of America. 117 (33): 19904–19913. Bibcode:2020PNAS..11719904A. bioRxiv 10.1101/768580. doi:10.1073/pnas.2009167117. PMC 7444086. PMID 32747565.
  18. ^ Akıl, Caner; Ali, Samson; Tran, Linh T.; et al. (March 2022). "Structure and dynamics of Odinarchaeota tubulin and the implications for eukaryotic microtubule evolution". Science Advances. 8 (12): eabm2225. Bibcode:2022SciA....8M2225A. doi:10.1126/sciadv.abm2225. PMC 8956254. PMID 35333570.
  19. ^ a b c Imachi, Hiroyuki; Nobu, Masaru K.; Nakahara, Nozomi; et al. (January 2020). "Isolation of an archaeon at the prokaryote-eukaryote interface". Nature. 577 (7791): 519–525. Bibcode:2020Natur.577..519I. doi:10.1038/s41586-019-1916-6. PMC 7015854. PMID 31942073.
  20. ^ Penev, Petar I.; Fakhretaha-Aval, Sara; Patel, Vaishnavi J.; et al. (October 2020). "Supersized Ribosomal RNA Expansion Segments in Asgard Archaea". Genome Biology and Evolution. 12 (10): 1694–1710. doi:10.1093/gbe/evaa170. PMC 7594248. PMID 32785681.
  21. ^ Tirumalai, Madhan R.; Raghavan, Sivaraman V.; Kutty, Layla A.; Song, Eric L.; Fox, George E. (October 2023). "Ribosomal Protein Cluster Organization in Asgard Archaea". Archaea (Hindawi). 2023: 16. doi:10.1155/2023/5512414.
  22. ^ a b c d MacLeod, Fraser; Kindler, Gareth S.; Wong, Hon Lun; Chen, Ray; Burns, Brendan P. (2019). "Asgard archaea: Diversity, function, and evolutionary implications in a range of microbiomes". AIMS Microbiology. 5 (1): 48–61. doi:10.3934/microbiol.2019.1.48. PMC 6646929. PMID 31384702.
  23. ^ a b Liu, Yang; Makarova, Kira S.; Huang, Wen-Cong; et al. (2020). "Expanding diversity of Asgard archaea and the elusive ancestry of eukaryotes". bioRxiv. doi:10.1101/2020.10.19.343400. S2CID 225056970.
  24. ^ Cai, Mingwei; Richter-Heitmann, Tim; Yin, Xiuran; et al. (2021). "Ecological features and global distribution of Asgard archaea". Science of the Total Environment. 758: 143581. Bibcode:2021ScTEn.758n3581C. doi:10.1016/j.scitotenv.2020.143581. ISSN 0048-9697. PMID 33223169. S2CID 227134171.
  25. ^ Henneman, Bram; van Emmerik, Clara; van Ingen, Hugo; Dame, Remus T. (September 2018). "Structure and function of archaeal histones". PLOS Genetics. 14 (9): e1007582. Bibcode:2018BpJ...114..446H. doi:10.1371/journal.pgen.1007582. PMC 6136690. PMID 30212449.
  26. ^ Zimmer, Carl (15 January 2020). "This Strange Microbe May Mark One of Life's Great Leaps - A organism living in ocean muck offers clues to the origins of the complex cells of all animals and plants". The New York Times. Retrieved 16 January 2020.
  27. ^ Liu, Yang; Makarova, Kira S.; Huang, Wen-Cong; Wolf, Yuri I.; Nikolskaya, Anastasia; Zhang, Xinxu; et al. (May 2021). "Expanded diversity of Asgard archaea and their relationships with eukaryotes". Nature. 593 (7860): 553–557. Bibcode:2021Natur.593..553L. doi:10.1038/s41586-021-03494-3. PMID 33911286. S2CID 233447651.
  28. ^ "GTDB release 08-RS214". Genome Taxonomy Database. Retrieved 10 May 2023.
  29. ^ "ar53_r214.sp_label". Genome Taxonomy Database. Retrieved 10 May 2023.
  30. ^ "Taxon History". Genome Taxonomy Database. Retrieved 10 May 2023.
  31. ^ Eme, Laura; Tamarit, Daniel; Caceres, Eva F.; et al. (2023-06-14). "Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes". Nature. 618 (7967): 992–999. Bibcode:2023Natur.618..992E. doi:10.1038/s41586-023-06186-2. PMC 10307638. PMID 37316666.
