fbpx
Wikipedia

Adenosine A2A receptor


The adenosine A2A receptor, also known as ADORA2A, is an adenosine receptor, and also denotes the human gene encoding it.[5][6]

ADORA2A
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesADORA2A, adenosine A2a receptor, A2aR, ADORA2, RDC8
External IDsOMIM: 102776 MGI: 99402 HomoloGene: 20166 GeneCards: ADORA2A
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000675
NM_001278497
NM_001278498
NM_001278499
NM_001278500

NM_009630
NM_001331095
NM_001331096

RefSeq (protein)

NP_000666
NP_001265426
NP_001265427
NP_001265428
NP_001265429

NP_001318024
NP_001318025
NP_033760

Location (UCSC)Chr 22: 24.42 – 24.44 MbChr 10: 75.15 – 75.17 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Structure edit

This protein is a member of the G protein-coupled receptor (GPCR) family which possess seven transmembrane alpha helices, as well as an extracellular N-terminus and an intracellular C-terminus. Furthermore, located in the intracellular side close to the membrane is a small alpha helix, often referred to as helix 8 (H8). The crystallographic structure of the adenosine A2A receptor reveals a ligand binding pocket distinct from that of other structurally determined GPCRs (i.e., the beta-2 adrenergic receptor and rhodopsin).[7] Below this primary (orthosteric) binding pocket lies a secondary (allosteric) binding pocket. The crystal-structure of A2A bound to the antagonist ZM241385 (PDB code: 4EIY) showed that a sodium-ion can be found in this location of the protein, thus giving it the name 'sodium-ion binding pocket'.[8]

Heteromers edit

The actions of the A2A receptor are complicated by the fact that a variety of functional heteromers composed of a mixture of A2A subunits with subunits from other unrelated G-protein coupled receptors have been found in the brain, adding a further degree of complexity to the role of adenosine in modulation of neuronal activity. Heteromers consisting of adenosine A1/A2A,[9][10] dopamine D2/A2A[11] and D3/A2A,[12] glutamate mGluR5/A2A[13] and cannabinoid CB1/A2A[14] have all been observed, as well as CB1/A2A/D2 heterotrimers,[15] and the functional significance and endogenous role of these hybrid receptors is still only starting to be unravelled.[16][17][18]

The receptor's role in immunomodulation in the context of cancer has suggested that it is an important immune checkpoint molecule.[19]

Function edit

The gene encodes a protein which is one of several receptor subtypes for adenosine. The activity of the encoded protein, a G protein-coupled receptor family member, is mediated by G proteins which activate adenylyl cyclase, which induce synthesis of intracellular cAMP. The A2A receptor binds with the Gs protein at the intracellular site of the receptor. The Gs protein consists of three subunits; Gsα, Gsβ and Gsγ. A crystal structure of the A2A receptor bound with the agonist NECA and a G protein-mimic has been published in 2016 (PDB code: 5g53).[20]

The encoded protein (the A2A receptor) is abundant in basal ganglia, vasculature, T lymphocytes, and platelets and it is a major target of caffeine, which is a competitive antagonist of this protein.[21]

Physiological role edit

A1 and A2A receptors are believed to regulate myocardial oxygen demand and to increase coronary circulation by vasodilation. In addition, A2A receptor can suppress immune cells, thereby protecting tissue from inflammation.[22]

The A2A receptor is also expressed in the brain, where it has important roles in the regulation of glutamate and dopamine release, making it a potential therapeutic target for the treatment of conditions such as insomnia, pain, depression, and Parkinson's disease.[23][24][25][26][27][28][29]

Ligands edit

A number of selective A2A ligands have been developed,[30] with several possible therapeutic applications.[31]

Older research on adenosine receptor function, and non-selective adenosine receptor antagonists such as aminophylline, focused mainly on the role of adenosine receptors in the heart, and led to several randomized controlled trials using these receptor antagonists to treat bradyasystolic arrest.[32][33][34][35][36][37][38]

However the development of more highly selective A2A ligands has led towards other applications, with the most significant focus of research currently being the potential therapeutic role for A2A antagonists in the treatment of Parkinson's disease.[39][40][41][42]

Agonists edit

Antagonists edit

Interactions edit

Adenosine A2A receptor has been shown to interact with Dopamine receptor D2.[54] As a result, Adenosine receptor A2A decreases activity in the Dopamine D2 receptors.

In cancer immunotherapy edit

The adenosine A2A receptor has also been shown to play a regulatory role in the adaptive immune system. In this role, it functions similarly to programmed cell death-1 (PD-1) and cytotoxic t-lymphocyte associated protein-4 (CTLA-4) receptors, namely to suppress immunologic response and prevent associated tissue damage. Extracellular adenosine gathers in response to cellular stress and breakdown through interactions with hypoxia induced HIF-1α.[55] Abundant extracellular adenosine can then bind to the A2A receptor resulting in a Gs-protein coupled response, resulting in the accumulation of intracellular cAMP, which functions primarily through protein kinase A to upregulate inhibitory cytokines such as transforming growth factor-beta (TGF-β) and inhibitory receptors (i.e., PD-1).[56] Interactions with FOXP3 stimulates CD4+ T-cells into regulatory Treg cells further inhibiting immune response.[57]

Blockade of A2AR has been attempted to various ends, namely cancer immunotherapy. While several A2A receptor antagonists have progressed to clinical trials for the treatment of Parkinson's disease, A2AR blockade in the context of cancer is less characterized. Mice treated with A2AR antagonists, such as ZM241385 (listed above) or caffeine, show significantly delayed tumor growth due to T-cells resistant to inhibition.[55] This is further highlighted by A2AR knockout mice who show increased tumor rejection. Multiple checkpoint pathway inhibition has been shown to have an additive effect, as shown by an increase in response with blockade to PD-1 and CTLA-4 via monoclonal antibodies as compared to the blockade of a single pathway. The A2AR antogonist CPI-444 has shown this in combination with anti-PD-L1 or anti-CTLA-4 treatment as it eliminated tumors in up to 90% of treated mice, including restoration of immune responses in models that incompletely responded to anti-PD-L1 or anti-CTLA-4 monotherapy. Further, tumor growth was fully inhibited when mice with cleared tumors were later rechallenged, indicating that CPI-444 induced systemic antitumor immune memory. [58] Researchers believe that A2AR blockade could increase the efficacy of such treatments even further.[56] Finally, inhibition of A2AR, either through pharmacologic or genetic targeting, in chimeric antigen receptor (CAR) T-cells reveals promising results. Blockade of A2AR in this setting has shown to increase tumor clearance through CAR T-cell therapy in mice.[59] Targeting of the A2A receptor is an attractive option for the treatment of a variety of cancers, especially with the therapeutic success of the blockade of other checkpoint pathways such as PD-1 and CTLA-4.

