fbpx
Wikipedia

HD 140283

HD 140283 (also known as the Methuselah star)[9][10] is a metal-poor subgiant star about 190 light years away[11] from the Earth in the constellation Libra, near the boundary with Ophiuchus in the Milky Way Galaxy. Its apparent magnitude is 7.205. It is one of the oldest stars known.[6] The star's light is somewhat blueshifted as it is moving toward rather than away from the Earth and it has been known to astronomers for over a century as a high-velocity star based on its other vectors (proper motion). An early spectroscopic analysis by Joseph W. Chamberlain and Lawrence Aller revealed it to have a substantially lower metal content than the Sun.[12] Modern spectroscopic analyses find an iron content about a factor of 250 lower than that of the Sun. It is one of the closest metal-poor (Population II) stars to Earth.

HD 140283

DSS image of HD 140283
Observation data
Epoch J2000.0      Equinox J2000.0
Constellation Libra[1]
Right ascension 15h 43m 03.09706s[2]
Declination −10° 56′ 00.6036″[2]
Apparent magnitude (V) 7.205 ± 0.02[1]
Characteristics
Evolutionary stage Halo Subgiant
Spectral type G0IV-V m-5[3]
Astrometry
Radial velocity (Rv)−169.00 ± 0.2[4] km/s
Proper motion (μ) RA: −1114.93[2] mas/yr
Dec.: −304.36[2] mas/yr
Parallax (π)16.114 ± 0.072 mas[5]
Distance202.4 ± 0.9 ly
(62.1 ± 0.3 pc)
Absolute magnitude (MV)+3.377[1]
Details
Mass0.81±0.05[6] M
Radius2.04±0.04[7] R
Luminosity4.82±0.27[7] L
Surface gravity (log g)3.6[7] cgs
Temperature5,787±48[7] K
Metallicity [Fe/H]−2.40±0.10[1] dex
Rotational velocity (v sin i)≤ 3.9[8] km/s
Age12 ± 0.05[6] Gyr
Other designations
BD−10 4149, GJ 1195, HIP 76976, SAO 159459[4]
Database references
SIMBADdata
ARICNSdata

The star was already known by 1912 when W. S. Adams measured its astrometry using a spectrograph in the Mount Wilson Observatory.[13]

Age and significance

Because HD 140283 is neither on the main sequence nor a red giant, its early position in the Hertzsprung–Russell diagram has been interpreted with its data and theoretical models of stellar evolution based on quantum mechanics and the observations of processes in millions of stars to infer its apparent old age. For field stars (as opposed to stars in clusters), it is rare to know a star's luminosity, surface temperature, and composition precisely enough to get a well-constrained value for its age. Because of their relative scarcity, this is even rarer for a Population II star such as HD 140283. A study published in 2013[14] used the Fine Guidance Sensors of NASA's Hubble Space Telescope to measure a precise parallax (and therefore distance and luminosity) for the star. This information was used to estimate an age for the star of 14.46 ± 0.8 billion years. Due to the uncertainty in the value, this age for the star would possibly conflict with the calculated age of the Universe as determined by the final 2018 Planck satellite results of 13.761±0.038 billion years.[1][15] However, more recent models of its stellar evolution have suggested revision of the star's age to 13.7 billion years[16] or 12 billion years.[6]

Once dubbed the "Methuselah Star" by the popular press due to its age, if the assumptions of stellar evolution are correct in the report, the star must have formed soon after the Big Bang[1] and is one of the oldest stars known as of 2021.[6] The search for such very iron-poor stars has shown they are almost all anomalies in globular clusters and the Galactic Halo. This accords with a narrative that they are rare survivors of their generation. If so, the apparent visual data of the oldest of these enables us to longstop-date the reionization (first star formation) phase of the Universe independently of theories and evidence of the first few million years after the Big Bang.[17] Most stars from Population II and Population III are no longer observable. Theories exist allowing for an older age of the universe than conventionally accepted, which can still accommodate the observed redshift of early objects and earlier radiation. Some depart from the conventional big-bang/inflation model, such as the steady-state and cyclic models. To date no accurate, greater-age evidence from a cosmic object has been found that calls into question the Planck satellite results.[citation needed]