  32. ^ Latorre, A.; Durban, A.; Moya, A.; Pereto, J. (2011). "The role of symbiosis in eukaryotic evolution". In Gargaud, M.; López-Garcìa, P.; Martin H. (eds.). Origins and Evolution of Life: An astrobiological perspective. Cambridge: Cambridge University Press. pp. 326–339. ISBN 978-0-521-76131-4. from the original on 24 March 2019. Retrieved 27 August 2017.
  33. ^ López-García, Purificación; Moreira, David (July 2019). "Eukaryogenesis, a syntrophy affair". Nature Microbiology. 4 (7): 1068–1070. doi:10.1038/s41564-019-0495-5. PMC 6684364. PMID 31222170.
  34. ^ Rodrigues-Oliveira, Thiago; Wollweber, Florian; Ponce-Toledo, Rafael I.; Xu, Jingwei; Rittmann, Simon K.-M. R.; Klingl, Andreas; Pilhofer, Martin; Schleper, Christa (January 2023). "Actin cytoskeleton and complex cell architecture in an Asgard archaeon". Nature. 613 (7943): 332–339. Bibcode:2023Natur.613..332R. doi:10.1038/s41586-022-05550-y. ISSN 1476-4687. PMC 9834061. PMID 36544020.
  35. ^ Fournier, Gregory P.; Poole, Anthony M. (2018-08-15). "A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree". Frontiers in Microbiology. 9: 1896. doi:10.3389/fmicb.2018.01896. ISSN 1664-302X. PMC 6104171. PMID 30158917.
  36. ^ Euzéby, J.P. "Superphylum "Asgardarchaeota"". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2021-06-27.
  37. ^ "Asgard group". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2021-03-20.
  38. ^ a b c d e f g Medvedeva, S.; Sun, J.; Yutin, N.; Koonin, Eugene V.; Nunoura, T.; Rinke, C.; Krupovic, M. (July 2022). "Three families of Asgard archaeal viruses identified in metagenome-assembled genomes". Nature Microbiology. 7 (7): 962–973. doi:10.1038/s41564-022-01144-6. PMID 35760839. S2CID 250091635.
  39. ^ a b c d Tamarit, D.; Caceres, E.F.; Krupovic, M.; Nijland, R.; Eme, L.; Robinson, N.P.; Ettema, T.J.G. (July 2022). "A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses". Nature Microbiology. 7 (7): 948–952. doi:10.1038/s41564-022-01122-y. PMC 9246712. PMID 35760836. S2CID 250090798.
  40. ^ a b c Rambo, I.M.; Langwig, M.V.; Leão, P.; De Anda, V.; Baker, B.J. (July 2022). "Genomes of six viruses that infect Asgard archaea from deep-sea sediments". Nature Microbiology. 7 (7): 953–961. doi:10.1038/s41564-022-01150-8. PMID 35760837.
  41. ^ Prangishvili, D.; Bamford, D.H.; Forterre, P.; Iranzo, J.; Koonin, Eugene V.; Krupovic, M. (November 2017). "The enigmatic archaeal virosphere". Nature Reviews. Microbiology. 15 (12): 724–739. doi:10.1038/nrmicro.2017.125. PMID 29123227. S2CID 21789564.
  42. ^ Alarcón-Schumacher, T.; Erdmann, S. (July 2022). "A trove of Asgard archaeal viruses". Nature Microbiology. 7 (7): 931–932. doi:10.1038/s41564-022-01148-2. PMID 35760838. S2CID 250091028.
  43. ^ Wu, F.; Speth, D.R.; Philosof, A.; et al. (February 2022). "Unique mobile elements and scalable gene flow at the prokaryote-eukaryote boundary revealed by circularized Asgard archaea genomes". Nature Microbiology. 7 (2): 200–212. doi:10.1038/s41564-021-01039-y. PMC 8813620. PMID 35027677.

