fbpx
Wikipedia

Acidogenesis

Acidogenesis is the second stage in the four stages of anaerobic digestion:

Anaerobic digestion is a complex biochemical process of biologically mediated reactions by a consortium of microorganisms to convert organic compounds into methane and carbon dioxide. It is a stabilization process, reducing odor, pathogens, and mass reduction.

Hydrolytic bacteria form a variety of reduced end-products from the fermentation of a given substrate. One fundamental question that arises concerns the metabolic features that control carbon and electron flow to a given reduced end-product during pure culture and mixed methanogenic cultures of hydrolytic bacteria. Thermoanaerobium brockii is a representative thermophilic, hydrolytic bacterium, which ferments glucose, via the Embden–Meyerhof Parnas Pathway. T. brockii is an atypical hetero-lactic acid bacterium because it forms molecular hydrogen (H2), in addition to lactic acid and ethanol. The reduced end-products of glucose fermentation are enzymatically formed from pyruvate, via the following mechanisms: lactate by fructose 1-6 all-phosphate (F6P) activated lactate dehydrogenase; H2 by pyruvate ferredoxin oxidoreductase and hydrogenase; and ethanol via NADH- and NADPH-linked alcohol dehydrogenase.[1]

By its side, the acidogenic activity was found in the early 20th century, but it was not until the mid-1960s that the engineering of phases separation was assumed in order to improve the stability and waste digesters treatment.[2] In this phase, complex molecules (carbohydrates, lipids, and proteins) are depolymerized into soluble compounds by hydrolytic enzymes (cellulases, hemicellulases, amylases, lipases and proteases). The hydrolyzed compounds are fermented into volatile fatty acids (acetate, propionate, butyrate, and lactate), neutral compounds (ethanol, methanol), ammonia, hydrogen and carbon dioxide.[3][4][5]

Acetogenesis is one of the main reactions of this stage, in this, the intermediary metabolites produced are metabolized to acetate, hydrogen and carbonic gas by the three main groups of bacteria:

  • homoacetogens;
  • syntrophes; and
  • sulphoreductors.

For the acetic acid production are considered three kind of bacteria:

Winter y Wolfe, in 1979, demonstrated that A. woodii in syntrophic association with Methanosarcina produce methane and carbon dioxide from fructose, instead of three molecules of acetate.[6] Moorella thermoacetica and Clostridium formiaceticum are able to reduce the carbonic gas to acetate, but they do not have hydrogenases which inhabilite the hydrogen use, so they can produce three molecules of acetate from fructose. Acetic acid is equally a co-metabolite of the organic substrates fermentation (sugars, glycerol, lactic acid, etc.) by diverse groups of microorganisms which produce different acids:

References edit

  1. ^ Marchaim, U. (1992). FAO Agricultural Services Bulletin – 95: Biogas process for sustainable development, FAO – Food and Agriculture Organization of the United Nations, ISSN 1010-1365 (1/9/2003).
  2. ^ Alexiou, I.E. and Panter, K. (2004). A review of two phase applications to define best practice for the treatment of various waste streams. Anaerobic Digestion 10th World Congress, September 2004. Montreal, Quebec, Canada.
  3. ^ (in Spanish) Cairó, J.J. and París, J.M. (1988). Microbiología de la digestión anaerobia, metanogénesis. 4o Seminario de Depuración Anaerobia de Aguas Residuales. Valladolid. F.F. Polanco, P.A. García y S. Hernándo. (Eds.) pp. 41–51.
  4. ^ Dinopolou, G., Rudd, T. and Lester, J.N. (1987). Anaerobic acidogenesis of a complex wastewater: I. The influence of operational parameters on reactor performance. Biotech. And Bioeng. 31: 958 – 968.
  5. ^ (in French) Laroche, M. (1983). Metabolisme intermediaire des acides gras volatils en fermentation methanique. These de Docteur – Ingenieur en Sciences Alimentaires_Fermentations. Institut National de la Recherche Agronomique, France.
  6. ^ Winter, J.U. and Wolfe, R.S. (1979). Complete degradation of carbohydrates to CO2 and methane by syntrophic cultures of Acetobacterium woodii y Methanosarcina barkeri. Arch. Microbiol. 121: 97 – 102.

