fbpx
Wikipedia

Artin L-function

In mathematics, an Artin L-function is a type of Dirichlet series associated to a linear representation ρ of a Galois group G. These functions were introduced in 1923 by Emil Artin, in connection with his research into class field theory. Their fundamental properties, in particular the Artin conjecture described below, have turned out to be resistant to easy proof. One of the aims of proposed non-abelian class field theory is to incorporate the complex-analytic nature of Artin L-functions into a larger framework, such as is provided by automorphic forms and the Langlands program. So far, only a small part of such a theory has been put on a firm basis.

Definition edit

Given  , a representation of   on a finite-dimensional complex vector space  , where   is the Galois group of the finite extension   of number fields, the Artin  -function   is defined by an Euler product. For each prime ideal   in  's ring of integers, there is an Euler factor, which is easiest to define in the case where   is unramified in   (true for almost all  ). In that case, the Frobenius element   is defined as a conjugacy class in  . Therefore, the characteristic polynomial of   is well-defined. The Euler factor for   is a slight modification of the characteristic polynomial, equally well-defined,

 

as rational function in t, evaluated at  , with   a complex variable in the usual Riemann zeta function notation. (Here N is the field norm of an ideal.)

When   is ramified, and I is the inertia group which is a subgroup of G, a similar construction is applied, but to the subspace of V fixed (pointwise) by I.[note 1]

The Artin L-function   is then the infinite product over all prime ideals   of these factors. As Artin reciprocity shows, when G is an abelian group these L-functions have a second description (as Dirichlet L-functions when K is the rational number field, and as Hecke L-functions in general). Novelty comes in with non-abelian G and their representations.

One application is to give factorisations of Dedekind zeta-functions, for example in the case of a number field that is Galois over the rational numbers. In accordance with the decomposition of the regular representation into irreducible representations, such a zeta-function splits into a product of Artin L-functions, for each irreducible representation of G. For example, the simplest case is when G is the symmetric group on three letters. Since G has an irreducible representation of degree 2, an Artin L-function for such a representation occurs, squared, in the factorisation of the Dedekind zeta-function for such a number field, in a product with the Riemann zeta-function (for the trivial representation) and an L-function of Dirichlet's type for the signature representation.

More precisely for   a Galois extension of degree n, the factorization

 

follows from

 
 
 
 

where   is the multiplicity of the irreducible representation in the regular representation, f is the order of   and n is replaced by n/e at the ramified primes.

Since characters are an orthonormal basis of the class functions, after showing some analytic properties of the   we obtain the Chebotarev density theorem as a generalization of Dirichlet's theorem on arithmetic progressions.

Functional equation edit

Artin L-functions satisfy a functional equation. The function   is related in its values to  , where   denotes the complex conjugate representation. More precisely L is replaced by  , which is L multiplied by certain gamma factors, and then there is an equation of meromorphic functions

 ,

with a certain complex number W(ρ) of absolute value 1. It is the Artin root number. It has been studied deeply with respect to two types of properties. Firstly Robert Langlands and Pierre Deligne established a factorisation into Langlands–Deligne local constants; this is significant in relation to conjectural relationships to automorphic representations. Also the case of ρ and ρ* being equivalent representations is exactly the one in which the functional equation has the same L-function on each side. It is, algebraically speaking, the case when ρ is a real representation or quaternionic representation. The Artin root number is, then, either +1 or −1. The question of which sign occurs is linked to Galois module theory.[1]

The Artin conjecture edit

The Artin conjecture on Artin L-functions states that the Artin L-function   of a non-trivial irreducible representation ρ is analytic in the whole complex plane.[2]

This is known for one-dimensional representations, the L-functions being then associated to Hecke characters — and in particular for Dirichlet L-functions.[2] More generally Artin showed that the Artin conjecture is true for all representations induced from 1-dimensional representations. If the Galois group is supersolvable or more generally monomial, then all representations are of this form so the Artin conjecture holds.