External links edit

  • Traci Watson: The trickster microbes that are shaking up the tree of life, in: Nature, 14 May 2019

asgard, archaea, asgard, asgardarchaeota, proposed, superphylum, consisting, group, archaea, that, contain, eukaryotic, signature, proteins, appears, that, eukaryotes, domain, that, contains, animals, plants, fungi, emerged, within, asgard, branch, containing,. Asgard or Asgardarchaeota 2 is a proposed superphylum consisting of a group of archaea that contain eukaryotic signature proteins 3 It appears that the eukaryotes the domain that contains the animals plants and fungi emerged within the Asgard 4 in a branch containing the Heimdallarchaeota 5 This supports the two domain system of classification over the three domain system 6 7 AsgardScientific classificationDomain ArchaeaKingdom ProteoarchaeotaSuperphylum AsgardKatarzyna Zaremba Niedzwiedzka Wikidata et al 2017Phylasee textSynonyms Asgardarchaeota Violette Da Cunha et al 2017 Asgardaeota Whitman 2018 Eukaryomorpha Fournier amp Poole 2018 1 Contents 1 Discovery and nomenclature 2 Description 2 1 Proteins 2 2 Metabolism 2 3 Ecology 2 4 Eukaryote like features in subdivisions 3 Phylogeny 3 1 Taxonomy 4 Genomic elements 4 1 Viruses 4 2 Mobile genetic elements 5 See also 6 References 7 External linksDiscovery and nomenclature editIn the summer of 2010 sediments were analysed from a gravity core taken in the rift valley on the Knipovich ridge in the Arctic Ocean near the Loki s Castle hydrothermal vent site Specific sediment horizons previously shown to contain high abundances of novel archaeal lineages were subjected to metagenomic analysis 8 9 In 2015 an Uppsala University led team proposed the Lokiarchaeota phylum based on phylogenetic analyses using a set of highly conserved protein coding genes 10 The group was named for the shape shifting Norse god Loki in an allusion to the hydrothermal vent complex from which the first genome sample originated 11 The Loki of mythology has been described as a staggeringly complex confusing and ambivalent figure who has been the catalyst of countless unresolved scholarly controversies 12 analogous to the role of Lokiarchaeota in the debates about the origin of eukaryotes 10 13 In 2016 a University of Texas led team discovered Thorarchaeota from samples taken from the White Oak River in North Carolina named in reference to Thor another Norse god 14 Samples from Loki s Castle Yellowstone National Park Aarhus Bay an aquifer near the Colorado River New Zealand s Radiata Pool hydrothermal vents near Taketomi Island Japan and the White Oak River estuary in the United States contained Odinarchaeota and Heimdallarchaeota 3 following the Norse deity naming convention these groups were named for Odin and Heimdallr respectively Researchers therefore named the superphylum containing these microbes Asgard after the home of the gods in Norse mythology 3 Two Lokiarchaeota specimens have been cultured enabling a detailed insight into their morphology 15 Description editProteins edit Asgard members encode many eukaryotic signature proteins including novel GTPases membrane remodelling proteins like ESCRT and SNF7 a ubiquitin modifier system and N glycosylation pathway homologs 3 Asgard archaeons have a regulated actin cytoskeleton and the profilins and gelsolins they use can interact with eukaryotic actins 16 17 In addition Asgard archaea tubulin from hydrothermal living Odinarchaeota OdinTubulin was identified as a genuine tubulin OdinTubulin forms protomers and protofilaments most similar to eukaryotic microtubules yet assembles into ring systems more similar to FtsZ indicating that OdinTubulin may represent an evolution intermediate between FtsZ and microtubule forming tubulins 18 They also seem to form vesicles under cryogenic electron microscopy Some may have a PKD domain S layer 19 They also share the three way ES39 expansion in LSU rRNA with eukaryotes 20 Gene