fbpx
Wikipedia

Heteromer

A heteromer is something that consists of different parts; the antonym of homomeric. Examples are:

Biology

Pharmacology

  • Ligand-gated ion channels such as the nicotinic acetylcholine receptor and GABAA receptor are composed of five subunits arranged around a central pore that opens to allow ions to pass through. There are many different subunits available that can come together in a wide variety of combinations to form different subtypes of the ion channel.[3][4][5] Sometimes the channel can be made from only one type of subunit, such as the α7 nicotinic receptor, which is made up from five α7 subunits, and so is a homomer rather than a heteromer, but more commonly several different types of subunit will come together to form a heteromeric complex (e.g., the α4β2 nicotinic receptor, which is made up from two α4 subunits and three β2 subunits). Because the different ion channel subtypes are expressed to different extents in different tissues, this allows selective modulation of ion transport and means that a single neurotransmitter can produce varying effects depending on where in the body it is released.[6][7][8]
  • G protein-coupled receptors are composed of seven membrane-spanning alpha-helical segments that are usually linked together into a single folded chain to form the receptor complex. However, research has demonstrated that a number of GPCRs are also capable of forming heteromers from a combination of two or more individual GPCR subunits under some circumstances, especially where several different GPCRs are densely expressed in the same neuron. Such heteromers may be between receptors from the same family (e.g., adenosine A1/A2A heteromers[9][10] and dopamine D1/D2[11] and D1/D3 heteromers[12]) or between entirely unrelated receptors such as CB1/A2A,[13] glutamate mGluR5 / adenosine A2A heteromers,[14] cannabinoid CB1 / dopamine D2 heteromers,[15] and even CB1/A2A/D2 heterotrimers where three different receptors have come together to form a heteromer.[16][17] The ligand binding properties and intracellular trafficking pathways of GPCR heteromers usually show elements from both parent receptors, but may also produce quite unexpected pharmacological effects, making such heteromers an important focus of current research.[18][19][20][21][22]