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000128271 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000020178 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Libert F, Parmentier M, Lefort A, Dinsart C, Van Sande J, Maenhaut C, et al. (May 1989). "Selective amplification and cloning of four new members of the G protein-coupled receptor family". Science. 244 (4904): 569–72. Bibcode:1989Sci...244..569L. doi:10.1126/science.2541503. PMID 2541503.
  6. ^ Libert F, Passage E, Parmentier M, Simons MJ, Vassart G, Mattei MG (September 1991). "Chromosomal mapping of A1 and A2 adenosine receptors, VIP receptor, and a new subtype of serotonin receptor". Genomics. 11 (1): 225–7. doi:10.1016/0888-7543(91)90125-X. PMID 1662665.
  7. ^ PDB: 3EML​; Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, et al. (November 2008). "The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist". Science. 322 (5905): 1211–7. Bibcode:2008Sci...322.1211J. doi:10.1126/science.1164772. PMC 2586971. PMID 18832607.
  8. ^ Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, et al. (July 2012). "Structural basis for allosteric regulation of GPCRs by sodium ions". Science. 337 (6091): 232–6. Bibcode:2012Sci...337..232L. doi:10.1126/science.1219218. PMC 3399762. PMID 22798613.
  9. ^ Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, et al. (February 2006). "Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers". The Journal of Neuroscience. 26 (7): 2080–7. doi:10.1523/JNEUROSCI.3574-05.2006. PMC 6674939. PMID 16481441.
  10. ^ Ferre S, Ciruela F, Borycz J, Solinas M, Quarta D, Antoniou K, et al. (January 2008). "Adenosine A1-A2A receptor heteromers: new targets for caffeine in the brain". Frontiers in Bioscience. 13 (13): 2391–9. doi:10.2741/2852. PMID 17981720.
  11. ^ Fuxe K, Ferré S, Canals M, Torvinen M, Terasmaa A, Marcellino D, et al. (2005). "Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function". Journal of Molecular Neuroscience. 26 (2–3): 209–20. doi:10.1385/JMN:26:2-3:209. PMID 16012194. S2CID 427930.
  12. ^ Torvinen M, Marcellino D, Canals M, Agnati LF, Lluis C, Franco R, Fuxe K (February 2005). "Adenosine A2A receptor and dopamine D3 receptor interactions: evidence of functional A2A/D3 heteromeric complexes". Molecular Pharmacology. 67 (2): 400–7. doi:10.1124/mol.104.003376. PMID 15539641. S2CID 24475855.
  13. ^ Zezula J, Freissmuth M (March 2008). "The A(2A)-adenosine receptor: a GPCR with unique features?". British Journal of Pharmacology. 153 Suppl 1 (S1): S184-90. doi:10.1038/sj.bjp.0707674. PMC 2268059. PMID 18246094.
  14. ^ Ferré S, Goldberg SR, Lluis C, Franco R (2009). "Looking for the role of cannabinoid receptor heteromers in striatal function". Neuropharmacology. 56 (Suppl 1): 226–34. doi:10.1016/j.neuropharm.2008.06.076. PMC 2635338. PMID 18691604.
  15. ^ Marcellino D, Carriba P, Filip M, Borgkvist A, Frankowska M, Bellido I, et al. (April 2008). "Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis". Neuropharmacology. 54 (5): 815–23. doi:10.1016/j.neuropharm.2007.12.011. PMID 18262573. S2CID 195685369.
  16. ^ Ferré S, Ciruela F, Quiroz C, Luján R, Popoli P, Cunha RA, et al. (November 2007). "Adenosine receptor heteromers and their integrative role in striatal function". TheScientificWorldJournal. 7: 74–85. doi:10.1100/tsw.2007.211. PMC 5901194. PMID 17982579.
  17. ^ Wardas J (May 2008). "Potential role of adenosine A2A receptors in the treatment of schizophrenia". Frontiers in Bioscience. 13 (13): 4071–96. doi:10.2741/2995. PMID 18508501.
  18. ^ Simola N, Morelli M, Pinna A (2008). "Adenosine A2A receptor antagonists and Parkinson's disease: state of the art and future directions". Current Pharmaceutical Design. 14 (15): 1475–89. doi:10.2174/138161208784480072. PMID 18537671.
  19. ^ Cekic C, Linden J (December 2014). "Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment". Cancer Research. 74 (24): 7239–49. doi:10.1158/0008-5472.CAN-13-3581. PMC 4459794. PMID 25341542.
  20. ^ Carpenter B, Nehmé R, Warne T, Leslie AG, Tate CG (August 2016). "Structure of the adenosine A(2A) receptor bound to an engineered G protein". Nature. 536 (7614): 104–7. Bibcode:2016Natur.536..104C. doi:10.1038/nature18966. PMC 4979997. PMID 27462812.
  21. ^ "Entrez Gene: ADORA2A adenosine A2A receptor".
  22. ^ Ohta A, Sitkovsky M (2001). "Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage". Nature. 414 (6866): 916–20. Bibcode:2001Natur.414..916O. doi:10.1038/414916a. PMID 11780065. S2CID 4386419.
  23. ^ Hack SP, Christie MJ (2003). "Adaptations in adenosine signaling in drug dependence: therapeutic implications". Critical Reviews in Neurobiology. 15 (3–4): 235–74. doi:10.1615/CritRevNeurobiol.v15.i34.30. PMID 15248812.
  24. ^ Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, Schwarzschild MA (December 2007). "Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPA-induced motor complications". Progress in Neurobiology. 83 (5): 293–309. doi:10.1016/j.pneurobio.2007.07.001. PMID 17826884. S2CID 27478825.
  25. ^ Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferré S (December 2007). "Adenosine A2A receptors and basal ganglia physiology". Progress in Neurobiology. 83 (5): 277–92. doi:10.1016/j.pneurobio.2007.05.001. PMC 2148496. PMID 17646043.
  26. ^ Ferré S, Diamond I, Goldberg SR, Yao L, Hourani SM, Huang ZL, et al. (December 2007). "Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry implications for drug addiction, sleep and pain". Progress in Neurobiology. 83 (5): 332–47. doi:10.1016/j.pneurobio.2007.04.002. PMC 2141681. PMID 17532111.
  27. ^ Brown RM, Short JL (November 2008). "Adenosine A(2A) receptors and their role in drug addiction". The Journal of Pharmacy and Pharmacology. 60 (11): 1409–30. doi:10.1211/jpp/60.11.0001. PMID 18957161.
  28. ^ Cunha RA, Ferré S, Vaugeois JM, Chen JF (2008). "Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders". Current Pharmaceutical Design. 14 (15): 1512–24. doi:10.2174/138161208784480090. PMC 2423946. PMID 18537674.
  29. ^ Mingote S, Font L, Farrar AM, Vontell R, Worden LT, Stopper CM, et al. (September 2008). "Nucleus accumbens adenosine A2A receptors regulate exertion of effort by acting on the ventral striatopallidal pathway". The Journal of Neuroscience. 28 (36): 9037–46. doi:10.1523/JNEUROSCI.1525-08.2008. PMC 2806668. PMID 18768698.
  30. ^
    • Ongini E, Monopoli A, Cacciari B, Baraldi PG (2001). "Selective adenosine A2A receptor antagonists". Farmaco. 56 (1–2): 87–90. doi:10.1016/S0014-827X(01)01024-2. PMID 11347973.
    • Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Monopoli A, Ongini E, et al. (January 2002). "7-Substituted 5-amino-2-(2-furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as A2A adenosine receptor antagonists: a study on the importance of modifications at the side chain on the activity and solubility". Journal of Medicinal Chemistry. 45 (1): 115–26. doi:10.1021/jm010924c. PMID 11754583.
    • Baraldi PG, Fruttarolo F, Tabrizi MA, Preti D, Romagnoli R, El-Kashef H, et al. (March 2003). "Design, synthesis, and biological evaluation of C9- and C2-substituted pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as new A2A and A3 adenosine receptors antagonists". Journal of Medicinal Chemistry. 46 (7): 1229–41. doi:10.1021/jm021023m. PMID 12646033.
    • Weiss SM, Benwell K, Cliffe IA, Gillespie RJ, Knight AR, Lerpiniere J, et al. (December 2003). "Discovery of nonxanthine adenosine A2A receptor antagonists for the treatment of Parkinson's disease". Neurology. 61 (11 Suppl 6): S101-6. doi:10.1212/01.WNL.0000095581.20961.7D. PMID 14663021. S2CID 12327094.
    • Cristalli G, Lambertucci C, Taffi S, Vittori S, Volpini R (2003). . Current Topics in Medicinal Chemistry. 3 (4): 387–401. doi:10.2174/1568026033392282. PMID 12570757. Archived from the original on 2009-05-04. Retrieved 2018-10-02.
    • Cacciari B, Pastorin G, Spalluto G (2003). . Current Topics in Medicinal Chemistry. 3 (4): 403–11. doi:10.2174/1568026033392183. PMID 12570758. Archived from the original on 2009-05-04. Retrieved 2018-10-02.
    • Cristalli G, Cacciari B, Dal Ben D, Lambertucci C, Moro S, Spalluto G, Volpini R (March 2007). "Highlights on the development of A(2A) adenosine receptor agonists and antagonists". ChemMedChem. 2 (3): 260–81. doi:10.1002/cmdc.200600193. PMID 17177231. S2CID 6973388.
    • Diniz C, Borges F, Santana L, Uriarte E, Oliveira JM, Gonçalves J, Fresco P (2008). . Current Pharmaceutical Design. 14 (17): 1698–722. doi:10.2174/138161208784746842. PMID 18673194. Archived from the original on 2009-05-04. Retrieved 2018-10-02.
    • Cristalli G, Lambertucci C, Marucci G, Volpini R, Dal Ben D (2008). "A2A adenosine receptor and its modulators: overview on a druggable GPCR and on structure-activity relationship analysis and binding requirements of agonists and antagonists". Current Pharmaceutical Design. 14 (15): 1525–52. doi:10.2174/138161208784480081. PMID 18537675.
    • Gillespie RJ, Adams DR, Bebbington D, Benwell K, Cliffe IA, Dawson CE, et al. (May 2008). "Antagonists of the human adenosine A2A receptor. Part 1: Discovery and synthesis of thieno[3,2-d]pyrimidine-4-methanone derivatives". Bioorganic & Medicinal Chemistry Letters. 18 (9): 2916–9. doi:10.1016/j.bmcl.2008.03.075. PMID 18406614.
    • Gillespie RJ, Cliffe IA, Dawson CE, Dourish CT, Gaur S, Giles PR, et al. (May 2008). "Antagonists of the human adenosine A2A receptor. Part 2: Design and synthesis of 4-arylthieno[3,2-d]pyrimidine derivatives". Bioorganic & Medicinal Chemistry Letters. 18 (9): 2920–3. doi:10.1016/j.bmcl.2008.03.076. PMID 18407496.