clusters or operons encoding ribosomal proteins are often less conserved in their organization in the Asgard group than in other Archaea suggesting that the order of ribosomal protein coding genes may follow the phylogeny 21 Metabolism edit nbsp Metabolic pathways of Asgard archaea varying by phyla 22 nbsp Metabolic pathways of Asgard archaea varying by environment 22 Asgard archaea are generally obligate anaerobes though Kariarchaeota Gerdarchaeota and Hodarchaeota may be facultative aerobes 23 They have a Wood Ljungdahl pathway and perform glycolysis Members can be autotrophs heterotrophs or phototrophs using heliorhodopsin 22 One member Candidatus Prometheoarchaeum syntrophicum is syntrophic with a sulfur reducing proteobacteria and a methanogenic archaea 19 The RuBisCO they have is not carbon fixing but likely used for nucleoside salvaging 22 Ecology edit Asgard are widely distributed around the world both geographically and by habitat Many of the known clades are restricted to sediments whereas Lokiarchaeota Thorarchaeota and another clade occupy many different habitats Salinity and depth are important ecological drivers for most Asgard archaea Other habitats include the bodies of animals the rhizosphere of plants non saline sediments and soils the sea surface and freshwater In addition Asgard are associated with several other microorganisms 24 Eukaryote like features in subdivisions edit The phylum Heimdallarchaeota was found in 2017 to have N terminal core histone tails a feature previously thought to be exclusively eukaryotic Two other archaeal phyla both outside of Asgard were found to also have tails in 2018 25 In January 2020 scientists found Candidatus Prometheoarchaeum syntrophicum a member of the Lokiarcheota engaging in cross feeding with two bacterial species Drawing an analogy to symbiogenesis they consider this relationship a possible link between the simple prokaryotic microorganisms and the complex eukaryotic microorganisms occurring approximately two billion years ago 26 19 Phylogeny editThe phylogenetic relationships of the Asgard archaea have been studied by several teams in the 21st century 5 4 27 23 Varying results have been obtained for instance using 53 marker proteins from the Genome Taxonomy Database 28 29 30 In 2023 Eme Tamarit Caceres and colleagues reported that the Eukaryota are deep within Asgard as sister of Hodarchaeales within the Heimdallarchaeia 31 Proteoarchaeota TACKAsgard JordarchaeiaOdinarchaeiaBaldrarchaeiaLokiarchaealesHelarchaealesThorarcheaiaHermodarcheaiaSifarchaeiaWukongarchaeiaHeimdallarchaeia NjordarchaealesGerdarchaealesHeimdallarchaeales HeimdallarchaeaceaeKariarchaeaceaeHodarchaealesEukaryota nbsp nbsp nbsp a ProteobacteriaTaxonomy edit Further information Eukaryogenesis nbsp In the theory of symbiogenesis a merger of an archaean and an aerobic bacterium created the eukaryotes with aerobic mitochondria a second merger added chloroplasts creating the green plants 32 In the depicted scenario the Eukaryota are deep in the tree of Asgard A favored scenario is syntrophy where one organism depends on the feeding of the other An a proteobacterium was incorporated to become the mitochondrion 33 In culture extant Asgard archaea form various syntrophic dependencies 34 Gregory Fournier and Anthony Poole have proposed that Asgard is part of the Eukaryote tree forming a superphylum they call Eukaryomorpha defined by shared derived characters eukaryote signature proteins 35 The taxonomy is uncertain and the phylum names are therefore somewhat speculative The list of phyla is based on the List of Prokaryotic names with Standing in Nomenclature LPSN 36 and National Center for Biotechnology Information NCBI 37 Phylum Baldrarchaeota Caceres 2019 Phylum Borrarchaeota Liu et al 2021 Phylum Freyrarchaeota corrig Caceres 2019 Phylum Friggarchaeota Caceres 2019 Phylum Gefionarchaeota Caceres 2019 Phylum Gerdarchaeota Cai et al 2020 