Studies of the star also help astronomers understand the Universe's early history. Very low but non-zero metallicities of stars like HD 140283 indicate the star was formed from existing materials in the second generation of stellar creation; their heavy-element content is believed to have come from zero-metal stars (Population III stars), which have never been observed.[18] Those first stars are thought to have been formed from existing materials a few hundred million years after the Big Bang, and they died in explosions (supernovae) after only a few million years.[18] A second generation of stars, the generation in which HD 140283 is theorized to have been formed from existing materials, could not have coalesced until gas, heated from the supernova explosions of the earlier stars, cooled down.[18] This hypothesis of such stars' birth and our best models of the early universe indicate that the time it took for the gases to cool was likely only a few tens of millions of years.[18]

The proportions of elements in such metal-poor stars is modelled to tell us much of the earlier nucleosynthetic ("metals") yield, that is of elements other than hydrogen and helium from the supernovae of the locally-extinct Population III stars. Some of the latter may be visible in gravitational lensing in looking at deepest images such as the Hubble Ultra-Deep Field (i.e., their brief existence before their turning into supernovae). As with HD 122563, CS22892-0052, and CD -38 245, HD 140283 has an excess of oxygen and the alpha elements relative to iron.[1] While the proportions of these elements is much lower in HD 140283 than in the Sun, they are not as low as is the case for iron. The implication is that the first population of stars generated the alpha elements preferentially to other groups of elements, including the iron peak and s-process. Unlike those other metal-poor stars, HD 140283 has a detectable amount of lithium,[19] a consequence of HD 140283 having not yet evolved into a red giant and thereby not yet having undergone the first dredge-up.[citation needed]

See also

References

  1. ^ a b c d e f g H. E. Bond; E. P. Nelan; D. A. VandenBerg; G. H. Schaefer; D. Harmer (2013). "HD 140283: A Star in the Solar Neighborhood that Formed Shortly After the Big Bang". The Astrophysical Journal Letters. 765 (1): L12. arXiv:1302.3180. Bibcode:2013ApJ...765L..12B. doi:10.1088/2041-8205/765/1/L12. S2CID 119247629.
  2. ^ a b c d van Leeuwen, F. (2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. S2CID 18759600.
  3. ^ Gray, R.O. (1989). "The extension of the MK spectral classification system to the intermediate population II F type stars". Astronomical Journal. 98 (3): 1049–1062. Bibcode:1989AJ.....98.1049G. doi:10.1086/115195.
  4. ^ a b "HD 140283". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 3 September 2017.
  5. ^ Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  6. ^ a b c d e Jiangling Tang; Meredith Joyce (2021). "Revised Best Estimates for the Age and Mass of the Methuselah Star HD 140283 Using MESA and Interferometry and Implications for 1D Convection". Research Notes of the AAS. 5 (5): 117. arXiv:2105.11311. Bibcode:2021RNAAS...5..117T. doi:10.3847/2515-5172/ac01ca. S2CID 235166094. 117.