See also

References

  1. ^ Medical dictionary
  2. ^ Merriam-Webster Dictionary
  3. ^ Gotti C, Moretti M, Gaimarri A, Zanardi A, Clementi F, Zoli M (October 2007). "Heterogeneity and complexity of native brain nicotinic receptors". Biochemical Pharmacology. 74 (8): 1102–11. doi:10.1016/j.bcp.2007.05.023. PMID 17597586.
  4. ^ Millar NS, Gotti C (January 2009). "Diversity of vertebrate nicotinic acetylcholine receptors". Neuropharmacology. 56 (1): 237–46. doi:10.1016/j.neuropharm.2008.07.041. PMID 18723036. S2CID 27181755.
  5. ^ Collins AC, Salminen O, Marks MJ, Whiteaker P, Grady SR (2009). "The road to discovery of neuronal nicotinic cholinergic receptor subtypes". Nicotine Psychopharmacology. Handbook of Experimental Pharmacology. Vol. 192. pp. 85–112. doi:10.1007/978-3-540-69248-5_4. ISBN 978-3-540-69246-1. PMC 8759235. PMID 19184647.
  6. ^ Graham AJ, Martin-Ruiz CM, Teaktong T, Ray MA, Court JA (August 2002). "Human brain nicotinic receptors, their distribution and participation in neuropsychiatric disorders". Current Drug Targets. CNS and Neurological Disorders. 1 (4): 387–97. doi:10.2174/1568007023339283. PMID 12769611.
  7. ^ Nutt D (April 2006). "GABAA receptors: subtypes, regional distribution, and function". Journal of Clinical Sleep Medicine. 2 (2): S7–11. doi:10.5664/jcsm.26525. PMID 17557501.
  8. ^ Heldt SA, Ressler KJ (December 2007). "Forebrain and midbrain distribution of major benzodiazepine–sensitive GABAA receptor subunits in the adult C57 mouse as assessed with in situ hybridization". Neuroscience. 150 (2): 370–85. doi:10.1016/j.neuroscience.2007.09.008. PMC 2292345. PMID 17950542.
  9. ^ Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R (February 2006). "Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers". Journal of Neuroscience. 26 (7): 2080–7. doi:10.1523/JNEUROSCI.3574-05.2006. PMC 6674939. PMID 16481441.
  10. ^ Ferre S, Ciruela F, Borycz J, Solinas M, Quarta D, Antoniou K, Quiroz C, Justinova Z, Lluis C, Franco R, Goldberg SR (2008). "Adenosine A1-A2A receptor heteromers: new targets for caffeine in the brain". Frontiers in Bioscience. 13 (13): 2391–9. doi:10.2741/2852. PMID 17981720.
  11. ^ Rashid AJ, So CH, Kong MM, Furtak T, El-Ghundi M, Cheng R, O'Dowd BF, George SR (January 2007). "D1–D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum". Proceedings of the National Academy of Sciences of the United States of America. 104 (2): 654–9. Bibcode:2007PNAS..104..654R. doi:10.1073/pnas.0604049104. PMC 1766439. PMID 17194762.
  12. ^ Marcellino D, Ferré S, Casadó V, Cortés A, Le Foll B, Mazzola C, Drago F, Saur O, Stark H, Soriano A, Barnes C, Goldberg SR, Lluis C, Fuxe K, Franco R (September 2008). "Identification of Dopamine D1–D3 Receptor Heteromers: INDICATIONS FOR A ROLE OF SYNERGISTIC D1–D3 RECEPTOR INTERACTIONS IN THE STRIATUM". The Journal of Biological Chemistry. 283 (38): 26016–25. doi:10.1074/jbc.M710349200. PMC 2533781. PMID 18644790.
  13. ^ Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Müller C, Woods AS, Hope BT, Ciruela F, Casadó V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferré S (2007). "Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids". Neuropsychopharmacology. 32 (11): 2249–59. doi:10.1038/sj.npp.1301375. PMID 17356572.
  14. ^ Zezula J, Freissmuth M (March 2008). "The A2A-adenosine receptor: a GPCR with unique features?". British Journal of Pharmacology. 153 Suppl 1 (S1): S184–90. doi:10.1038/sj.bjp.0707674. PMC 2268059. PMID 18246094.
  15. ^ Marcellino D, Carriba P, Filip M, Borgkvist A, Frankowska M, Bellido I, Tanganelli S, Müller CE, Fisone G, Lluis C, Agnati LF, Franco R, Fuxe K (April 2008). "Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis". Neuropharmacology. 54 (5): 815–23. doi:10.1016/j.neuropharm.2007.12.011. PMID 18262573. S2CID 195685369.
  16. ^ Carriba P, Navarro G, Ciruela F, Ferré S, Casadó V, Agnati L, Cortés A, Mallol J, Fuxe K, Canela EI, Lluis C, Franco R (2008). "Detection of heteromerization of more than two proteins by sequential BRET-FRET". Nature Methods. 5 (8): 727–33. doi:10.1038/nmeth.1229. PMID 18587404. S2CID 5175118.
  17. ^ Ferré S, Goldberg SR, Lluis C, Franco R (2009). "Looking for the role of cannabinoid receptor heteromers in striatal function". Neuropharmacology. 56 Suppl 1 (Suppl 1): 226–34. doi:10.1016/j.neuropharm.2008.06.076. PMC 2635338. PMID 18691604.
  18. ^ Franco R, Casadó V, Cortés A, Mallol J, Ciruela F, Ferré S, Lluis C, Canela EI (March 2008). "G-protein-coupled receptor heteromers: function and ligand pharmacology". British Journal of Pharmacology. 153 Suppl 1 (S1): S90–8. doi:10.1038/sj.bjp.0707571. PMC 2268068. PMID 18037920.
  19. ^ Fuxe K, Marcellino D, Rivera A, Diaz-Cabiale Z, Filip M, Gago B, Roberts DC, Langel U, Genedani S, Ferraro L, de la Calle A, Narvaez J, Tanganelli S, Woods A, Agnati LF (August 2008). "Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology". Brain Research Reviews. 58 (2): 415–52. doi:10.1016/j.brainresrev.2007.11.007. PMID 18222544. S2CID 206344737.
  20. ^ Franco R, Casadó V, Cortés A, Pérez-Capote K, Mallol J, Canela E, Ferré S, Lluis C (August 2008). "Novel pharmacological targets based on receptor heteromers". Brain Research Reviews. 58 (2): 475–82. doi:10.1016/j.brainresrev.2008.06.002. PMID 18620000. S2CID 41153163.
  21. ^ Fuxe K, Marcellino D, Woods AS, Giuseppina L, Antonelli T, Ferraro L, Tanganelli S, Agnati LF (January 2009). "Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia". Journal of Neural Transmission. 116 (8): 923–39. doi:10.1007/s00702-008-0174-9. PMC 2953764. PMID 19156349.
  22. ^ Ferré S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T, Fuxe K, George SR, Javitch JA, Lohse MJ, Mackie K, Milligan G, Pfleger KD, Pin JP, Volkow ND, Waldhoer M, Woods AS, Franco R (March 2009). "Building a new conceptual framework for receptor heteromers". Nature Chemical Biology. 5 (3): 131–4. doi:10.1038/nchembio0309-131. PMC 2681085. PMID 19219011.