André Weil proved the Artin conjecture in the case of function fields.

Two-dimensional representations are classified by the nature of the image subgroup: it may be cyclic, dihedral, tetrahedral, octahedral, or icosahedral. The Artin conjecture for the cyclic or dihedral case follows easily from Erich Hecke's work. Langlands used the base change lifting to prove the tetrahedral case, and Jerrold Tunnell extended his work to cover the octahedral case;[3] Andrew Wiles used these cases in his proof of the Modularity conjecture. Richard Taylor and others have made some progress on the (non-solvable) icosahedral case; this is an active area of research. The Artin conjecture for odd, irreducible, two-dimensional representations follows from the proof of Serre's modularity conjecture, regardless of projective image subgroup.

Brauer's theorem on induced characters implies that all Artin L-functions are products of positive and negative integral powers of Hecke L-functions, and are therefore meromorphic in the whole complex plane.

Langlands (1970) pointed out that the Artin conjecture follows from strong enough results from the Langlands philosophy, relating to the L-functions associated to automorphic representations for GL(n) for all  . More precisely, the Langlands conjectures associate an automorphic representation of the adelic group GLn(AQ) to every n-dimensional irreducible representation of the Galois group, which is a cuspidal representation if the Galois representation is irreducible, such that the Artin L-function of the Galois representation is the same as the automorphic L-function of the automorphic representation. The Artin conjecture then follows immediately from the known fact that the L-functions of cuspidal automorphic representations are holomorphic. This was one of the major motivations for Langlands' work.

The Dedekind conjecture edit

A weaker conjecture (sometimes known as Dedekind conjecture) states that if M/K is an extension of number fields, then the quotient   of their Dedekind zeta functions is entire.

The Aramata-Brauer theorem states that the conjecture holds if M/K is Galois.

More generally, let N the Galois closure of M over K, and G the Galois group of N/K. The quotient   is equal to the Artin L-functions associated to the natural representation associated to the action of G on the K-invariants complex embedding of M. Thus the Artin conjecture implies the Dedekind conjecture.

The conjecture was proven when G is a solvable group, independently by Koji Uchida and R. W. van der Waall in 1975.[4]

See also edit

Notes edit

  1. ^ It is arguably more correct to think instead about the coinvariants, the largest quotient space fixed by I, rather than the invariants, but the result here will be the same. Cf. Hasse–Weil L-function for a similar situation.

References edit

Bibliography edit

  • Artin, E. (1923). "Über eine neue Art von L Reihen". Hamb. Math. Abh. 3. Reprinted in his collected works, ISBN 0-387-90686-X. English translation in by N. Snyder.
  • Artin, Emil (1930), "Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren.", Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg (in German), 8: 292–306, doi:10.1007/BF02941010, JFM 56.0173.02, S2CID 120987633
  • Tunnell, Jerrold (1981). "Artin's conjecture for representations of octahedral type". Bull. Amer. Math. Soc. N. S. 5 (2): 173–175. doi:10.1090/S0273-0979-1981-14936-3.
  • Gelbart, Stephen (1977). "Automorphic forms and Artin's conjecture". Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn., Bonn, 1976). Lecture Notes in Math. Vol. 627. Berlin: Springer. pp. 241–276.
  • Langlands, Robert (1967). "Letter to Prof. Weil".
  • Langlands, Robert P. (1970). "Problems in the theory of automorphic forms". Lectures in modern analysis and applications, III. Lecture Notes in Math. Vol. 170. Berlin, New York: Springer-Verlag. pp. 18–61. doi:10.1007/BFb0079065. ISBN 978-3-540-05284-5. MR 0302614.
  • Martinet, J. (1977). "Character theory and Artin L-functions". In Fröhlich, A. (ed.). Algebraic Number Fields, Proc. Symp. London Math. Soc., Univ. Durham 1975. Academic Press. pp. 1–87. ISBN 0-12-268960-7. Zbl 0359.12015.
  • Perlis, R. (2001) [1994], "Artin root numbers", Encyclopedia of Mathematics, EMS Press
  • Prasad, Dipendra; Yogananda, C. S. (2000). "A Report on Artin's Holomorphy Conjecture". In Bambah, R. P.; Dumir, V. C.; Hans-Gill, R. J. (eds.). Number Theory (PDF). Birkhäuser Basel. pp. 301–314. doi:10.1007/978-3-0348-7023-8_16. ISBN 978-3-0348-7023-8.