  7. ^ a b c d Karovicova, I.; White, T.R.; Nordlander, T.; Lind, K.; Casagrande, L.; Ireland, M.J.; Huber, D.; Creevey, O.; Mourard, D.; Schaefer, G.H.; Gilmore, G.; Chiavassa, A.; Wittkowski, M.; Jofré, P.; Heiter, U.; Thévenin, F.; Asplund, M. (2018). "Accurate effective temperatures of the metal-poor benchmark stars HD 140283, HD 122563, and HD 103095 from CHARA interferometry". Monthly Notices of the Royal Astronomical Society. 475 (1): L81. arXiv:1801.03274. Bibcode:2018MNRAS.475L..81K. doi:10.1093/mnrasl/sly010.
  8. ^ A. J. Gallagher; et al. (2010). "The barium isotopic mixture for the metal-poor subgiant star HD 140283". Astronomy and Astrophysics. 523: A24. arXiv:1008.3541. Bibcode:2010A&A...523A..24G. doi:10.1051/0004-6361/201014970. S2CID 5920058.
  9. ^ Crookes, David (16 October 2019). "How Can a Star Be Older Than the Universe? - Space Mysteries: If the universe is 13.8 billion years old, how can a star be more than 14 billion years old?". Space.com. Retrieved 18 October 2019.
  10. ^ "Hubble Finds 'Birth Certificate' of Oldest Known Star". Science Daily. 7 March 2013. Retrieved 11 August 2013.
  11. ^ David Crookes (2022-03-07). "Methuselah: The oldest star in the universe". Space.com. Retrieved 2022-04-03.
  12. ^ J. W. Chamberlain; L. H. Aller (1951). "The atmospheres of A type subdwarfs and 95 Leonis". Astrophysical Journal. 114: 52. Bibcode:1951ApJ...114...52C. doi:10.1086/145451.
  13. ^ Adams, W. S. (1912). "The three-prism stellar spectrograph of the Mount Wilson Solar Observatory". Astrophys. J. 35: 163–182. Bibcode:1912ApJ....35..163A. doi:10.1086/141924.
  14. ^ "Hubble finds birth certificate of oldest known star". Phys.Org. 2013-03-07. Retrieved 2013-03-07.
  15. ^ Planck Collaboration (2020). "Planck 2018 results. VI. Cosmological parameters (See PDF, page 15, Table 2)". Astronomy & Astrophysics. 641: A6. arXiv:1807.06209. doi:10.1051/0004-6361/201833910. S2CID 119335614.
  16. ^ Creevey, O. L.; Thévenin, F.; Berio, P.; Heiter, U.; von Braun, K.; Mourard, D.; Bigot, L.; Boyajian, T.S.; Kervella, P.; Morel, P.; Pichon, B.; Chiavassa, A.; Nardetto, N.; Perraut, K.; Meilland, A.; Mc Alister, H. A.; Ten Brummelaar, T.A.; Farrington, C.; Sturmann, J.; Sturmann, L.; Turner, N. (2015). "Benchmark stars for Gaia Fundamental properties of the Population II star HD 140283 from interferometric, spectroscopic, and photometric data". Astronomy and Astrophysics. 575: A26. arXiv:1410.4780. Bibcode:2015A&A...575A..26C. doi:10.1051/0004-6361/201424310. S2CID 18003446.
  17. ^ D. Majaess (2013-02-23). "Nearby Ancient Star is Almost as Old as the Universe". Universe Today. Retrieved 2013-02-23.
  18. ^ a b c d R. Cowen (2013-01-10). "Nearby star is almost as old as the Universe". Nature. doi:10.1038/nature.2013.12196. S2CID 124435627.
  19. ^ F. Spite; M. Spite (1982). "Abundance of lithium in unevolved halo stars and old disk stars - Interpretation and consequences". Astronomy & Astrophysics. 115 (2): 357–366. Bibcode:1982A&A...115..357S.

