fbpx
Wikipedia

Isotopes of zirconium

Naturally occurring zirconium (40Zr) is composed of four stable isotopes (of which one may in the future be found radioactive), and one very long-lived radioisotope (96Zr), a primordial nuclide that decays via double beta decay with an observed half-life of 2.0×1019 years;[5] it can also undergo single beta decay, which is not yet observed, but the theoretically predicted value of t1/2 is 2.4×1020 years.[6] The second most stable radioisotope is 93Zr, which has a half-life of 1.53 million years. Thirty other radioisotopes have been observed. All have half-lives less than a day except for 95Zr (64.02 days), 88Zr (83.4 days), and 89Zr (78.41 hours). The primary decay mode is electron capture for isotopes lighter than 92Zr, and the primary mode for heavier isotopes is beta decay.

Isotopes of zirconium (40Zr)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
88Zr synth 83.4 d ε 88Y
γ
89Zr synth 78.4 h ε 89Y
β+ 89Y
γ
90Zr 51.5% stable
91Zr 11.2% stable
92Zr 17.1% stable
93Zr trace 1.53×106 y β 93Nb
94Zr 17.4% stable
96Zr 2.80% 2.0×1019 y[2] ββ 96Mo
Standard atomic weight Ar°(Zr)

List of isotopes edit

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4][n 5]
Decay
mode

Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 5]
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
78Zr 40 38 77.95523(54)# 50# ms
[>170 ns]
0+
79Zr 40 39 78.94916(43)# 56(30) ms β+, p 78Sr 5/2+#
β+ 79Y
80Zr 40 40 79.9404(16) 4.6(6) s β+ 80Y 0+
81Zr 40 41 80.93721(18) 5.5(4) s β+ (>99.9%) 81Y (3/2−)#
β+, p (<.1%) 80Sr
82Zr 40 42 81.93109(24)# 32(5) s β+ 82Y 0+
83Zr 40 43 82.92865(10) 41.6(24) s β+ (>99.9%) 83Y (1/2−)#
β+, p (<.1%) 82Sr
84Zr 40 44 83.92325(21)# 25.9(7) min β+ 84Y 0+
85Zr 40 45 84.92147(11) 7.86(4) min β+ 85Y 7/2+
85mZr 292.2(3) keV 10.9(3) s IT (92%) 85Zr (1/2−)
β+ (8%) 85Y
86Zr 40 46 85.91647(3) 16.5(1) h β+ 86Y 0+
87Zr 40 47 86.914816(9) 1.68(1) h β+ 87Y (9/2)+
87mZr 335.84(19) keV 14.0(2) s IT 87Zr (1/2)−
88Zr[n 8] 40 48 87.910227(11) 83.4(3) d EC 88Y 0+
89Zr 40 49 88.908890(4) 78.41(12) h β+ 89Y 9/2+
89mZr 587.82(10) keV 4.161(17) min IT (93.77%) 89Zr 1/2−
β+ (6.23%) 89Y
90Zr[n 9] 40 50 89.9047044(25) Stable 0+ 0.5145(40)
90m1Zr 2319.000(10) keV 809.2(20) ms IT 90Zr 5-
90m2Zr 3589.419(16) keV 131(4) ns 8+
91Zr[n 9] 40 51 90.9056458(25) Stable 5/2+ 0.1122(5)
91mZr 3167.3(4) keV 4.35(14) μs (21/2+)
92Zr[n 9] 40 52 91.9050408(25) Stable 0+ 0.1715(8)
93Zr[n 10] 40 53 92.9064760(25) 1.53(10)×106 y β (73%) 93mNb 5/2+
β (27%) 93Nb
94Zr[n 9] 40 54 93.9063152(26) Observationally stable[n 11] 0+ 0.1738(28)
95Zr[n 9] 40 55 94.9080426(26) 64.032(6) d β 95Nb 5/2+
96Zr[n 12][n 9][n 13] 40 56 95.9082734(30) 2.0(4)×1019 y ββ[n 14] 96Mo 0+ 0.0280(9)
97Zr 40 57 96.9109531(30) 16.744(11) h β 97mNb 1/2+
98Zr 40 58 97.912735(21) 30.7(4) s β 98Nb 0+
99Zr 40 59 98.916512(22) 2.1(1) s β 99mNb 1/2+
100Zr 40 60 99.91776(4) 7.1(4) s β 100Nb 0+
101Zr 40 61 100.92114(3) 2.3(1) s β 101Nb 3/2+
102Zr 40 62 101.92298(5) 2.9(2) s β 102Nb 0+
103Zr 40 63 102.92660(12) 1.3(1) s β 103Nb (5/2−)
104Zr 40 64 103.92878(43)# 1.2(3) s β 104Nb 0+
105Zr 40 65 104.93305(43)# 0.6(1) s β (>99.9%) 105Nb
β, n (<.1%) 104Nb
106Zr 40 66 105.93591(54)# 200# ms
[>300 ns]
β 106Nb 0+
107Zr 40 67 106.94075(32)# 150# ms
[>300 ns]
β 107Nb
108Zr 40 68 107.94396(64)# 80# ms
[>300 ns]
β 108Nb 0+
109Zr 40 69 108.94924(54)# 60# ms
[>300 ns]
110Zr 40 70 109.95287(86)# 30# ms
[>300 ns]
0+
111Zr[8] 40 71
112Zr[8] 40 72 0+
113Zr[9] 40 73
114Zr[10] 40 74 0+
This table header & footer:
  1. ^ mZr – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ Second most powerful known neutron absorber
  9. ^ a b c d e f Fission product
  10. ^ Long-lived fission product
  11. ^ Believed to decay by ββ to 94Mo with a half-life over 1.1×1017 years
  12. ^ Primordial radionuclide
  13. ^ Predicted to be capable of undergoing triple beta decay and quadruple beta decay with very long partial half-lives
  14. ^ Theorized to also undergo β decay to 96Nb with a partial half-life greater than 2.4×1019 y[7]