Phylum Heimdallarchaeota Zaremba Niedzwiedzka et al 2017 Phylum Helarchaeota Seitz et al 2019 Phylum Hermodarchaeota Liu et al 2021 Phylum Hodarchaeota Liu et al 2021 Phylum Idunnarchaeota Caceres 2019 Phylum Kariarchaeota Liu et al 2021 Phylum Lokiarchaeota Spang et al 2015 Phylum Njordarchaeota Xie et al 2022 Phylum Odinarchaeota Zaremba Niedzwiedzka et al 2017 Phylum Sifarchaeota Farag et al 2020 Phylum Sigynarchaeota Xie et al 2022 Phylum Thorarchaeota Baker 2015 Phylum Tyrarchaeota Xie et al 2022 Phylum Wukongarchaeota Liu et al 2021Genomic elements editViruses edit Several family level groups of viruses associated with Asgard archaea have been discovered using metagenomics 38 39 40 The viruses were assigned to Lokiarchaeia Thorarchaeia Odinarchaeia and Helarchaeia hosts using CRISPR spacer matching to the corresponding protospacers within the viral genomes Two groups of viruses called verdandiviruses are related to archaeal and bacterial viruses of the class Caudoviricetes i e viruses with icosahedral capsids and helical tails 38 40 two other distinct groups called skuldviruses are distantly related to tailless archaeal and bacterial viruses with icosahedral capsids of the realm Varidnaviria 38 39 and the third group of viruses called wyrdviruses is related to archaea specific viruses with lemon shaped virus particles family Halspiviridae 38 39 The viruses have been identified in deep sea sediments 38 40 and a terrestrial hot spring of the Yellowstone National Park 39 All these viruses display very low sequence similarity to other known viruses but are generally related to the previously described prokaryotic viruses 41 with no meaningful affinity to viruses of eukaryotes 42 38 Mobile genetic elements edit In addition to viruses several groups of cryptic mobile genetic elements have been discovered through CRISPR spacer matching to be associated with Asgard archaea of the Lokiarchaeia Thorarchaeia and Heimdallarchaeia lineages 38 43 These mobile elements do not encode recognizable viral hallmark proteins and could represent either novel types of viruses or plasmids See also editList of Archaea generaReferences edit Fournier G P Poole A M 2018 A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree Frontiers in Microbiology 9 1896 doi 10 3389 fmicb 2018 01896 PMC 6104171 PMID 30158917 Da Cunha Violette Gaia Morgan Gadelle Daniele et al June 2017 Lokiarchaea are close relatives of Euryarchaeota not bridging the gap between prokaryotes and eukaryotes PLOS Genetics 13 6 e1006810 doi 10 1371 journal pgen 1006810 PMC 5484517 PMID 28604769 a b c d Zaremba Niedzwiedzka Katarzyna Caceres Eva F Saw Jimmy H et al January 2017 Asgard archaea illuminate the origin of eukaryotic cellular complexity Nature 541 7637 353 358 Bibcode 2017Natur 541 353Z doi 10 1038 nature21031 OSTI 1580084 PMID 28077874 S2CID 4458094 a b Eme Laura Spang Anja Lombard Jonathan Stairs Courtney W Ettema Thijs J G November 2017 Archaea and the origin of eukaryotes Nature Reviews Microbiology 15 12 711 723 doi 10 1038 nrmicro 2017 133 PMID 29123225 S2CID 8666687 a b Williams Tom A Cox Cymon J Foster Peter G Szollosi Gergely J Embley T Martin January 2020 Phylogenomics provides robust support for a two domains tree of life Nature Ecology amp Evolution 4 1 138 147 doi 10 1038 s41559 019 1040 x PMC 6942926 PMID 31819234 Nobs Stephanie Jane MacLeod Fraser I Wong Hon Lun Burns Brendan P May 2022 Eukarya the chimera eukaryotes a secondary innovation of the two domains of life Trends in Microbiology 30 5 421 431 doi 10 1016 j tim 2021 11 003 PMID 34863611 S2CID 244823103 Doolittle W Ford February 2020 Evolution Two Domains of Life or Three Current Biology 30 4 R177 R179 doi 10 1016 j cub 2020 01 010 PMID 32097647 Jorgensen Steffen Leth Hannisdal Bjarte Lanzen Anders et al October 2012 Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid Ocean Ridge PNAS 109 42 E2846 E2855 doi 10 1073 pnas 1207574109 