    • Gillespie RJ, Cliffe IA, Dawson CE, Dourish CT, Gaur S, Jordan AM, et al. (May 2008). "Antagonists of the human adenosine A2A receptor. Part 3: Design and synthesis of pyrazolo[3,4-d]pyrimidines, pyrrolo[2,3-d]pyrimidines and 6-arylpurines". Bioorganic & Medicinal Chemistry Letters. 18 (9): 2924–9. doi:10.1016/j.bmcl.2008.03.072. PMID 18411049.
  31. ^
    • Sullivan GW (November 2003). "Adenosine A2A receptor agonists as anti-inflammatory agents". Current Opinion in Investigational Drugs. 4 (11): 1313–9. PMID 14758770.
    • Lappas CM, Sullivan GW, Linden J (July 2005). "Adenosine A2A agonists in development for the treatment of inflammation". Expert Opinion on Investigational Drugs. 14 (7): 797–806. doi:10.1517/13543784.14.7.797. PMID 16022569. S2CID 19306651.
    • El Yacoubi M, Costentin J, Vaugeois JM (December 2003). "Adenosine A2A receptors and depression". Neurology. 61 (11 Suppl 6): S82-7. doi:10.1212/01.WNL.0000095220.87550.F6. PMID 14663017. S2CID 36219448.
    • Kaster MP, Rosa AO, Rosso MM, Goulart EC, Santos AR, Rodrigues AL (January 2004). "Adenosine administration produces an antidepressant-like effect in mice: evidence for the involvement of A1 and A2A receptors". Neuroscience Letters. 355 (1–2): 21–4. doi:10.1016/j.neulet.2003.10.040. PMID 14729225. S2CID 29253187.
    • Takahashi RN, Pamplona FA, Prediger RD (January 2008). "Adenosine receptor antagonists for cognitive dysfunction: a review of animal studies". Frontiers in Bioscience. 13 (13): 2614–32. doi:10.2741/2870. PMID 17981738.
    • Lobato KR, Binfaré RW, Budni J, Rosa AO, Santos AR, Rodrigues AL (May 2008). "Involvement of the adenosine A1 and A2A receptors in the antidepressant-like effect of zinc in the forced swimming test". Progress in Neuro-Psychopharmacology & Biological Psychiatry. 32 (4): 994–9. doi:10.1016/j.pnpbp.2008.01.012. PMID 18289757. S2CID 36068948.
  32. ^ Burton JH, Mass M, Menegazzi JJ, Yealy DM (August 1997). "Aminophylline as an adjunct to standard advanced cardiac life support in prolonged cardiac arrest". Annals of Emergency Medicine. 30 (2): 154–8. doi:10.1016/S0196-0644(97)70134-3. PMID 9250637.
  33. ^ Khoury MY, Moukarbel GV, Obeid MY, Alam SE (May 2001). "Effect of aminophylline on complete atrioventricular block with ventricular asystole following blunt chest trauma". Injury. 32 (4): 335–8. doi:10.1016/S0020-1383(00)00222-9. PMID 11325371.
  34. ^ Mader TJ, Bertolet B, Ornato JP, Gutterman JM (October 2000). "Aminophylline in the treatment of atropine-resistant bradyasystole". Resuscitation. 47 (2): 105–12. doi:10.1016/S0300-9572(00)00234-3. PMID 11008148.
  35. ^ Mader TJ, Smithline HA, Durkin L, Scriver G (March 2003). "A randomized controlled trial of intravenous aminophylline for atropine-resistant out-of-hospital asystolic cardiac arrest". Academic Emergency Medicine. 10 (3): 192–7. doi:10.1197/aemj.10.3.192. PMID 12615581.
  36. ^ Mader TJ, Gibson P (August 1997). "Adenosine receptor antagonism in refractory asystolic cardiac arrest: results of a human pilot study". Resuscitation. 35 (1): 3–7. doi:10.1016/S0300-9572(97)01097-6. PMID 9259053.
  37. ^ Perouansky M, Shamir M, Hershkowitz E, Donchin Y (July 1998). "Successful resuscitation using aminophylline in refractory cardiac arrest with asystole". Resuscitation. 38 (1): 39–41. doi:10.1016/S0300-9572(98)00079-3. PMID 9783508.
  38. ^ Viskin S, Belhassen B, Roth A, Reicher M, Averbuch M, Sheps D, et al. (February 1993). "Aminophylline for bradyasystolic cardiac arrest refractory to atropine and epinephrine". Annals of Internal Medicine. 118 (4): 279–81. doi:10.7326/0003-4819-118-4-199302150-00006. PMID 8420445. S2CID 44883687.
  39. ^ Jenner P (December 2003). "A2A antagonists as novel non-dopaminergic therapy for motor dysfunction in PD". Neurology. 61 (11 Suppl 6): S32-8. doi:10.1212/01.WNL.0000095209.59347.79. PMID 14663007. S2CID 28897242.
  40. ^ Mori A, Shindou T (December 2003). "Modulation of GABAergic transmission in the striatopallidal system by adenosine A2A receptors: a potential mechanism for the antiparkinsonian effects of A2A antagonists". Neurology. 61 (11 Suppl 6): S44-8. doi:10.1212/01.WNL.0000095211.71092.A0. PMID 14663009. S2CID 26827799.
  41. ^ Pinna A, Wardas J, Simola N, Morelli M (November 2005). "New therapies for the treatment of Parkinson's disease: adenosine A2A receptor antagonists". Life Sciences. 77 (26): 3259–67. doi:10.1016/j.lfs.2005.04.029. PMID 15979104.
  42. ^ Kelsey JE, Langelier NA, Oriel BS, Reedy C (January 2009). "The effects of systemic, intrastriatal, and intrapallidal injections of caffeine and systemic injections of A2A and A1 antagonists on forepaw stepping in the unilateral 6-OHDA-lesioned rat". Psychopharmacology. 201 (4): 529–39. doi:10.1007/s00213-008-1319-0. PMID 18791705. S2CID 24159282.
  43. ^ a b c d e Jacobson KA, Gao ZG (March 2006). "Adenosine receptors as therapeutic targets". Nature Reviews. Drug Discovery. 5 (3): 247–64. doi:10.1038/nrd1983. PMC 3463109. PMID 16518376. table 1 lists affinities
  44. ^ Yoneyama F, Yamada H, Satoh K, Taira N (March 1992). "Vasodepressor mechanisms of 2-(1-octynyl)-adenosine (YT-146), a selective adenosine A2 receptor agonist, involve the opening of glibenclamide-sensitive K+ channels". European Journal of Pharmacology. 213 (2): 199–204. doi:10.1016/0014-2999(92)90682-T. PMID 1521559.
  45. ^ Amelia T, Van Veldhoven JP, Falsini M, Liu R, Heitman LH, Van Westen GJ, Segala E, Verdon G, Cheng RK, Cooke RM, Van Der Es D, Ijzerman AP (2021). "Crystal Structure and Subsequent Ligand Design of a Nonriboside Partial Agonist Bound to the Adenosine A2A Receptor". Journal of Medicinal Chemistry. 64 (7): 3827–3842. doi:10.1021/acs.jmedchem.0c01856. PMC 8154574. PMID 33764785.
  46. ^ Bolcato G, Pavan M, Bassani D, Sturlese M, Moro S (2022). "Ribose and Non-Ribose A2A Adenosine Receptor Agonists: Do They Share the Same Receptor Recognition Mechanism?". Biomedicines. 10 (2): 515. doi:10.3390/biomedicines10020515. PMC 8962312. PMID 35203724.
  47. ^ Burstein S (7 February 2015). "Cannabidiol (CBD) and its analogs: a review of their effects on inflammation". Bioorganic & Medicinal Chemistry. 23 (7): 1377–1385. doi:10.1016/j.bmc.2015.01.059. PMID 25703248.
  48. ^ Doyle SE, Breslin FJ, Rieger JM, Beauglehole A, Lynch WJ (August 2012). "Time and sex-dependent effects of an adenosine A2A/A1 receptor antagonist on motivation to self-administer cocaine in rats". Pharmacology, Biochemistry, and Behavior. 102 (2): 257–63. doi:10.1016/j.pbb.2012.05.001. PMC 3383440. PMID 22579716.
  49. ^ Kase H, Aoyama S, Ichimura M, Ikeda K, Ishii A, Kanda T, et al. (December 2003). "Progress in pursuit of therapeutic A2A antagonists: the adenosine A2A receptor selective antagonist KW6002: research and development toward a novel nondopaminergic therapy for Parkinson's disease". Neurology. 61 (11 Suppl 6): S97-100. doi:10.1212/01.WNL.0000095219.22086.31. PMID 14663020. S2CID 72084113.
  50. ^ Mott AM, Nunes EJ, Collins LE, Port RG, Sink KS, Hockemeyer J, et al. (May 2009). "The adenosine A2A antagonist MSX-3 reverses the effects of the dopamine antagonist haloperidol on effort-related decision making in a T-maze cost/benefit procedure". Psychopharmacology. 204 (1): 103–12. doi:10.1007/s00213-008-1441-z. PMC 2875244. PMID 19132351.
  51. ^ Hodgson RA, Bertorelli R, Varty GB, Lachowicz JE, Forlani A, Fredduzzi S, et al. (July 2009). "Characterization of the potent and highly selective A2A receptor antagonists preladenant and SCH 412348 [7-[2-[4-2,4-difluorophenyl]-1-piperazinyl]ethyl]-2-(2-furanyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] in rodent models of movement disorders and depression". The Journal of Pharmacology and Experimental Therapeutics. 330 (1): 294–303. doi:10.1124/jpet.108.149617. PMID 19332567. S2CID 22033475.
  52. ^ Pinna A, Fenu S, Morelli M (March 2001). "Motor stimulant effects of the adenosine A2A receptor antagonist SCH 58261 do not develop tolerance after repeated treatments in 6-hydroxydopamine-lesioned rats". Synapse. 39 (3): 233–8. doi:10.1002/1098-2396(20010301)39:3<233::AID-SYN1004>3.0.CO;2-K. PMID 11284438. S2CID 23370571.
  53. ^ Rose S, Jackson MJ, Smith LA, Stockwell K, Johnson L, Carminati P, Jenner P (September 2006). "The novel adenosine A2a receptor antagonist ST1535 potentiates the effects of a threshold dose of L-DOPA in MPTP treated common marmosets". European Journal of Pharmacology. 546 (1–3): 82–7. doi:10.1016/j.ejphar.2006.07.017. PMID 16925991.
  54. ^ Kamiya T, Saitoh O, Yoshioka K, Nakata H (June 2003). "Oligomerization of adenosine A2A and dopamine D2 receptors in living cells". Biochemical and Biophysical Research Communications. 306 (2): 544–9. doi:10.1016/S0006-291X(03)00991-4. PMID 12804599.
  55. ^ a b Sitkovsky MV, Kjaergaard J, Lukashev D, Ohta A (October 2008). "Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia". Clinical Cancer Research. 14 (19): 5947–52. doi:10.1158/1078-0432.CCR-08-0229. PMID 18829471.
  56. ^ a b Leone RD, Lo YC, Powell JD (April 2015). "A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy". Computational and Structural Biotechnology Journal. 13: 265–72. doi:10.1016/j.csbj.2015.03.008. PMC 4415113. PMID 25941561.
  57. ^ Pardoll DM (March 2012). "The blockade of immune checkpoints in cancer immunotherapy". Nature Reviews. Cancer. 12 (4): 252–64. doi:10.1038/nrc3239. PMC 4856023. PMID 22437870.
  58. ^ Willingham SB (October 2018). "A2AR Antagonism with CPI-444 Induces Antitumor Responses and Augments Efficacy to Anti-PD-(L)1 and Anti-CTLA-4 in Preclinical Models". Cancer Immunol Res. 6 (10): 1136–1149. doi:10.1158/2326-6066.CIR-18-0056. PMID 30131376.
  59. ^ Beavis PA, Henderson MA, Giuffrida L, Mills JK, Sek K, Cross RS, et al. (March 2017). "Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy". The Journal of Clinical Investigation. 127 (3): 929–941. doi:10.1172/JCI89455. PMC 5330718. PMID 28165340.