Zirconium-88 edit

88Zr is a radioisotope of zirconium with a half-life of 83.4 days. In January 2019, this isotope was discovered to have a neutron capture cross section of approximately 861,000 barns; this is several orders of magnitude greater than predicted, and greater than that of any other nuclide except xenon-135.[11]

Zirconium-89 edit

89Zr is a radioisotope of zirconium with a half-life of 78.41 hours. It is produced by proton irradiation of natural yttrium-89. Its most prominent gamma photon has an energy of 909 keV.

Zirconium-89 is employed in specialized diagnostic applications using positron emission tomography[12] imaging, for example, with zirconium-89 labeled antibodies (immuno-PET).[13] For a decay table, see Maria Vosjan. "Zirconium-89 (89Zr)". Cyclotron.nl.

Zirconium-93 edit

Yield, % per fission[14]
Thermal Fast 14 MeV
232Th not fissile 6.70 ± 0.40 5.58 ± 0.16
233U 6.979 ± 0.098 6.94 ± 0.07 5.38 ± 0.32
235U 6.346 ± 0.044 6.25 ± 0.04 5.19 ± 0.31
238U not fissile 4.913 ± 0.098 4.53 ± 0.13
239Pu 3.80 ± 0.03 3.82 ± 0.03 3.0 ± 0.3
241Pu 2.98 ± 0.04 2.98 ± 0.33 ?
Nuclide t12 Yield Q[a 1] βγ
(Ma) (%)[a 2] (keV)
99Tc 0.211 6.1385 294 β
126Sn 0.230 0.1084 4050[a 3] βγ
79Se 0.327 0.0447 151 β
135Cs 1.33 6.9110[a 4] 269 β
93Zr 1.53 5.4575 91 βγ
107Pd 6.5   1.2499 33 β
129I 15.7   0.8410 194 βγ
  1. ^ Decay energy is split among β, neutrino, and γ if any.
  2. ^ Per 65 thermal neutron fissions of 235U and 35 of 239Pu.
  3. ^ Has decay energy 380 keV, but its decay product 126Sb has decay energy 3.67 MeV.
  4. ^ Lower in thermal reactors because 135Xe, its predecessor, readily absorbs neutrons.

93Zr is a radioisotope of zirconium with a half-life of 1.53 million years, decaying through emission of a low-energy beta particle. 73% of decays populate an excited state of niobium-93, which decays with a halflife of 14 years and a low-energy gamma ray to the stable ground state of 93Nb, while the remaining 27% of decays directly populate the ground state.[15] It is one of only 7 long-lived fission products. The low specific activity and low energy of its radiations limit the radioactive hazards of this isotope.