140283, also, known, methuselah, star, metal, poor, subgiant, star, about, light, years, away, from, earth, constellation, libra, near, boundary, with, ophiuchus, milky, galaxy, apparent, magnitude, oldest, stars, known, star, light, somewhat, blueshifted, mov. HD 140283 also known as the Methuselah star 9 10 is a metal poor subgiant star about 190 light years away 11 from the Earth in the constellation Libra near the boundary with Ophiuchus in the Milky Way Galaxy Its apparent magnitude is 7 205 It is one of the oldest stars known 6 The star s light is somewhat blueshifted as it is moving toward rather than away from the Earth and it has been known to astronomers for over a century as a high velocity star based on its other vectors proper motion An early spectroscopic analysis by Joseph W Chamberlain and Lawrence Aller revealed it to have a substantially lower metal content than the Sun 12 Modern spectroscopic analyses find an iron content about a factor of 250 lower than that of the Sun It is one of the closest metal poor Population II stars to Earth HD 140283DSS image of HD 140283Observation dataEpoch J2000 0 Equinox J2000 0Constellation Libra 1 Right ascension 15h 43m 03 09706s 2 Declination 10 56 00 6036 2 Apparent magnitude V 7 205 0 02 1 CharacteristicsEvolutionary stage Halo SubgiantSpectral type G0IV V m 5 3 AstrometryRadial velocity Rv 169 00 0 2 4 km sProper motion m RA 1114 93 2 mas yr Dec 304 36 2 mas yrParallax p 16 114 0 072 mas 5 Distance202 4 0 9 ly 62 1 0 3 pc Absolute magnitude MV 3 377 1 DetailsMass0 81 0 05 6 M Radius2 04 0 04 7 R Luminosity4 82 0 27 7 L Surface gravity log g 3 6 7 cgsTemperature5 787 48 7 KMetallicity Fe H 2 40 0 10 1 dexRotational velocity v sin i 3 9 8 km sAge12 0 05 6 GyrOther designationsBD 10 4149 GJ 1195 HIP 76976 SAO 159459 4 Database referencesSIMBADdataARICNSdataThe star was already known by 1912 when W S Adams measured its astrometry using a spectrograph in the Mount Wilson Observatory 13 Age and significance EditSee also List of oldest stars Because HD 140283 is neither on the main sequence nor a red giant its early position in the Hertzsprung Russell diagram has been interpreted with its data and theoretical models of stellar evolution based on quantum mechanics and the observations of processes in millions of stars to infer its apparent old age For field stars as opposed to stars in clusters it is rare to know a star s luminosity surface temperature and composition precisely enough to get a well constrained value for its age Because of their relative scarcity this is even rarer for a Population II star such as HD 140283 A study published in 2013 14 used the Fine Guidance Sensors of NASA s Hubble Space Telescope to measure a precise parallax and therefore distance and luminosity for the star This information was used to estimate an age for the star of 14 46 0 8 billion years Due to the uncertainty in the value this age for the star would possibly conflict with the calculated age of the Universe as determined by the final 2018 Planck satellite results of 13 761 0 038 billion years 1 15 However more recent models of its stellar evolution have suggested revision of the star s age to 13 7 billion years 16 or 12 billion years 6 Once dubbed the Methuselah Star by the popular press due to its age if the assumptions of stellar evolution are correct in the report the star must have formed soon after the Big Bang 1 and is one of the oldest stars known as of 2021 6 The search for such very iron poor stars has shown they are almost all anomalies in globular clusters and the Galactic Halo This accords with a narrative that they are rare survivors of their generation If so the apparent visual data of the oldest of these enables us to longstop date the reionization first star formation phase of the Universe independently of theories and evidence of the first few million years after the Big Bang 17 Most stars from Population II and Population III are no longer observable Theories exist allowing for an older age of the universe than conventionally accepted which can still accommodate the observed redshift of early objects and earlier radiation Some depart from the conventional big bang inflation model such as the steady state and cyclic models To date no accurate greater age evidence from a cosmic object has been found that calls into question the Planck satellite results citation needed Studies of the star also help astronomers understand the Universe s early history Very low but non zero metallicities of stars like HD 140283 indicate the star was formed from existing materials in the second generation of stellar creation their heavy element content is believed to have come from zero metal stars Population III stars which have never been observed 18 Those first stars are thought to have been formed from existing materials a few hundred million years after the Big Bang and they died in explosions supernovae after only a few million years 18 A second generation of stars the generation in which HD 140283 is theorized to have been formed from existing materials could not have coalesced until gas heated from the supernova explosions of the earlier stars cooled down 18 This hypothesis of such stars birth and our best models of the early universe indicate that the time it took for the gases to cool was likely only