Further reading edit

  • Russo EB (August 2011). "Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects". British Journal of Pharmacology. 163 (7): 1344–64. doi:10.1111/j.1476-5381.2011.01238.x. PMC 3165946. PMID 21749363.
  • Ongini E, Adami M, Ferri C, Bertorelli R (October 1997). "Adenosine A2A receptors and neuroprotection". Annals of the New York Academy of Sciences. 825 (1 Neuroprotecti): 30–48. Bibcode:1997NYASA.825...30O. doi:10.1111/j.1749-6632.1997.tb48412.x. PMID 9369973. S2CID 20814890.
  • Furlong TJ, Pierce KD, Selbie LA, Shine J (September 1992). "Molecular characterization of a human brain adenosine A2 receptor". Brain Research. Molecular Brain Research. 15 (1–2): 62–6. doi:10.1016/0169-328X(92)90152-2. PMID 1331670.
  • Makujina SR, Sabouni MH, Bhatia S, Douglas FL, Mustafa SJ (October 1992). "Vasodilatory effects of adenosine A2 receptor agonists CGS 21680 and CGS 22492 in human vasculature". European Journal of Pharmacology. 221 (2–3): 243–7. doi:10.1016/0014-2999(92)90708-C. PMID 1426003.
  • Karlsten R, Gordh T, Post C (June 1992). "Local antinociceptive and hyperalgesic effects in the formalin test after peripheral administration of adenosine analogues in mice". Pharmacology & Toxicology. 70 (6 Pt 1): 434–8. doi:10.1111/j.1600-0773.1992.tb00503.x. PMID 1438021.
  • Libert F, Passage E, Parmentier M, Simons MJ, Vassart G, Mattei MG (September 1991). "Chromosomal mapping of A1 and A2 adenosine receptors, VIP receptor, and a new subtype of serotonin receptor". Genomics. 11 (1): 225–7. doi:10.1016/0888-7543(91)90125-X. PMID 1662665.
  • Martinez-Mir MI, Probst A, Palacios JM (1992). "Adenosine A2 receptors: selective localization in the human basal ganglia and alterations with disease". Neuroscience. 42 (3): 697–706. doi:10.1016/0306-4522(91)90038-P. PMID 1835521. S2CID 23693441.
  • Libert F, Parmentier M, Lefort A, Dinsart C, Van Sande J, Maenhaut C, et al. (May 1989). "Selective amplification and cloning of four new members of the G protein-coupled receptor family". Science. 244 (4904): 569–72. Bibcode:1989Sci...244..569L. doi:10.1126/science.2541503. PMID 2541503.
  • Kim J, Wess J, van Rhee AM, Schöneberg T, Jacobson KA (June 1995). "Site-directed mutagenesis identifies residues involved in ligand recognition in the human A2a adenosine receptor". The Journal of Biological Chemistry. 270 (23): 13987–97. doi:10.1074/jbc.270.23.13987. PMC 3427751. PMID 7775460.
  • Szondy Z (December 1994). "Adenosine stimulates DNA fragmentation in human thymocytes by Ca(2+)-mediated mechanisms". The Biochemical Journal. 304. 304 ( Pt 3) (3): 877–85. doi:10.1042/bj3040877. PMC 1137415. PMID 7818494.
  • MacCollin M, Peterfreund R, MacDonald M, Fink JS, Gusella J (March 1994). "Mapping of a human A2a adenosine receptor (ADORA2) to chromosome 22". Genomics. 20 (2): 332–3. doi:10.1006/geno.1994.1181. PMID 8020991.
  • Nonaka H, Ichimura M, Takeda M, Nonaka Y, Shimada J, Suzuki F, et al. (May 1994). "KF17837 ((E)-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine), a potent and selective adenosine A2 receptor antagonist". European Journal of Pharmacology. 267 (3): 335–41. doi:10.1016/0922-4106(94)90159-7. PMID 8088373.
  • Iwamoto T, Umemura S, Toya Y, Uchibori T, Kogi K, Takagi N, Ishii M (March 1994). "Identification of adenosine A2 receptor-cAMP system in human aortic endothelial cells". Biochemical and Biophysical Research Communications. 199 (2): 905–10. doi:10.1006/bbrc.1994.1314. PMID 8135838.
  • Salmon JE, Brogle N, Brownlie C, Edberg JC, Kimberly RP, Chen BX, Erlanger BF (September 1993). "Human mononuclear phagocytes express adenosine A1 receptors. A novel mechanism for differential regulation of Fc gamma receptor function". Journal of Immunology. 151 (5): 2775–85. doi:10.4049/jimmunol.151.5.2775. PMID 8360491. S2CID 30807862.
  • Peterfreund RA, MacCollin M, Gusella J, Fink JS (January 1996). "Characterization and expression of the human A2a adenosine receptor gene". Journal of Neurochemistry. 66 (1): 362–8. doi:10.1046/j.1471-4159.1996.66010362.x. PMID 8522976. S2CID 12017755.
  • Le F, Townsend-Nicholson A, Baker E, Sutherland GR, Schofield PR (June 1996). "Characterization and chromosomal localization of the human A2a adenosine receptor gene: ADORA2A". Biochemical and Biophysical Research Communications. 223 (2): 461–7. doi:10.1006/bbrc.1996.0916. PMID 8670304.
  • Jiang Q, Van Rhee AM, Kim J, Yehle S, Wess J, Jacobson KA (September 1996). "Hydrophilic side chains in the third and seventh transmembrane helical domains of human A2A adenosine receptors are required for ligand recognition". Molecular Pharmacology. 50 (3): 512–21. PMC 3418326. PMID 8794889.
  • Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, et al. (August 1997). "Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor". Nature. 388 (6643): 674–8. Bibcode:1997Natur.388..674L. doi:10.1038/41771. PMID 9262401. S2CID 2662174.
  • Koshiba M, Rosin DL, Hayashi N, Linden J, Sitkovsky MV (March 1999). "Patterns of A2A extracellular adenosine receptor expression in different functional subsets of human peripheral T cells. Flow cytometry studies with anti-A2A receptor monoclonal antibodies". Molecular Pharmacology. 55 (3): 614–24. PMID 10051547.
  • Borgland SL, Castañón M, Spevak W, Parkinson FE (December 1998). "Effects of propentofylline on adenosine receptor activity in Chinese hamster ovary cell lines transfected with human A1, A2A, or A2B receptors and a luciferase reporter gene". Canadian Journal of Physiology and Pharmacology. 76 (12): 1132–8. doi:10.1139/cjpp-76-12-1132. PMID 10326835.