PMC 3479504 PMID 23027979 Jorgensen Steffen Leth Thorseth Ingunn H Pedersen Rolf B et al October 4 2013 Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid ocean spreading ridge Frontiers in Microbiology 4 299 doi 10 3389 fmicb 2013 00299 PMC 3790079 PMID 24109477 a b Spang Anja Saw Jimmy H Jorgensen Steffen L et al May 2015 Complex archaea that bridge the gap between prokaryotes and eukaryotes Nature 521 7551 173 179 Bibcode 2015Natur 521 173S doi 10 1038 nature14447 PMC 4444528 PMID 25945739 Yong Ed Break in the Search for the Origin of Complex Life The Atlantic Retrieved 2018 03 21 von Schnurbein Stefanie November 2000 The Function of Loki in Snorri Sturluson s Edda History of Religions 40 2 109 124 doi 10 1086 463618 Spang Anja Eme Laura Saw Jimmy H et al March 2018 Asgard archaea are the closest prokaryotic relatives of eukaryotes PLOS Genetics 14 3 e1007080 doi 10 1371 journal pgen 1007080 PMC 5875740 PMID 29596421 Seitz Kiley W Lazar Cassandre S Hinrichs Kai Uwe et al July 2016 Genomic reconstruction of a novel deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction The ISME Journal 10 7 1696 1705 doi 10 1038 ismej 2015 233 PMC 4918440 PMID 26824177 Rodrigues Oliveira Thiago Wollweber Florian Ponce Toledo Rafael I et al 2023 01 12 Actin cytoskeleton and complex cell architecture in an Asgard archaeon Nature 613 7943 332 339 Bibcode 2023Natur 613 332R doi 10 1038 s41586 022 05550 y ISSN 0028 0836 PMC 9834061 PMID 36544020 Akil Caner Robinson Robert C October 2018 Genomes of Asgard archaea encode profilins that regulate actin Nature 562 7727 439 443 Bibcode 2018Natur 562 439A doi 10 1038 s41586 018 0548 6 PMID 30283132 S2CID 52917038 Akil Caner Tran Linh T Orhant Prioux Magali Baskaran Yohendran Manser Edward Blanchoin Laurent Robinson Robert C August 2020 Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin cofilin proteins from Asgard archaea Proceedings of the National Academy of Sciences of the United States of America 117 33 19904 19913 Bibcode 2020PNAS 11719904A bioRxiv 10 1101 768580 doi 10 1073 pnas 2009167117 PMC 7444086 PMID 32747565 Akil Caner Ali Samson Tran Linh T et al March 2022 Structure and dynamics of Odinarchaeota tubulin and the implications for eukaryotic microtubule evolution Science Advances 8 12 eabm2225 Bibcode 2022SciA 8M2225A doi 10 1126 sciadv abm2225 PMC 8956254 PMID 35333570 a b c Imachi Hiroyuki Nobu Masaru K Nakahara Nozomi et al January 2020 Isolation of an archaeon at the prokaryote eukaryote interface Nature 577 7791 519 525 Bibcode 2020Natur 577 519I doi 10 1038 s41586 019 1916 6 PMC 7015854 PMID 31942073 Penev Petar I Fakhretaha Aval Sara Patel Vaishnavi J et al October 2020 Supersized Ribosomal RNA Expansion Segments in Asgard Archaea Genome Biology and Evolution 12 10 1694 1710 doi 10 1093 gbe evaa170 PMC 7594248 PMID 32785681 Tirumalai Madhan R Raghavan Sivaraman V Kutty Layla A Song Eric L Fox George E October 2023 Ribosomal Protein Cluster Organization in Asgard Archaea Archaea Hindawi 2023 16 doi 10 1155 2023 5512414 a b c d MacLeod Fraser Kindler Gareth S Wong Hon Lun Chen Ray Burns Brendan P 2019 Asgard archaea Diversity function and evolutionary implications in a range of microbiomes AIMS Microbiology 5 1 48 61 doi 10 3934 microbiol 2019 1 48 PMC 6646929 PMID 31384702 a b Liu Yang Makarova Kira S Huang Wen Cong et al 2020 Expanding diversity of Asgard archaea and the elusive ancestry of eukaryotes bioRxiv doi 10 1101 2020 10 19 343400 S2CID 225056970 Cai Mingwei Richter Heitmann Tim Yin Xiuran et al 2021 Ecological features and global distribution of Asgard archaea Science of the Total Environment 758 143581 Bibcode 2021ScTEn 758n3581C doi 10 1016 j scitotenv 2020 143581 ISSN 0048 9697 PMID 33223169 S2CID 227134171 Henneman Bram van Emmerik Clara van Ingen Hugo Dame Remus T September 2018 Structure and function of archaeal histones PLOS Genetics 14 9 e1007582 Bibcode 2018BpJ 114 446H doi 10 1371 