Nuclear fission produces it at a fission yield of 6.3% (thermal neutron fission of 235U), on a par with the other most abundant fission products. Nuclear reactors usually contain large amounts of zirconium as fuel rod cladding (see zircaloy), and neutron irradiation of 92Zr also produces some 93Zr, though this is limited by 92Zr's low neutron capture cross section of 0.22 barns. Indeed, one of the primary reasons for using zirconium in fuel rod cladding is its low cross section.

93Zr also has a low neutron capture cross section of 0.7 barns.[16][17] Most fission zirconium consists of other isotopes; the other isotope with a significant neutron absorption cross section is 91Zr with a cross section of 1.24 barns. 93Zr is a less attractive candidate for disposal by nuclear transmutation than are 99Tc and 129I. Mobility in soil is relatively low, so that geological disposal may be an adequate solution. Alternatively, if the effect on the neutron economy of 93
Zr
's higher cross section is deemed acceptable, irradiated cladding and fission product Zirconium (which are mixed together in most current nuclear reprocessing methods) could be used to form new zircalloy cladding. Once the cladding is inside the reactor, the relatively low level radioactivity can be tolerated, but transport and manufacturing might require special precautions.

References edit

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ Pritychenko, Boris; Tretyak, V. "Adopted Double Beta Decay Data". National Nuclear Data Center. Retrieved 2008-02-11.
  3. ^ "Standard Atomic Weights: Zirconium". CIAAW. 1983.
  4. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  5. ^ "List of Adopted Double Beta (ββ) Decay Values". National Nuclear Data Center, Brookhaven National Laboratory.
  6. ^ H Heiskanen; M T Mustonen; J Suhonen (30 March 2007). "Theoretical half-life for beta decay of 96Zr". Journal of Physics G: Nuclear and Particle Physics. 34 (5): 837–843. doi:10.1088/0954-3899/34/5/005.
  7. ^ Finch, S.W.; Tornow, W. (2016). "Search for the β decay of 96Zr". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 806: 70–74. Bibcode:2016NIMPA.806...70F. doi:10.1016/j.nima.2015.09.098.
  8. ^ a b Ohnishi, Tetsuya; Kubo, Toshiyuki; Kusaka, Kensuke; et al. (2010). "Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a 238U Beam at 345 MeV/nucleon". J. Phys. Soc. Jpn. 79 (7). Physical Society of Japan: 073201. arXiv:1006.0305. Bibcode:2010JPSJ...79g3201T. doi:10.1143/JPSJ.79.073201.
  9. ^ Shimizu, Yohei; et al. (2018). "Observation of New Neutron-rich Isotopes among Fission Fragments from In-flight Fission of 345MeV=nucleon 238U: Search for New Isotopes Conducted Concurrently with Decay Measurement Campaigns". Journal of the Physical Society of Japan. 87 (1): 014203. Bibcode:2018JPSJ...87a4203S. doi:10.7566/JPSJ.87.014203.
  10. ^ Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.
  11. ^ Shusterman, J.A.; Scielzo, N.D.; Thomas, K.J.; Norman, E.B.; Lapi, S.E.; Loveless, C.S.; Peters, N.J.; Robertson, J.D.; Shaughnessy, D.A.; Tonchev, A.P. (2019). "The surprisingly large neutron capture cross-section of 88Zr". Nature. 565 (7739): 328–330. Bibcode:2019Natur.565..328S. doi:10.1038/s41586-018-0838-z. OSTI 1512575. PMID 30617314. S2CID 57574387.
  12. ^ Dilworth, Jonathan R.; Pascu, Sofia I. (2018). "The chemistry of PET imaging with zirconium-89". Chemical Society Reviews. 47 (8): 2554–2571. doi:10.1039/C7CS00014F. PMID 29557435.
  13. ^ Van Dongen, GA; Vosjan, MJ (August 2010). "Immuno-positron emission tomography: shedding light on clinical antibody therapy". Cancer Biotherapy and Radiopharmaceuticals. 25 (4): 375–85. doi:10.1089/cbr.2010.0812. PMID 20707716.
  14. ^ M. B. Chadwick et al, "ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at www-nds.iaea.org/exfor/endf.htm)
  15. ^ Cassette, P.; Chartier, F.; Isnard, H.; Fréchou, C.; Laszak, I.; Degros, J.P.; Bé, M.M.; Lépy, M.C.; Tartes, I. (2010). "Determination of 93Zr decay scheme and half-life". Applied Radiation and Isotopes. 68 (1): 122–130. doi:10.1016/j.apradiso.2009.08.011. PMID 19734052.
  16. ^ . National Nuclear Data Center, Brookhaven National Laboratory. 2011-12-22. Archived from the original on 2009-07-20. Retrieved 2014-11-20.
  17. ^ S. Nakamura; et al. (2007). "Thermal neutron capture cross-sections of Zirconium-91 and Zirconium-93 by prompt gamma-ray spectroscopy". Journal of Nuclear Science and Technology. 44 (1): 21–28. Bibcode:2007JNST...44...21N. doi:10.1080/18811248.2007.9711252. S2CID 96087661.
  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.