External links edit

adenosine, receptor, adenosine, receptor, also, known, adora2a, adenosine, receptor, also, denotes, human, gene, encoding, adora2aavailable, structurespdbortholog, search, pdbe, rcsblist, codes2ydo, 2ydv, 3eml, 3pwh, 3qak, 3rey, 3rfm, 3uza, 3uzc, 3vg9, 3vga, 4. The adenosine A2A receptor also known as ADORA2A is an adenosine receptor and also denotes the human gene encoding it 5 6 ADORA2AAvailable structuresPDBOrtholog search PDBe RCSBList of PDB id codes2YDO 2YDV 3EML 3PWH 3QAK 3REY 3RFM 3UZA 3UZC 3VG9 3VGA 4EIY 4UG2 4UHR 5IU4 5IU7 5IUA 5IU8 5IUBIdentifiersAliasesADORA2A adenosine A2a receptor A2aR ADORA2 RDC8External IDsOMIM 102776 MGI 99402 HomoloGene 20166 GeneCards ADORA2AGene location Human Chr Chromosome 22 human 1 Band22q11 23Start24 417 879 bp 1 End24 442 357 bp 1 Gene location Mouse Chr Chromosome 10 mouse 2 Band10 10 C1Start75 152 711 bp 2 End75 170 618 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed inputamencaudate nucleusnucleus accumbensbloodbone marrowright lobe of liverlymph nodebone marrow cellsappendixspleenTop expressed inolfactory tuberclesuperior frontal gyrusglobus pallidusnucleus accumbensentorhinal cortexthymusbloodextraocular musclebrown adipose tissuesomiteMore reference expression dataBioGPSMore reference expression dataGene ontologyMolecular functionG protein coupled adenosine receptor activity G protein coupled receptor activity signal transducer activity protein binding identical protein binding enzyme binding alpha actinin binding type 5 metabotropic glutamate receptor binding protein heterodimerization activityCellular componentintegral component of membrane membrane plasma membrane integral component of plasma membrane intermediate filament endomembrane system postsynaptic density axon dendrite axolemma asymmetric synapse presynaptic membrane neuronal cell body postsynaptic membrane presynaptic active zone integral component of postsynaptic membrane integral component of presynaptic membrane glutamatergic synapse Golgi membraneBiological processcAMP biosynthetic process G protein coupled adenosine receptor signaling pathway sensory perception adenylate cyclase modulating G protein coupled receptor signaling pathway cell cell signaling blood coagulation blood circulation cellular defense response central nervous system development phagocytosis inflammatory response signal transduction apoptotic process synaptic transmission dopaminergic response to amphetamine regulation of transcription DNA templated negative regulation of protein kinase activity protein kinase C activating G protein coupled receptor signaling pathway synaptic transmission cholinergic locomotory behavior negative regulation of cell population proliferation positive regulation of glutamate secretion positive regulation of acetylcholine secretion neurotransmission regulation of norepinephrine secretion response to caffeine positive regulation of synaptic transmission GABAergic synaptic transmission glutamatergic positive regulation of urine volume positive regulation of renal sodium excretion negative regulation of locomotion vasodilation eating behavior negative regulation of vascular permeability negative regulation of cysteine type endopeptidase activity involved in apoptotic process response to alkaloid negative regulation of neuron apoptotic process positive regulation of circadian sleep wake cycle sleep negative regulation of alpha beta T cell activation astrocyte activation neuron projection morphogenesis positive regulation of protein secretion negative regulation of inflammatory response regulation of mitochondrial membrane potential membrane depolarization regulation of calcium ion transport positive regulation of synaptic transmission glutamatergic excitatory postsynaptic potential inhibitory postsynaptic potential prepulse inhibition positive regulation of apoptotic signaling pathway G protein coupled receptor signaling pathway adenylate cyclase activating G protein coupled receptor signaling pathway positive regulation of long term synaptic potentiation regulation of synaptic vesicle exocytosisSources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez13511540EnsemblENSG00000128271ENSMUSG00000020178UniProtP29274Q60613RefSeq mRNA NM 000675NM 001278497NM 001278498NM 001278499NM 001278500NM 009630NM 001331095NM 001331096RefSeq protein NP 000666NP 001265426NP 001265427NP 001265428NP 001265429NP 001318024NP 001318025NP 033760Location UCSC Chr 22 24 42 24 44 MbChr 10 75 15 75 17 MbPubMed search 3 4 WikidataView Edit HumanView Edit Mouse Contents 1 Structure 1 1 Heteromers 2 Function 3 Physiological role 4 Ligands 4 1 Agonists 4 2 Antagonists 5 Interactions 6 In cancer immunotherapy 7 References 8 Further reading 9 External linksStructure editThis protein is a member of the G protein coupled receptor GPCR family which possess seven transmembrane alpha helices as well as an extracellular N terminus and an intracellular C terminus Furthermore located in the intracellular side close to the membrane is a small alpha helix often referred to as helix 8 H8 The crystallographic structure of the adenosine A2A receptor reveals a ligand binding pocket distinct from that of other structurally determined GPCRs i e the beta 2 adrenergic receptor and rhodopsin 7 Below this primary orthosteric binding pocket lies a secondary allosteric binding pocket The crystal structure of A2A bound to the antagonist ZM241385 PDB code 4EIY showed that a sodium ion can be found in this location of the protein thus giving it the name sodium ion binding pocket 8 Heteromers edit The actions of the A2A receptor are complicated by the fact that a variety of functional heteromers composed of a mixture of A2A subunits with subunits from other unrelated G protein coupled receptors have been found in the brain adding a further degree of complexity to the role of adenosine in modulation of neuronal activity Heteromers consisting of adenosine A1 A2A 9 10 dopamine D2 A2A 11 and D3 A2A 12 glutamate mGluR5 A2A 13 and cannabinoid CB1 A2A 14 have all been observed as well as CB1 A2A D2 heterotrimers 15 and the functional significance and endogenous role of these hybrid receptors is still only starting to be unravelled 16 17 18 The receptor s role in immunomodulation in the context of cancer has suggested that it is an important immune checkpoint molecule 19 Function editThe gene encodes a protein which is one of several receptor subtypes for adenosine The activity of the encoded protein a G protein coupled receptor family member is mediated by G proteins which activate adenylyl cyclase which induce synthesis of intracellular cAMP The A2A receptor binds with the Gs protein at the intracellular site of the receptor The Gs protein consists of three subunits Gsa Gsb and Gsg A crystal structure of the A2A receptor bound with the agonist NECA and a G protein mimic has been published in 2016 PDB code 5g53 20 The encoded protein the A2A receptor is abundant in basal ganglia vasculature T lymphocytes and platelets and it is a major target of caffeine which is a competitive antagonist of this protein 21 Physiological role editA1 and A2A receptors are believed to regulate myocardial oxygen demand and to increase coronary circulation by vasodilation In addition A2A receptor can suppress immune cells thereby protecting tissue from inflammation 22 The A2A receptor is also expressed in the brain where it has important roles in the regulation of glutamate and dopamine release making it a potential therapeutic target for the treatment of conditions such as insomnia pain depression and Parkinson s disease 23 24 25 26 27 28 29 Ligands editA number of selective A2A ligands have been developed 30 with several possible therapeutic applications 31 Older research on adenosine receptor function and non selective adenosine receptor antagonists such as aminophylline focused mainly on the role of adenosine receptors in the heart and led to several randomized controlled trials using these receptor antagonists to treat bradyasystolic arrest 32 33 34 35 36 37 38 However the development of more highly selective A2A ligands has led towards other applications with the most significant focus of research currently being the potential therapeutic role for A2A antagonists in the treatment of Parkinson s disease 39 40 41 42 Agonists edit ATL 146e 43 YT 146 2 octynyladenosine 44 CGS 21680 43 DPMA N6 2 3 5 dimethoxyphenyl 2 2 methylphenyl ethyl adenosine 43 Regadenoson UK 432 097 Limonene citation needed LUF 5833 45 46 Zeatin riboside NECA 5 N Ethylcarboxamido adenosine 43 binodenoson 43 Cannabidiol 47 Antagonists edit ATL 444 48 Istradefylline KW 6002 49 MSX 3 50 Preladenant SCH 420 814 51 SCH 58261 52 SCH 412 348 SCH 442 416 ST 1535 53 Caffeine VER 6623 VER 6947 VER 7835 Vipadenant BIIB 014 ZM 241 