a few tens of millions of years 18 The proportions of elements in such metal poor stars is modelled to tell us much of the earlier nucleosynthetic metals yield that is of elements other than hydrogen and helium from the supernovae of the locally extinct Population III stars Some of the latter may be visible in gravitational lensing in looking at deepest images such as the Hubble Ultra Deep Field i e their brief existence before their turning into supernovae As with HD 122563 CS22892 0052 and CD 38 245 HD 140283 has an excess of oxygen and the alpha elements relative to iron 1 While the proportions of these elements is much lower in HD 140283 than in the Sun they are not as low as is the case for iron The implication is that the first population of stars generated the alpha elements preferentially to other groups of elements including the iron peak and s process Unlike those other metal poor stars HD 140283 has a detectable amount of lithium 19 a consequence of HD 140283 having not yet evolved into a red giant and thereby not yet having undergone the first dredge up citation needed See also EditLibra in Chinese astronomy HE 1523 0901References Edit a b c d e f g H E Bond E P Nelan D A VandenBerg G H Schaefer D Harmer 2013 HD 140283 A Star in the Solar Neighborhood that Formed Shortly After the Big Bang The Astrophysical Journal Letters 765 1 L12 arXiv 1302 3180 Bibcode 2013ApJ 765L 12B doi 10 1088 2041 8205 765 1 L12 S2CID 119247629 a b c d van Leeuwen F 2007 Validation of the new Hipparcos reduction Astronomy and Astrophysics 474 2 653 664 arXiv 0708 1752 Bibcode 2007A amp A 474 653V doi 10 1051 0004 6361 20078357 S2CID 18759600 Gray R O 1989 The extension of the MK spectral classification system to the intermediate population II F type stars Astronomical Journal 98 3 1049 1062 Bibcode 1989AJ 98 1049G doi 10 1086 115195 a b HD 140283 SIMBAD Centre de donnees astronomiques de Strasbourg Retrieved 3 September 2017 Brown A G A et al Gaia collaboration August 2018 Gaia Data Release 2 Summary of the contents and survey properties Astronomy amp Astrophysics 616 A1 arXiv 1804 09365 Bibcode 2018A amp A 616A 1G doi 10 1051 0004 6361 201833051 Gaia DR2 record for this source at VizieR a b c d e Jiangling Tang Meredith Joyce 2021 Revised Best Estimates for the Age and Mass of the Methuselah Star HD 140283 Using MESA and Interferometry and Implications for 1D Convection Research Notes of the AAS 5 5 117 arXiv 2105 11311 Bibcode 2021RNAAS 5 117T doi 10 3847 2515 5172 ac01ca S2CID 235166094 117 a b c d Karovicova I White T R Nordlander T Lind K Casagrande L Ireland M J Huber D Creevey O Mourard D Schaefer G H Gilmore G Chiavassa A Wittkowski M Jofre P Heiter U Thevenin F Asplund M 2018 Accurate effective temperatures of the metal poor benchmark stars HD 140283 HD 122563 and HD 103095 from CHARA interferometry Monthly Notices of the Royal Astronomical Society 475 1 L81 arXiv 1801 03274 Bibcode 2018MNRAS 475L 81K doi 10 1093 mnrasl sly010 A J Gallagher et al 2010 The barium isotopic mixture for the metal poor subgiant star HD 140283 Astronomy and Astrophysics 523 A24 arXiv 1008 3541 Bibcode 2010A amp A 523A 24G doi 10 1051 0004 6361 201014970 S2CID 5920058 Crookes David 16 October 2019 How Can a Star Be Older Than the Universe Space Mysteries If the universe is 13 8 billion years old how can a star be more than 14 billion years old Space com Retrieved 18 October 2019 Hubble Finds Birth Certificate of Oldest Known Star Science Daily 7 March 2013 Retrieved 11 August 2013 David Crookes 2022 03 07 Methuselah The oldest star in the universe Space com Retrieved 2022 04 03 J W Chamberlain L H Aller 1951 The atmospheres of A type subdwarfs and 95 Leonis Astrophysical Journal 114 52 Bibcode 1951ApJ 114 52C doi 10 1086 145451 Adams W S 1912 The three prism stellar spectrograph of the Mount Wilson Solar Observatory Astrophys J 35 163 182 Bibcode 1912ApJ 35 163A doi 10 1086 141924 Hubble finds birth certificate of oldest known star Phys Org 2013 03 07 Retrieved 2013 03 07 Planck Collaboration 2020 Planck 2018 results VI Cosmological parameters See PDF page 15 Table 2 Astronomy amp Astrophysics 641 A6 arXiv 1807 06209 doi 10 1051 0004 6361 201833910 S2CID 119335614 Creevey O L Thevenin F Berio P Heiter U von Braun K Mourard D Bigot L Boyajian T S Kervella P Morel P Pichon B Chiavassa A Nardetto N Perraut K Meilland A Mc Alister H A Ten Brummelaar T A Farrington C Sturmann J Sturmann L Turner N 2015 Benchmark stars for Gaia Fundamental properties of the Population II star HD 140283 from interferometric spectroscopic and photometric data Astronomy and Astrophysics 575 A26 arXiv 1410 4780 Bibcode 2015A amp A 575A 26C doi 10 1051 0004 6361 201424310 S2CID 18003446 D Majaess 2013 02 23 Nearby Ancient Star is Almost as Old as the Universe Universe Today Retrieved 2013 02 23 a b c d R Cowen 2013 01 10 Nearby star is almost as old as the Universe Nature doi 10 1038 nature 2013 12196 S2CID 124435627 F Spite M Spite 1982 Abundance of lithium in unevolved halo stars and old disk stars Interpretation and consequences Astronomy amp Astrophysics 115 2 357 366 Bibcode 1982A amp A 115 357S Portals Astronomy Stars Spaceflight Outer space Solar System Retrieved from https en wikipedia org w index php title HD 140283 amp oldid 1129980838, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.