heteromer, heteromer, something, that, consists, different, parts, antonym, homomeric, examples, contents, biology, pharmacology, also, referencesbiology, editspinal, neurons, that, pass, over, opposite, side, spinal, cord, protein, complex, that, contains, mo. A heteromer is something that consists of different parts the antonym of homomeric Examples are Contents 1 Biology 2 Pharmacology 3 See also 4 ReferencesBiology EditSpinal neurons that pass over to the opposite side of the spinal cord 1 A protein complex that contains two or more different polypeptides 2 Pharmacology EditLigand gated ion channels such as the nicotinic acetylcholine receptor and GABAA receptor are composed of five subunits arranged around a central pore that opens to allow ions to pass through There are many different subunits available that can come together in a wide variety of combinations to form different subtypes of the ion channel 3 4 5 Sometimes the channel can be made from only one type of subunit such as the a7 nicotinic receptor which is made up from five a7 subunits and so is a homomer rather than a heteromer but more commonly several different types of subunit will come together to form a heteromeric complex e g the a4b2 nicotinic receptor which is made up from two a4 subunits and three b2 subunits Because the different ion channel subtypes are expressed to different extents in different tissues this allows selective modulation of ion transport and means that a single neurotransmitter can produce varying effects depending on where in the body it is released 6 7 8 G protein coupled receptors are composed of seven membrane spanning alpha helical segments that are usually linked together into a single folded chain to form the receptor complex However research has demonstrated that a number of GPCRs are also capable of forming heteromers from a combination of two or more individual GPCR subunits under some circumstances especially where several different GPCRs are densely expressed in the same neuron Such heteromers may be between receptors from the same family e g adenosine A1 A2A heteromers 9 10 and dopamine D1 D2 11 and D1 D3 heteromers 12 or between entirely unrelated receptors such as CB1 A2A 13 glutamate mGluR5 adenosine A2A heteromers 14 cannabinoid CB1 dopamine D2 heteromers 15 and even CB1 A2A D2 heterotrimers where three different receptors have come together to form a heteromer 16 17 The ligand binding properties and intracellular trafficking pathways of GPCR heteromers usually show elements from both parent receptors but may also produce quite unexpected pharmacological effects making such heteromers an important focus of current research 18 19 20 21 22 See also EditGPCR oligomerReferences Edit Medical dictionary Merriam Webster Dictionary Gotti C Moretti M Gaimarri A Zanardi A Clementi F Zoli M October 2007 Heterogeneity and complexity of native brain nicotinic receptors Biochemical Pharmacology 74 8 1102 11 doi 10 1016 j bcp 2007 05 023 PMID 17597586 Millar NS Gotti C January 2009 Diversity of vertebrate nicotinic acetylcholine receptors Neuropharmacology 56 1 237 46 doi 10 1016 j neuropharm 2008 07 041 PMID 18723036 S2CID 27181755 Collins AC Salminen O Marks MJ Whiteaker P Grady SR 2009 The road to discovery of neuronal nicotinic cholinergic receptor subtypes Nicotine Psychopharmacology Handbook of Experimental Pharmacology Vol 192 pp 85 112 doi 10 1007 978 3 540 69248 5 4 ISBN 978 3 540 69246 1 PMC 8759235 PMID 19184647 Graham AJ Martin Ruiz CM Teaktong T Ray MA Court JA August 2002 Human brain nicotinic receptors their distribution and participation in neuropsychiatric disorders Current Drug Targets CNS and Neurological Disorders 1 4 387 97 doi 10 2174 1568007023339283 PMID 12769611 Nutt D April 2006 GABAA receptors subtypes regional distribution and function Journal of Clinical Sleep Medicine 2 2 S7 11 doi 10 5664 jcsm 26525 PMID 17557501 Heldt SA Ressler KJ December 2007 Forebrain and midbrain distribution of major benzodiazepine sensitive GABAA receptor subunits in the adult C57 mouse as assessed with in situ hybridization Neuroscience 150 2 370 85 doi 10 1016 j neuroscience 2007 09 008 PMC 2292345 PMID 17950542 Ciruela F Casado V Rodrigues RJ Lujan R Burgueno J Canals M Borycz J Rebola N