385Interactions editAdenosine A2A receptor has been shown to interact with Dopamine receptor D2 54 As a result Adenosine receptor A2A decreases activity in the Dopamine D2 receptors In cancer immunotherapy editThe adenosine A2A receptor has also been shown to play a regulatory role in the adaptive immune system In this role it functions similarly to programmed cell death 1 PD 1 and cytotoxic t lymphocyte associated protein 4 CTLA 4 receptors namely to suppress immunologic response and prevent associated tissue damage Extracellular adenosine gathers in response to cellular stress and breakdown through interactions with hypoxia induced HIF 1a 55 Abundant extracellular adenosine can then bind to the A2A receptor resulting in a Gs protein coupled response resulting in the accumulation of intracellular cAMP which functions primarily through protein kinase A to upregulate inhibitory cytokines such as transforming growth factor beta TGF b and inhibitory receptors i e PD 1 56 Interactions with FOXP3 stimulates CD4 T cells into regulatory Treg cells further inhibiting immune response 57 Blockade of A2AR has been attempted to various ends namely cancer immunotherapy While several A2A receptor antagonists have progressed to clinical trials for the treatment of Parkinson s disease A2AR blockade in the context of cancer is less characterized Mice treated with A2AR antagonists such as ZM241385 listed above or caffeine show significantly delayed tumor growth due to T cells resistant to inhibition 55 This is further highlighted by A2AR knockout mice who show increased tumor rejection Multiple checkpoint pathway inhibition has been shown to have an additive effect as shown by an increase in response with blockade to PD 1 and CTLA 4 via monoclonal antibodies as compared to the blockade of a single pathway The A2AR antogonist CPI 444 has shown this in combination with anti PD L1 or anti CTLA 4 treatment as it eliminated tumors in up to 90 of treated mice including restoration of immune responses in models that incompletely responded to anti PD L1 or anti CTLA 4 monotherapy Further tumor growth was fully inhibited when mice with cleared tumors were later rechallenged indicating that CPI 444 induced systemic antitumor immune memory 58 Researchers believe that A2AR blockade could increase the efficacy of such treatments even further 56 Finally inhibition of A2AR either through pharmacologic or genetic targeting in chimeric antigen receptor CAR T cells reveals promising results Blockade of A2AR in this setting has shown to increase tumor clearance through CAR T cell therapy in mice 59 Targeting of the A2A receptor is an attractive option for the treatment of a variety of cancers especially with the therapeutic success of the blockade of other checkpoint pathways such as PD 1 and CTLA 4 References edit a b c GRCh38 Ensembl release 89 ENSG00000128271 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000020178 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Libert F Parmentier M Lefort A Dinsart C Van Sande J Maenhaut C et al May 1989 Selective amplification and cloning of four new members of the G protein coupled receptor family Science 244 4904 569 72 Bibcode 1989Sci 244 569L doi 10 1126 science 2541503 PMID 2541503 Libert F Passage E Parmentier M Simons MJ Vassart G Mattei MG September 1991 Chromosomal mapping of A1 and A2 adenosine receptors VIP receptor and a new subtype of serotonin receptor Genomics 11 1 225 7 doi 10 1016 0888 7543 91 90125 X PMID 1662665 PDB 3EML Jaakola VP Griffith MT Hanson MA Cherezov V Chien EY Lane JR et al November 2008 The 2 6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist Science 322 5905 1211 7 Bibcode 2008Sci 322 1211J doi 10 1126 science 1164772 PMC 2586971 PMID 18832607 Liu W Chun E Thompson AA Chubukov P Xu F Katritch V et al July 2012 Structural basis for allosteric regulation of GPCRs by sodium ions Science 337 6091 232 6 Bibcode 2012Sci 337 232L doi 10 1126 science 1219218 PMC 3399762 PMID 22798613 Ciruela F Casado V Rodrigues RJ Lujan R Burgueno J Canals M et al February 2006 Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1 A2A receptor heteromers The Journal of Neuroscience 26 7 2080 7 doi 10 1523 JNEUROSCI 3574 05 2006 PMC 6674939 PMID 16481441 Ferre S Ciruela F Borycz J Solinas M Quarta D Antoniou K et al January 2008 Adenosine A1 A2A receptor heteromers new targets for caffeine in the brain Frontiers in Bioscience 13 13 2391 9 doi 10 2741 2852 PMID 17981720 Fuxe K Ferre S Canals M Torvinen M Terasmaa A Marcellino D et al 2005 Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function Journal of Molecular Neuroscience 26 2 3 209 20 doi 10 1385 JMN 26 2 3 209 PMID 16012194 S2CID 427930 Torvinen M Marcellino D Canals M Agnati LF Lluis C Franco R Fuxe K February 2005 Adenosine A2A receptor and dopamine D3 receptor interactions evidence of functional A2A D3 heteromeric complexes Molecular Pharmacology 67 2 400 7 doi 10 1124 mol 104 003376 PMID 15539641 S2CID 24475855 Zezula J Freissmuth M March 2008 The A 2A adenosine receptor a GPCR with unique features British Journal of Pharmacology 153 Suppl 1 S1 S184 90 doi 10 1038 sj bjp 0707674 PMC 2268059 PMID 18246094 Ferre S Goldberg SR Lluis C Franco R 2009 Looking for the role of cannabinoid receptor heteromers in striatal function Neuropharmacology 56 Suppl 1 226 34 doi 10 1016 j neuropharm 2008 06 076 PMC 2635338 PMID 18691604 Marcellino D Carriba P Filip M Borgkvist A Frankowska M Bellido I et al April 2008 Antagonistic cannabinoid CB1 dopamine D2 receptor interactions in striatal CB1 D2 heteromers A combined neurochemical and behavioral analysis Neuropharmacology 54 5 815 23 doi 10 1016 j neuropharm 2007 12 011 PMID 18262573 S2CID 195685369 Ferre S Ciruela F Quiroz C Lujan R Popoli P Cunha RA et al November 2007 Adenosine receptor heteromers and their integrative role in striatal function TheScientificWorldJournal 7 74 85 doi 10 1100 tsw 2007 211 PMC 5901194 PMID 17982579 Wardas J May 2008 Potential role of adenosine A2A receptors in the treatment of schizophrenia Frontiers in Bioscience 13 13 4071 96 doi 10 2741 2995 PMID 18508501 Simola N Morelli M Pinna A 2008 Adenosine A2A receptor antagonists and Parkinson s disease state of the art and future directions Current Pharmaceutical Design 14 15 1475 89 doi 10 2174 138161208784480072 PMID 18537671 Cekic C Linden J December 2014 Adenosine A2A receptors intrinsically regulate CD8 T cells in the tumor microenvironment Cancer Research 74 24 7239 49 doi 10 1158 0008 5472 CAN 13 3581 PMC 4459794 PMID 25341542 Carpenter B Nehme R Warne T Leslie AG Tate CG August 2016 Structure of the adenosine A 2A receptor bound to an engineered G protein Nature 536 7614 104 7 Bibcode 2016Natur 536 104C doi 10 1038 nature18966 PMC 4979997 PMID 27462812 Entrez Gene ADORA2A adenosine A2A receptor Ohta A Sitkovsky M 2001 Role of G protein coupled adenosine receptors in downregulation of inflammation and protection from tissue damage Nature 414 6866 916 20 Bibcode 2001Natur 414 916O doi 10 1038 414916a PMID 11780065 S2CID 4386419 Hack SP Christie MJ 2003 Adaptations in adenosine signaling in drug dependence therapeutic implications Critical Reviews in Neurobiology 15 3 4 235 74 doi 10 1615 CritRevNeurobiol v15 i34 30 PMID 15248812 Morelli M Di Paolo T Wardas J Calon F Xiao D Schwarzschild MA December 2007 Role of adenosine A2A receptors in parkinsonian motor impairment and l DOPA induced motor complications Progress in Neurobiology 83 5 293 309 doi 10 1016 j pneurobio 2007 07 001 PMID 17826884 S2CID 27478825 Schiffmann SN Fisone G Moresco R Cunha RA Ferre S December 2007 Adenosine A2A receptors and basal ganglia physiology Progress in Neurobiology 83 5 277 92 doi 10 1016 j pneurobio 2007 05 001 PMC 2148496 PMID 17646043 Ferre S Diamond I Goldberg SR Yao L Hourani SM Huang ZL et al December 2007 Adenosine A2A receptors in ventral striatum hypothalamus and nociceptive circuitry implications for drug addiction sleep and pain Progress in Neurobiology 83 5 332 47 doi 10 1016 j pneurobio 2007 04 002 PMC 2141681 PMID 17532111 Brown RM Short JL November 2008 Adenosine A 2A receptors and their role in drug addiction The Journal of Pharmacy and Pharmacology 60 11 1409 30 doi 10 1211 jpp 60 11 0001 PMID 18957161 Cunha RA Ferre S Vaugeois JM Chen JF 2008 Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders Current Pharmaceutical Design 14 15 1512 24 doi 10 2174 138161208784480090 PMC 2423946 PMID 18537674 Mingote S Font L Farrar AM Vontell R Worden LT Stopper CM et al September 2008 Nucleus accumbens adenosine A2A receptors regulate exertion of effort by acting on the ventral striatopallidal pathway The Journal of Neuroscience 28 36 9037 46 doi 10 1523 JNEUROSCI 1525 08 2008 PMC 2806668 PMID 18768698 Ongini E Monopoli A Cacciari B Baraldi PG 2001 Selective