artin, function, mathematics, type, dirichlet, series, associated, linear, representation, galois, group, these, functions, were, introduced, 1923, emil, artin, connection, with, research, into, class, field, theory, their, fundamental, properties, particular,. In mathematics an Artin L function is a type of Dirichlet series associated to a linear representation r of a Galois group G These functions were introduced in 1923 by Emil Artin in connection with his research into class field theory Their fundamental properties in particular the Artin conjecture described below have turned out to be resistant to easy proof One of the aims of proposed non abelian class field theory is to incorporate the complex analytic nature of Artin L functions into a larger framework such as is provided by automorphic forms and the Langlands program So far only a small part of such a theory has been put on a firm basis Contents 1 Definition 2 Functional equation 3 The Artin conjecture 4 The Dedekind conjecture 5 See also 6 Notes 7 References 8 BibliographyDefinition editGiven r displaystyle rho nbsp a representation of G displaystyle G nbsp on a finite dimensional complex vector space V displaystyle V nbsp where G displaystyle G nbsp is the Galois group of the finite extension L K displaystyle L K nbsp of number fields the Artin L displaystyle L nbsp function L r s displaystyle L rho s nbsp is defined by an Euler product For each prime ideal p displaystyle mathfrak p nbsp in K displaystyle K nbsp s ring of integers there is an Euler factor which is easiest to define in the case where p displaystyle mathfrak p nbsp is unramified in L displaystyle L nbsp true for almost all p displaystyle mathfrak p nbsp In that case the Frobenius element F r o b p displaystyle mathbf Frob mathfrak p nbsp is defined as a conjugacy class in G displaystyle G nbsp Therefore the characteristic polynomial of r F r o b p displaystyle rho mathbf Frob mathfrak p nbsp is well defined The Euler factor for p displaystyle mathfrak p nbsp is a slight modification of the characteristic polynomial equally well defined charpoly r F r o b p 1 det I t r F r o b p 1 displaystyle operatorname charpoly rho mathbf Frob mathfrak p 1 operatorname det left I t rho mathbf Frob mathfrak p right 1 nbsp as rational function in t evaluated at t N p s displaystyle t N mathfrak p s nbsp with s displaystyle s nbsp a complex variable in the usual Riemann zeta function notation Here N is the field norm of an ideal When p displaystyle mathfrak p nbsp is ramified and I is the inertia group which is a subgroup of G a similar construction is applied but to the subspace of V fixed pointwise by I note 1 The Artin L function L r s displaystyle L rho s nbsp is then the infinite product over all prime ideals p displaystyle mathfrak p nbsp of these factors As Artin reciprocity shows when G is an abelian group these L functions have a second description as Dirichlet L functions when K is the rational number field and as Hecke L functions in general Novelty comes in with non abelian G and their representations One application is to give factorisations of Dedekind zeta functions for example in the case of a number field that is Galois over the rational numbers In accordance with the decomposition of the regular representation into irreducible representations such a zeta function splits into a product of Artin L functions for each irreducible representation of G For example the simplest case is when G is the symmetric group on three letters Since G has an irreducible representation of degree 2 an Artin L function for such a representation occurs squared in the factorisation of the Dedekind zeta function for such a number field in a product with the Riemann zeta function for the trivial representation and an L function of Dirichlet s type for the signature representation More precisely for L K displaystyle L K nbsp a Galois extension of degree n the factorization z L s L s r regular r Irr rep Gal L K L r s deg r displaystyle