journal pgen 1007582 PMC 6136690 PMID 30212449 Zimmer Carl 15 January 2020 This Strange Microbe May Mark One of Life s Great Leaps A organism living in ocean muck offers clues to the origins of the complex cells of all animals and plants The New York Times Retrieved 16 January 2020 Liu Yang Makarova Kira S Huang Wen Cong Wolf Yuri I Nikolskaya Anastasia Zhang Xinxu et al May 2021 Expanded diversity of Asgard archaea and their relationships with eukaryotes Nature 593 7860 553 557 Bibcode 2021Natur 593 553L doi 10 1038 s41586 021 03494 3 PMID 33911286 S2CID 233447651 GTDB release 08 RS214 Genome Taxonomy Database Retrieved 10 May 2023 ar53 r214 sp label Genome Taxonomy Database Retrieved 10 May 2023 Taxon History Genome Taxonomy Database Retrieved 10 May 2023 Eme Laura Tamarit Daniel Caceres Eva F et al 2023 06 14 Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes Nature 618 7967 992 999 Bibcode 2023Natur 618 992E doi 10 1038 s41586 023 06186 2 PMC 10307638 PMID 37316666 Latorre A Durban A Moya A Pereto J 2011 The role of symbiosis in eukaryotic evolution In Gargaud M Lopez Garcia P Martin H eds Origins and Evolution of Life An astrobiological perspective Cambridge Cambridge University Press pp 326 339 ISBN 978 0 521 76131 4 Archived from the original on 24 March 2019 Retrieved 27 August 2017 Lopez Garcia Purificacion Moreira David July 2019 Eukaryogenesis a syntrophy affair Nature Microbiology 4 7 1068 1070 doi 10 1038 s41564 019 0495 5 PMC 6684364 PMID 31222170 Rodrigues Oliveira Thiago Wollweber Florian Ponce Toledo Rafael I Xu Jingwei Rittmann Simon K M R Klingl Andreas Pilhofer Martin Schleper Christa January 2023 Actin cytoskeleton and complex cell architecture in an Asgard archaeon Nature 613 7943 332 339 Bibcode 2023Natur 613 332R doi 10 1038 s41586 022 05550 y ISSN 1476 4687 PMC 9834061 PMID 36544020 Fournier Gregory P Poole Anthony M 2018 08 15 A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree Frontiers in Microbiology 9 1896 doi 10 3389 fmicb 2018 01896 ISSN 1664 302X PMC 6104171 PMID 30158917 Euzeby J P Superphylum Asgardarchaeota List of Prokaryotic names with Standing in Nomenclature LPSN Retrieved 2021 06 27 Asgard group National Center for Biotechnology Information NCBI taxonomy database Retrieved 2021 03 20 a b c d e f g Medvedeva S Sun J Yutin N Koonin Eugene V Nunoura T Rinke C Krupovic M July 2022 Three families of Asgard archaeal viruses identified in metagenome assembled genomes Nature Microbiology 7 7 962 973 doi 10 1038 s41564 022 01144 6 PMID 35760839 S2CID 250091635 a b c d Tamarit D Caceres E F Krupovic M Nijland R Eme L Robinson N P Ettema T J G July 2022 A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses Nature Microbiology 7 7 948 952 doi 10 1038 s41564 022 01122 y PMC 9246712 PMID 35760836 S2CID 250090798 a b c Rambo I M Langwig M V Leao P De Anda V Baker B J July 2022 Genomes of six viruses that infect Asgard archaea from deep sea sediments Nature Microbiology 7 7 953 961 doi 10 1038 s41564 022 01150 8 PMID 35760837 Prangishvili D Bamford D H Forterre P Iranzo J Koonin Eugene V Krupovic M November 2017 The enigmatic archaeal virosphere Nature Reviews Microbiology 15 12 724 739 doi 10 1038 nrmicro 2017 125 PMID 29123227 S2CID 21789564 Alarcon Schumacher T Erdmann S July 2022 A trove of Asgard archaeal viruses Nature Microbiology 7 7 931 932 doi 10 1038 s41564 022 01148 2 PMID 35760838 S2CID 250091028 Wu F Speth D R Philosof A et al February 2022 Unique mobile elements and scalable gene flow at the prokaryote eukaryote boundary revealed by circularized Asgard archaea genomes Nature Microbiology 7 2 200 212 doi 10 1038 s41564 021 01039 y PMC 8813620 PMID 35027677 External links editTraci Watson The trickster microbes that are shaking up the tree of life in Nature 14 May 2019 Retrieved from https en wikipedia org w index php title Asgard archaea amp oldid 1187925606, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.