adenosine A2A receptor antagonists Farmaco 56 1 2 87 90 doi 10 1016 S0014 827X 01 01024 2 PMID 11347973 Baraldi PG Cacciari B Romagnoli R Spalluto G Monopoli A Ongini E et al January 2002 7 Substituted 5 amino 2 2 furyl pyrazolo 4 3 e 1 2 4 triazolo 1 5 c pyrimidines as A2A adenosine receptor antagonists a study on the importance of modifications at the side chain on the activity and solubility Journal of Medicinal Chemistry 45 1 115 26 doi 10 1021 jm010924c PMID 11754583 Baraldi PG Fruttarolo F Tabrizi MA Preti D Romagnoli R El Kashef H et al March 2003 Design synthesis and biological evaluation of C9 and C2 substituted pyrazolo 4 3 e 1 2 4 triazolo 1 5 c pyrimidines as new A2A and A3 adenosine receptors antagonists Journal of Medicinal Chemistry 46 7 1229 41 doi 10 1021 jm021023m PMID 12646033 Weiss SM Benwell K Cliffe IA Gillespie RJ Knight AR Lerpiniere J et al December 2003 Discovery of nonxanthine adenosine A2A receptor antagonists for the treatment of Parkinson s disease Neurology 61 11 Suppl 6 S101 6 doi 10 1212 01 WNL 0000095581 20961 7D PMID 14663021 S2CID 12327094 Cristalli G Lambertucci C Taffi S Vittori S Volpini R 2003 Medicinal chemistry of adenosine A2A receptor agonists Current Topics in Medicinal Chemistry 3 4 387 401 doi 10 2174 1568026033392282 PMID 12570757 Archived from the original on 2009 05 04 Retrieved 2018 10 02 Cacciari B Pastorin G Spalluto G 2003 Medicinal chemistry of A2A adenosine receptor antagonists Current Topics in Medicinal Chemistry 3 4 403 11 doi 10 2174 1568026033392183 PMID 12570758 Archived from the original on 2009 05 04 Retrieved 2018 10 02 Cristalli G Cacciari B Dal Ben D Lambertucci C Moro S Spalluto G Volpini R March 2007 Highlights on the development of A 2A adenosine receptor agonists and antagonists ChemMedChem 2 3 260 81 doi 10 1002 cmdc 200600193 PMID 17177231 S2CID 6973388 Diniz C Borges F Santana L Uriarte E Oliveira JM Goncalves J Fresco P 2008 Ligands and therapeutic perspectives of adenosine A 2A receptors Current Pharmaceutical Design 14 17 1698 722 doi 10 2174 138161208784746842 PMID 18673194 Archived from the original on 2009 05 04 Retrieved 2018 10 02 Cristalli G Lambertucci C Marucci G Volpini R Dal Ben D 2008 A2A adenosine receptor and its modulators overview on a druggable GPCR and on structure activity relationship analysis and binding requirements of agonists and antagonists Current Pharmaceutical Design 14 15 1525 52 doi 10 2174 138161208784480081 PMID 18537675 Gillespie RJ Adams DR Bebbington D Benwell K Cliffe IA Dawson CE et al May 2008 Antagonists of the human adenosine A2A receptor Part 1 Discovery and synthesis of thieno 3 2 d pyrimidine 4 methanone derivatives Bioorganic amp Medicinal Chemistry Letters 18 9 2916 9 doi 10 1016 j bmcl 2008 03 075 PMID 18406614 Gillespie RJ Cliffe IA Dawson CE Dourish CT Gaur S Giles PR et al May 2008 Antagonists of the human adenosine A2A receptor Part 2 Design and synthesis of 4 arylthieno 3 2 d pyrimidine derivatives Bioorganic amp Medicinal Chemistry Letters 18 9 2920 3 doi 10 1016 j bmcl 2008 03 076 PMID 18407496 Gillespie RJ Cliffe IA Dawson CE Dourish CT Gaur S Jordan AM et al May 2008 Antagonists of the human adenosine A2A receptor Part 3 Design and synthesis of pyrazolo 3 4 d pyrimidines pyrrolo 2 3 d pyrimidines and 6 arylpurines Bioorganic amp Medicinal Chemistry Letters 18 9 2924 9 doi 10 1016 j bmcl 2008 03 072 PMID 18411049 Sullivan GW November 2003 Adenosine A2A receptor agonists as anti inflammatory agents Current Opinion in Investigational Drugs 4 11 1313 9 PMID 14758770 Lappas CM Sullivan GW Linden J July 2005 Adenosine A2A agonists in development for the treatment of inflammation Expert Opinion on Investigational Drugs 14 7 797 806 doi 10 1517 13543784 14 7 797 PMID 16022569 S2CID 19306651 El Yacoubi M Costentin J Vaugeois JM December 2003 Adenosine A2A receptors and depression Neurology 61 11 Suppl 6 S82 7 doi 10 1212 01 WNL 0000095220 87550 F6 PMID 14663017 S2CID 36219448 Kaster MP Rosa AO Rosso MM Goulart EC Santos AR Rodrigues AL January 2004 Adenosine administration produces an antidepressant like effect in mice evidence for the involvement of A1 and A2A receptors Neuroscience Letters 355 1 2 21 4 doi 10 1016 j neulet 2003 10 040 PMID 14729225 S2CID 29253187 Takahashi RN Pamplona FA Prediger RD January 2008 Adenosine receptor antagonists for cognitive dysfunction a review of animal studies Frontiers in Bioscience 13 13 2614 32 doi 10 2741 2870 PMID 17981738 Lobato KR Binfare RW Budni J Rosa AO Santos AR Rodrigues AL May 2008 Involvement of the adenosine A1 and A2A receptors in the antidepressant like effect of zinc in the forced swimming test Progress in Neuro Psychopharmacology amp Biological Psychiatry 32 4 994 9 doi 10 1016 j pnpbp 2008 01 012 PMID 18289757 S2CID 36068948 Burton JH Mass M Menegazzi JJ Yealy DM August 1997 Aminophylline as an adjunct to standard advanced cardiac life support in prolonged cardiac arrest Annals of Emergency Medicine 30 2 154 8 doi 10 1016 S0196 0644 97 70134 3 PMID 9250637 Khoury MY Moukarbel GV Obeid MY Alam SE May 2001 Effect of aminophylline on complete atrioventricular block with ventricular asystole following blunt chest trauma Injury 32 4 335 8 doi 10 1016 S0020 1383 00 00222 9 PMID 11325371 Mader TJ Bertolet B Ornato JP Gutterman JM October 2000 Aminophylline in the treatment of atropine resistant bradyasystole Resuscitation 47 2 105 12 doi 10 1016 S0300 9572 00 00234 3 PMID 11008148 Mader TJ Smithline HA Durkin L Scriver G March 2003 A randomized controlled trial of intravenous aminophylline for atropine resistant out of hospital asystolic cardiac arrest Academic Emergency Medicine 10 3 192 7 doi 10 1197 aemj 10 3 192 PMID 12615581 Mader TJ Gibson P August 1997 Adenosine receptor antagonism in refractory asystolic cardiac arrest results of a human pilot study Resuscitation 35 1 3 7 doi 10 1016 S0300 9572 97 01097 6 PMID 9259053 Perouansky M Shamir M Hershkowitz E Donchin Y July 1998 Successful resuscitation using aminophylline in refractory cardiac arrest with asystole Resuscitation 38 1 39 41 doi 10 1016 S0300 9572 98 00079 3 PMID 9783508 Viskin S Belhassen B Roth A Reicher M Averbuch M Sheps D et al February 1993 Aminophylline for bradyasystolic cardiac arrest refractory to atropine and epinephrine Annals of Internal Medicine 118 4 279 81 doi 10 7326 0003 4819 118 4 199302150 00006 PMID 8420445 S2CID 44883687 Jenner P December 2003 A2A antagonists as novel non dopaminergic therapy for motor dysfunction in PD Neurology 61 11 Suppl 6 S32 8 doi 10 1212 01 WNL 0000095209 59347 79 PMID 14663007 S2CID 28897242 Mori A Shindou T December 2003 Modulation of GABAergic transmission in the striatopallidal system by adenosine A2A receptors a potential mechanism for the antiparkinsonian effects of A2A antagonists Neurology 61 11 Suppl 6 S44 8 doi 10 1212 01 WNL 0000095211 71092 A0 PMID 14663009 S2CID 26827799 Pinna A Wardas J Simola N Morelli M November 2005 New therapies for the treatment of Parkinson s disease adenosine A2A receptor antagonists Life Sciences 77 26 3259 67 doi 10 1016 j lfs 2005 04 029 PMID 15979104 Kelsey JE Langelier NA Oriel BS Reedy C January 2009 The effects of systemic intrastriatal and intrapallidal injections of caffeine and systemic injections of A2A and A1 antagonists on forepaw stepping in the unilateral 6 OHDA lesioned rat Psychopharmacology 201 4 529 39 doi 10 1007 s00213 008 1319 0 PMID 18791705 S2CID 24159282 a b c d e Jacobson KA Gao ZG March 2006 Adenosine receptors as therapeutic targets Nature Reviews Drug Discovery 5 3 247 64 doi 10 1038 nrd1983 PMC 3463109 PMID 16518376 table 1 lists affinities Yoneyama F Yamada H Satoh K Taira N March 1992 Vasodepressor mechanisms of 2 1 octynyl adenosine YT 146 a selective adenosine A2 receptor agonist involve the opening of glibenclamide sensitive K channels European Journal of Pharmacology 213 2 199 204 doi 10 1016 0014 2999 92 90682 T PMID 1521559 Amelia T Van Veldhoven JP Falsini M Liu R Heitman LH Van Westen GJ Segala E Verdon G Cheng RK Cooke RM Van Der Es D Ijzerman AP 2021 Crystal Structure and Subsequent Ligand Design of a Nonriboside Partial Agonist Bound to the Adenosine A2A Receptor Journal of Medicinal Chemistry 64 7 3827 3842 doi 10 1021 acs jmedchem 0c01856 PMC 8154574 PMID 33764785 Bolcato G Pavan M Bassani D Sturlese M Moro S 2022 Ribose and Non Ribose A2A Adenosine Receptor Agonists Do They Share the Same Receptor Recognition Mechanism Biomedicines 10 2 515 doi 10 3390 biomedicines10020515 PMC 8962312 PMID 35203724 Burstein S 7 February 2015 Cannabidiol CBD and its analogs a review of their effects on inflammation Bioorganic amp Medicinal Chemistry 23 7 1377 1385 doi 10 1016 j bmc 2015 01 059 PMID 25703248 Doyle SE Breslin FJ Rieger JM Beauglehole A Lynch WJ August 2012 Time and sex dependent effects