acidogenesis, second, stage, four, stages, anaerobic, digestion, hydrolysis, chemical, reaction, where, particulates, solubilized, large, polymers, converted, into, simpler, monomers, biological, reaction, where, simple, monomers, converted, into, volatile, fa. Acidogenesis is the second stage in the four stages of anaerobic digestion Hydrolysis A chemical reaction where particulates are solubilized and large polymers converted into simpler monomers Acidogenesis A biological reaction where simple monomers are converted into volatile fatty acids Acetogenesis A biological reaction where volatile fatty acids are converted into acetic acid carbon dioxide and hydrogen Methanogenesis A biological reaction where acetates are converted into methane and carbon dioxide while hydrogen is consumed Anaerobic digestion is a complex biochemical process of biologically mediated reactions by a consortium of microorganisms to convert organic compounds into methane and carbon dioxide It is a stabilization process reducing odor pathogens and mass reduction Hydrolytic bacteria form a variety of reduced end products from the fermentation of a given substrate One fundamental question that arises concerns the metabolic features that control carbon and electron flow to a given reduced end product during pure culture and mixed methanogenic cultures of hydrolytic bacteria Thermoanaerobium brockii is a representative thermophilic hydrolytic bacterium which ferments glucose via the Embden Meyerhof Parnas Pathway T brockii is an atypical hetero lactic acid bacterium because it forms molecular hydrogen H2 in addition to lactic acid and ethanol The reduced end products of glucose fermentation are enzymatically formed from pyruvate via the following mechanisms lactate by fructose 1 6 all phosphate F6P activated lactate dehydrogenase H2 by pyruvate ferredoxin oxidoreductase and hydrogenase and ethanol via NADH and NADPH linked alcohol dehydrogenase 1 By its side the acidogenic activity was found in the early 20th century but it was not until the mid 1960s that the engineering of phases separation was assumed in order to improve the stability and waste digesters treatment 2 In this phase complex molecules carbohydrates lipids and proteins are depolymerized into soluble compounds by hydrolytic enzymes cellulases hemicellulases amylases lipases and proteases The hydrolyzed compounds are fermented into volatile fatty acids acetate propionate butyrate and lactate neutral compounds ethanol methanol ammonia hydrogen and carbon dioxide 3 4 5 Acetogenesis is one of the main reactions of this stage in this the intermediary metabolites produced are metabolized to acetate hydrogen and carbonic gas by the three main groups of bacteria homoacetogens syntrophes and sulphoreductors For the acetic acid production are considered three kind of bacteria Clostridium aceticum Acetobacter woodii and Clostridium termoautotrophicum Winter y Wolfe in 1979 demonstrated that A woodii in syntrophic association with Methanosarcina produce methane and carbon dioxide from fructose instead of three molecules of acetate 6 Moorella thermoacetica and Clostridium formiaceticum are able to reduce the carbonic gas to acetate but they do not have hydrogenases which inhabilite the hydrogen use so they can produce three molecules of acetate from fructose Acetic acid is equally a co metabolite of the organic substrates fermentation sugars glycerol lactic acid etc by diverse groups of microorganisms which produce different acids Propionic bacteria propionate acetate Clostridium butyrate acetate Enterobacteria acetate lactate and Hetero fermentative bacteria acetate propionate butyrate valerate etc References edit Marchaim U 1992 FAO Agricultural Services Bulletin 95 Biogas process for sustainable development FAO Food and Agriculture Organization of the United Nations ISSN 1010 1365 1 9 2003 Alexiou I E and Panter K 2004 A review of two phase applications to define best practice for the treatment of various waste streams Anaerobic Digestion 10th World Congress September 2004 Montreal Quebec Canada in Spanish Cairo J J and Paris J M 1988 Microbiologia de la digestion anaerobia metanogenesis 4o Seminario de Depuracion Anaerobia de Aguas Residuales Valladolid F F Polanco P A Garcia y S Hernando Eds pp 41 51 Dinopolou G Rudd T and Lester J N 1987 Anaerobic acidogenesis of a complex wastewater I The influence of operational parameters on reactor performance Biotech And Bioeng 31 958 968 in French Laroche M 1983 Metabolisme intermediaire des acides gras volatils en fermentation methanique These de Docteur Ingenieur en Sciences Alimentaires Fermentations Institut National de la Recherche Agronomique France Winter J U and Wolfe R S 1979 Complete degradation of carbohydrates to CO2 and methane by syntrophic cultures of Acetobacterium woodii y Methanosarcina barkeri Arch Microbiol 121 97 102 Retrieved from https en wikipedia org w index php title Acidogenesis amp oldid 1125376001, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.