zeta L s L s rho text regular prod rho text Irr rep text Gal L K L rho s deg rho nbsp follows from L r s p K 1 det I N p s r F r o b p V p r displaystyle L rho s prod mathfrak p in K frac 1 det left I N mathfrak p s rho mathbf Frob mathfrak p V mathfrak p rho right nbsp log det I N p s r F r o b p m 1 tr r F r o b p m m N p s m displaystyle log det left I N mathfrak p s rho left mathbf Frob mathfrak p right right sum m 1 infty frac text tr rho mathbf Frob mathfrak p m m N mathfrak p sm nbsp r Irr deg r tr r s n s 1 0 s 1 displaystyle sum rho text Irr deg rho text tr rho sigma begin cases n amp sigma 1 0 amp sigma neq 1 end cases nbsp r Irr deg r log det I N p s r F r o b p n m 1 N p s f m f m log 1 N p s f n f displaystyle sum rho text Irr deg rho log det left I N left mathfrak p s right rho left mathbf Frob mathfrak p right right n sum m 1 infty frac N mathfrak p sfm fm log left left 1 N mathfrak p sf right frac n f right nbsp where deg r displaystyle deg rho nbsp is the multiplicity of the irreducible representation in the regular representation f is the order of F r o b p displaystyle mathbf Frob mathfrak p nbsp and n is replaced by n e at the ramified primes Since characters are an orthonormal basis of the class functions after showing some analytic properties of the L r s displaystyle L rho s nbsp we obtain the Chebotarev density theorem as a generalization of Dirichlet s theorem on arithmetic progressions Functional equation editArtin L functions satisfy a functional equation The function L r s displaystyle L rho s nbsp is related in its values to L r 1 s displaystyle L rho 1 s nbsp where r displaystyle rho nbsp denotes the complex conjugate representation More precisely L is replaced by L r s displaystyle Lambda rho s nbsp which is L multiplied by certain gamma factors and then there is an equation of meromorphic functions L r s W r L r 1 s displaystyle Lambda rho s W rho Lambda rho 1 s nbsp with a certain complex number W r of absolute value 1 It is the Artin root number It has been studied deeply with respect to two types of properties Firstly Robert Langlands and Pierre Deligne established a factorisation into Langlands Deligne local constants this is significant in relation to conjectural relationships to automorphic representations Also the case of r and r being equivalent representations is exactly the one in which the functional equation has the same L function on each side It is algebraically speaking the case when r is a real representation or quaternionic representation The Artin root number is then either 1 or 1 The question of which sign occurs is linked to Galois module theory 1 The Artin conjecture editThe Artin conjecture on Artin L functions states that the Artin L function L r s displaystyle L rho s nbsp of a non trivial irreducible representation r is analytic in the whole complex plane 2 This is known for one dimensional representations the L functions being then associated to Hecke characters and in particular for Dirichlet L functions 2 More generally Artin showed that the Artin conjecture is true for all representations induced from 1 dimensional representations If the Galois group is supersolvable or more generally monomial then all representations are of this form so the Artin conjecture holds Andre Weil proved the Artin conjecture in the case of function fields Two dimensional representations are classified by the nature of the image subgroup it may be cyclic dihedral tetrahedral octahedral or icosahedral The Artin conjecture for the cyclic or dihedral case follows easily from Erich Hecke s work Langlands used the base change lifting to prove the tetrahedral case and Jerrold Tunnell extended his work to cover the octahedral case 3 Andrew Wiles used these cases in his proof of the Modularity conjecture Richard Taylor and others have made some progress on the non solvable icosahedral case this is an active area of research The Artin conjecture for odd irreducible two dimensional representations