of an adenosine A2A A1 receptor antagonist on motivation to self administer cocaine in rats Pharmacology Biochemistry and Behavior 102 2 257 63 doi 10 1016 j pbb 2012 05 001 PMC 3383440 PMID 22579716 Kase H Aoyama S Ichimura M Ikeda K Ishii A Kanda T et al December 2003 Progress in pursuit of therapeutic A2A antagonists the adenosine A2A receptor selective antagonist KW6002 research and development toward a novel nondopaminergic therapy for Parkinson s disease Neurology 61 11 Suppl 6 S97 100 doi 10 1212 01 WNL 0000095219 22086 31 PMID 14663020 S2CID 72084113 Mott AM Nunes EJ Collins LE Port RG Sink KS Hockemeyer J et al May 2009 The adenosine A2A antagonist MSX 3 reverses the effects of the dopamine antagonist haloperidol on effort related decision making in a T maze cost benefit procedure Psychopharmacology 204 1 103 12 doi 10 1007 s00213 008 1441 z PMC 2875244 PMID 19132351 Hodgson RA Bertorelli R Varty GB Lachowicz JE Forlani A Fredduzzi S et al July 2009 Characterization of the potent and highly selective A2A receptor antagonists preladenant and SCH 412348 7 2 4 2 4 difluorophenyl 1 piperazinyl ethyl 2 2 furanyl 7H pyrazolo 4 3 e 1 2 4 triazolo 1 5 c pyrimidin 5 amine in rodent models of movement disorders and depression The Journal of Pharmacology and Experimental Therapeutics 330 1 294 303 doi 10 1124 jpet 108 149617 PMID 19332567 S2CID 22033475 Pinna A Fenu S Morelli M March 2001 Motor stimulant effects of the adenosine A2A receptor antagonist SCH 58261 do not develop tolerance after repeated treatments in 6 hydroxydopamine lesioned rats Synapse 39 3 233 8 doi 10 1002 1098 2396 20010301 39 3 lt 233 AID SYN1004 gt 3 0 CO 2 K PMID 11284438 S2CID 23370571 Rose S Jackson MJ Smith LA Stockwell K Johnson L Carminati P Jenner P September 2006 The novel adenosine A2a receptor antagonist ST1535 potentiates the effects of a threshold dose of L DOPA in MPTP treated common marmosets European Journal of Pharmacology 546 1 3 82 7 doi 10 1016 j ejphar 2006 07 017 PMID 16925991 Kamiya T Saitoh O Yoshioka K Nakata H June 2003 Oligomerization of adenosine A2A and dopamine D2 receptors in living cells Biochemical and Biophysical Research Communications 306 2 544 9 doi 10 1016 S0006 291X 03 00991 4 PMID 12804599 a b Sitkovsky MV Kjaergaard J Lukashev D Ohta A October 2008 Hypoxia adenosinergic immunosuppression tumor protection by T regulatory cells and cancerous tissue hypoxia Clinical Cancer Research 14 19 5947 52 doi 10 1158 1078 0432 CCR 08 0229 PMID 18829471 a b Leone RD Lo YC Powell JD April 2015 A2aR antagonists Next generation checkpoint blockade for cancer immunotherapy Computational and Structural Biotechnology Journal 13 265 72 doi 10 1016 j csbj 2015 03 008 PMC 4415113 PMID 25941561 Pardoll DM March 2012 The blockade of immune checkpoints in cancer immunotherapy Nature Reviews Cancer 12 4 252 64 doi 10 1038 nrc3239 PMC 4856023 PMID 22437870 Willingham SB October 2018 A2AR Antagonism with CPI 444 Induces Antitumor Responses and Augments Efficacy to Anti PD L 1 and Anti CTLA 4 in Preclinical Models Cancer Immunol Res 6 10 1136 1149 doi 10 1158 2326 6066 CIR 18 0056 PMID 30131376 Beavis PA Henderson MA Giuffrida L Mills JK Sek K Cross RS et al March 2017 Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy The Journal of Clinical Investigation 127 3 929 941 doi 10 1172 JCI89455 PMC 5330718 PMID 28165340 Further reading editRusso EB August 2011 Taming THC potential cannabis synergy and phytocannabinoid terpenoid entourage effects British Journal of Pharmacology 163 7 1344 64 doi 10 1111 j 1476 5381 2011 01238 x PMC 3165946 PMID 21749363 Ongini E Adami M Ferri C Bertorelli R October 1997 Adenosine A2A receptors and neuroprotection Annals of the New York Academy of Sciences 825 1 Neuroprotecti 30 48 Bibcode 1997NYASA 825 30O doi 10 1111 j 1749 6632 1997 tb48412 x PMID 9369973 S2CID 20814890 Furlong TJ Pierce KD Selbie LA Shine J September 1992 Molecular characterization of a human brain adenosine A2 receptor Brain Research Molecular Brain Research 15 1 2 62 6 doi 10 1016 0169 328X 92 90152 2 PMID 1331670 Makujina SR Sabouni MH Bhatia S Douglas FL Mustafa SJ October 1992 Vasodilatory effects of adenosine A2 receptor agonists CGS 21680 and CGS 22492 in human vasculature European Journal of Pharmacology 221 2 3 243 7 doi 10 1016 0014 2999 92 90708 C PMID 1426003 Karlsten R Gordh T Post C June 1992 Local antinociceptive and hyperalgesic effects in the formalin test after peripheral administration of adenosine analogues in mice Pharmacology amp Toxicology 70 6 Pt 1 434 8 doi 10 1111 j 1600 0773 1992 tb00503 x PMID 1438021 Libert F Passage E Parmentier M Simons MJ Vassart G Mattei MG September 1991 Chromosomal mapping of A1 and A2 adenosine receptors VIP receptor and a new subtype of serotonin receptor Genomics 11 1 225 7 doi 10 1016 0888 7543 91 90125 X PMID 1662665 Martinez Mir MI Probst A Palacios JM 1992 Adenosine A2 receptors selective localization in the human basal ganglia and alterations with disease Neuroscience 42 3 697 706 doi 10 1016 0306 4522 91 90038 P PMID 1835521 S2CID 23693441 Libert F Parmentier M Lefort A Dinsart C Van Sande J Maenhaut C et al May 1989 Selective amplification and cloning of four new members of the G protein coupled receptor family Science 244 4904 569 72 Bibcode 1989Sci 244 569L doi 10 1126 science 2541503 PMID 2541503 Kim J Wess J van Rhee AM Schoneberg T Jacobson KA June 1995 Site directed mutagenesis identifies residues involved in ligand recognition in the human A2a adenosine receptor The Journal of Biological Chemistry 270 23 13987 97 doi 10 1074 jbc 270 23 13987 PMC 3427751 PMID 7775460 Szondy Z December 1994 Adenosine stimulates DNA fragmentation in human thymocytes by Ca 2 mediated mechanisms The Biochemical Journal 304 304 Pt 3 3 877 85 doi 10 1042 bj3040877 PMC 1137415 PMID 7818494 MacCollin M Peterfreund R MacDonald M Fink JS Gusella J March 1994 Mapping of a human A2a adenosine receptor ADORA2 to chromosome 22 Genomics 20 2 332 3 doi 10 1006 geno 1994 1181 PMID 8020991 Nonaka H Ichimura M Takeda M Nonaka Y Shimada J Suzuki F et al May 1994 KF17837 E 8 3 4 dimethoxystyryl 1 3 dipropyl 7 methylxanthine a potent and selective adenosine A2 receptor antagonist European Journal of Pharmacology 267 3 335 41 doi 10 1016 0922 4106 94 90159 7 PMID 8088373 Iwamoto T Umemura S Toya Y Uchibori T Kogi K Takagi N Ishii M March 1994 Identification of adenosine A2 receptor cAMP system in human aortic endothelial cells Biochemical and Biophysical Research Communications 199 2 905 10 doi 10 1006 bbrc 1994 1314 PMID 8135838 Salmon JE Brogle N Brownlie C Edberg JC Kimberly RP Chen BX Erlanger BF September 1993 Human mononuclear phagocytes express adenosine A1 receptors A novel mechanism for differential regulation of Fc gamma receptor function Journal of Immunology 151 5 2775 85 doi 10 4049 jimmunol 151 5 2775 PMID 8360491 S2CID 30807862 Peterfreund RA MacCollin M Gusella J Fink JS January 1996 Characterization and expression of the human A2a adenosine receptor gene Journal of Neurochemistry 66 1 362 8 doi 10 1046 j 1471 4159 1996 66010362 x PMID 8522976 S2CID 12017755 Le F Townsend Nicholson A Baker E Sutherland GR Schofield PR June 1996 Characterization and chromosomal localization of the human A2a adenosine receptor gene ADORA2A Biochemical and Biophysical Research Communications 223 2 461 7 doi 10 1006 bbrc 1996 0916 PMID 8670304 Jiang Q Van Rhee AM Kim J Yehle S Wess J Jacobson KA September 1996 Hydrophilic side chains in the third and seventh transmembrane helical domains of human A2A adenosine receptors are required for ligand recognition Molecular Pharmacology 50 3 512 21 PMC 3418326 PMID 8794889 Ledent C Vaugeois JM Schiffmann SN Pedrazzini T El Yacoubi M Vanderhaeghen JJ et al August 1997 Aggressiveness hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor Nature 388 6643 674 8 Bibcode 1997Natur 388 674L doi 10 1038 41771 PMID 9262401 S2CID 2662174 Koshiba M Rosin DL Hayashi N Linden J Sitkovsky MV March 1999 Patterns of A2A extracellular adenosine receptor expression in different functional subsets of human peripheral T cells Flow cytometry studies with anti A2A receptor monoclonal antibodies Molecular Pharmacology 55 3 614 24 PMID 10051547 Borgland SL Castanon M Spevak W Parkinson FE December 1998 Effects of propentofylline on adenosine receptor activity in Chinese hamster ovary cell lines transfected with human A1 A2A or A2B receptors and a luciferase reporter gene Canadian Journal of Physiology and Pharmacology 76 12 1132 8 doi 10 1139 cjpp 76 12 1132 PMID 10326835 External links editHuman ADORA2A genome location and ADORA2A gene details page in the UCSC Genome Browser Retrieved from https en wikipedia org w index php title Adenosine A2A receptor amp oldid 1212467913, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.