Goldberg SR Mallol J Cortes A Canela EI Lopez Gimenez JF Milligan G Lluis C Cunha RA Ferre S Franco R February 2006 Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1 A2A receptor heteromers Journal of Neuroscience 26 7 2080 7 doi 10 1523 JNEUROSCI 3574 05 2006 PMC 6674939 PMID 16481441 Ferre S Ciruela F Borycz J Solinas M Quarta D Antoniou K Quiroz C Justinova Z Lluis C Franco R Goldberg SR 2008 Adenosine A1 A2A receptor heteromers new targets for caffeine in the brain Frontiers in Bioscience 13 13 2391 9 doi 10 2741 2852 PMID 17981720 Rashid AJ So CH Kong MM Furtak T El Ghundi M Cheng R O Dowd BF George SR January 2007 D1 D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq 11 in the striatum Proceedings of the National Academy of Sciences of the United States of America 104 2 654 9 Bibcode 2007PNAS 104 654R doi 10 1073 pnas 0604049104 PMC 1766439 PMID 17194762 Marcellino D Ferre S Casado V Cortes A Le Foll B Mazzola C Drago F Saur O Stark H Soriano A Barnes C Goldberg SR Lluis C Fuxe K Franco R September 2008 Identification of Dopamine D1 D3 Receptor Heteromers INDICATIONS FOR A ROLE OF SYNERGISTIC D1 D3 RECEPTOR INTERACTIONS IN THE STRIATUM The Journal of Biological Chemistry 283 38 26016 25 doi 10 1074 jbc M710349200 PMC 2533781 PMID 18644790 Carriba P Ortiz O Patkar K Justinova Z Stroik J Themann A Muller C Woods AS Hope BT Ciruela F Casado V Canela EI Lluis C Goldberg SR Moratalla R Franco R Ferre S 2007 Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids Neuropsychopharmacology 32 11 2249 59 doi 10 1038 sj npp 1301375 PMID 17356572 Zezula J Freissmuth M March 2008 The A2A adenosine receptor a GPCR with unique features British Journal of Pharmacology 153 Suppl 1 S1 S184 90 doi 10 1038 sj bjp 0707674 PMC 2268059 PMID 18246094 Marcellino D Carriba P Filip M Borgkvist A Frankowska M Bellido I Tanganelli S Muller CE Fisone G Lluis C Agnati LF Franco R Fuxe K April 2008 Antagonistic cannabinoid CB1 dopamine D2 receptor interactions in striatal CB1 D2 heteromers A combined neurochemical and behavioral analysis Neuropharmacology 54 5 815 23 doi 10 1016 j neuropharm 2007 12 011 PMID 18262573 S2CID 195685369 Carriba P Navarro G Ciruela F Ferre S Casado V Agnati L Cortes A Mallol J Fuxe K Canela EI Lluis C Franco R 2008 Detection of heteromerization of more than two proteins by sequential BRET FRET Nature Methods 5 8 727 33 doi 10 1038 nmeth 1229 PMID 18587404 S2CID 5175118 Ferre S Goldberg SR Lluis C Franco R 2009 Looking for the role of cannabinoid receptor heteromers in striatal function Neuropharmacology 56 Suppl 1 Suppl 1 226 34 doi 10 1016 j neuropharm 2008 06 076 PMC 2635338 PMID 18691604 Franco R Casado V Cortes A Mallol J Ciruela F Ferre S Lluis C Canela EI March 2008 G protein coupled receptor heteromers function and ligand pharmacology British Journal of Pharmacology 153 Suppl 1 S1 S90 8 doi 10 1038 sj bjp 0707571 PMC 2268068 PMID 18037920 Fuxe K Marcellino D Rivera A Diaz Cabiale Z Filip M Gago B Roberts DC Langel U Genedani S Ferraro L de la Calle A Narvaez J Tanganelli S Woods A Agnati LF August 2008 Receptor receptor interactions within receptor mosaics Impact on neuropsychopharmacology Brain Research Reviews 58 2 415 52 doi 10 1016 j brainresrev 2007 11 007 PMID 18222544 S2CID 206344737 Franco R Casado V Cortes A Perez Capote K Mallol J Canela E Ferre S Lluis C August 2008 Novel pharmacological targets based on receptor heteromers Brain Research Reviews 58 2 475 82 doi 10 1016 j brainresrev 2008 06 002 PMID 18620000 S2CID 41153163 Fuxe K Marcellino D Woods AS Giuseppina L Antonelli T Ferraro L Tanganelli S Agnati LF January 2009 Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain relevance for schizophrenia Journal of Neural Transmission 116 8 923 39 doi 10 1007 s00702 008 0174 9 PMC 2953764 PMID 19156349 Ferre S Baler R Bouvier M Caron MG Devi LA Durroux T Fuxe K George SR Javitch JA Lohse MJ Mackie K Milligan G Pfleger KD Pin JP Volkow ND Waldhoer M Woods AS Franco R March 2009 Building a new conceptual framework for receptor heteromers Nature Chemical Biology 5 3 131 4 doi 10 1038 nchembio0309 131 PMC 2681085 PMID 19219011 Retrieved from https en wikipedia org w index php title Heteromer amp oldid 1139419248, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.