follows from the proof of Serre s modularity conjecture regardless of projective image subgroup Brauer s theorem on induced characters implies that all Artin L functions are products of positive and negative integral powers of Hecke L functions and are therefore meromorphic in the whole complex plane Langlands 1970 pointed out that the Artin conjecture follows from strong enough results from the Langlands philosophy relating to the L functions associated to automorphic representations for GL n for all n 1 displaystyle n geq 1 nbsp More precisely the Langlands conjectures associate an automorphic representation of the adelic group GLn AQ to every n dimensional irreducible representation of the Galois group which is a cuspidal representation if the Galois representation is irreducible such that the Artin L function of the Galois representation is the same as the automorphic L function of the automorphic representation The Artin conjecture then follows immediately from the known fact that the L functions of cuspidal automorphic representations are holomorphic This was one of the major motivations for Langlands work The Dedekind conjecture editA weaker conjecture sometimes known as Dedekind conjecture states that if M K is an extension of number fields then the quotient s z M s z K s displaystyle s mapsto zeta M s zeta K s nbsp of their Dedekind zeta functions is entire The Aramata Brauer theorem states that the conjecture holds if M K is Galois More generally let N the Galois closure of M over K and G the Galois group of N K The quotient s z M s z K s displaystyle s mapsto zeta M s zeta K s nbsp is equal to the Artin L functions associated to the natural representation associated to the action of G on the K invariants complex embedding of M Thus the Artin conjecture implies the Dedekind conjecture The conjecture was proven when G is a solvable group independently by Koji Uchida and R W van der Waall in 1975 4 See also editEquivariant L functionNotes edit It is arguably more correct to think instead about the coinvariants the largest quotient space fixed by I rather than the invariants but the result here will be the same Cf Hasse Weil L function for a similar situation References edit Perlis 2001 a b Martinet 1977 p 18 Prasad amp Yogananda 2000 p 9 Prasad amp Yogananda 2000 p 4 Bibliography editArtin E 1923 Uber eine neue Art von L Reihen Hamb Math Abh 3 Reprinted in his collected works ISBN 0 387 90686 X English translation in Artin L Functions A Historical Approach by N Snyder Artin Emil 1930 Zur Theorie der L Reihen mit allgemeinen Gruppencharakteren Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg in German 8 292 306 doi 10 1007 BF02941010 JFM 56 0173 02 S2CID 120987633 Tunnell Jerrold 1981 Artin s conjecture for representations of octahedral type Bull Amer Math Soc N S 5 2 173 175 doi 10 1090 S0273 0979 1981 14936 3 Gelbart Stephen 1977 Automorphic forms and Artin s conjecture Modular functions of one variable VI Proc Second Internat Conf Univ Bonn Bonn 1976 Lecture Notes in Math Vol 627 Berlin Springer pp 241 276 Langlands Robert 1967 Letter to Prof Weil Langlands Robert P 1970 Problems in the theory of automorphic forms Lectures in modern analysis and applications III Lecture Notes in Math Vol 170 Berlin New York Springer Verlag pp 18 61 doi 10 1007 BFb0079065 ISBN 978 3 540 05284 5 MR 0302614 Martinet J 1977 Character theory and Artin L functions In Frohlich A ed Algebraic Number Fields Proc Symp London Math Soc Univ Durham 1975 Academic Press pp 1 87 ISBN 0 12 268960 7 Zbl 0359 12015 Perlis R 2001 1994 Artin root numbers Encyclopedia of Mathematics EMS Press Prasad Dipendra Yogananda C S 2000 A Report on Artin s Holomorphy Conjecture In Bambah R P Dumir V C Hans Gill R J eds Number Theory PDF Birkhauser Basel pp 301 314 doi 10 1007 978 3 0348 7023 8 16 ISBN 978 3 0348 7023 8 Retrieved from https en wikipedia org w index php title Artin L function amp oldid 1214641209, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.