isotopes, zirconium, naturally, occurring, zirconium, 40zr, composed, four, stable, isotopes, which, future, found, radioactive, very, long, lived, radioisotope, 96zr, primordial, nuclide, that, decays, double, beta, decay, with, observed, half, life, 1019, ye. Naturally occurring zirconium 40Zr is composed of four stable isotopes of which one may in the future be found radioactive and one very long lived radioisotope 96Zr a primordial nuclide that decays via double beta decay with an observed half life of 2 0 1019 years 5 it can also undergo single beta decay which is not yet observed but the theoretically predicted value of t1 2 is 2 4 1020 years 6 The second most stable radioisotope is 93Zr which has a half life of 1 53 million years Thirty other radioisotopes have been observed All have half lives less than a day except for 95Zr 64 02 days 88Zr 83 4 days and 89Zr 78 41 hours The primary decay mode is electron capture for isotopes lighter than 92Zr and the primary mode for heavier isotopes is beta decay Isotopes of zirconium 40Zr Main isotopes 1 Decay abun dance half life t1 2 mode pro duct 88Zr synth 83 4 d e 88Y g 89Zr synth 78 4 h e 89Y b 89Y g 90Zr 51 5 stable 91Zr 11 2 stable 92Zr 17 1 stable 93Zr trace 1 53 106 y b 93Nb 94Zr 17 4 stable 96Zr 2 80 2 0 1019 y 2 b b 96MoStandard atomic weight Ar Zr 91 224 0 002 3 91 224 0 002 abridged 4 viewtalkedit Contents 1 List of isotopes 2 Zirconium 88 3 Zirconium 89 4 Zirconium 93 5 ReferencesList of isotopes editNuclide n 1 Z N Isotopic mass Da n 2 n 3 Half life n 4 n 5 Decaymode Daughterisotope n 6 Spin andparity n 7 n 5 Natural abundance mole fraction Excitation energy Normal proportion Range of variation 78Zr 40 38 77 95523 54 50 ms gt 170 ns 0 79Zr 40 39 78 94916 43 56 30 ms b p 78Sr 5 2 b 79Y 80Zr 40 40 79 9404 16 4 6 6 s b 80Y 0 81Zr 40 41 80 93721 18 5 5 4 s b gt 99 9 81Y 3 2 b p lt 1 80Sr 82Zr 40 42 81 93109 24 32 5 s b 82Y 0 83Zr 40 43 82 92865 10 41 6 24 s b gt 99 9 83Y 1 2 b p lt 1 82Sr 84Zr 40 44 83 92325 21 25 9 7 min b 84Y 0 85Zr 40 45 84 92147 11 7 86 4 min b 85Y 7 2 85mZr 292 2 3 keV 10 9 3 s IT 92 85Zr 1 2 b 8 85Y 86Zr 40 46 85 91647 3 16 5 1 h b 86Y 0 87Zr 40 47 86 914816 9 1 68 1 h b 87Y 9 2 87mZr 335 84 19 keV 14 0 2 s IT 87Zr 1 2 88Zr n 8 40 48 87 910227 11 83 4 3 d EC 88Y 0 89Zr 40 49 88 908890 4 78 41 12 h b 89Y 9 2 89mZr 587 82 10 keV 4 161 17 min IT 93 77 89Zr 1 2 b 6 23 89Y 90Zr n 9 40 50 89 9047044 25 Stable 0 0 5145 40 90m1Zr 2319 000 10 keV 809 2 20 ms IT 90Zr 5 90m2Zr 3589 419 16 keV 131 4 ns 8 91Zr n 9 40 51 90 9056458 25 Stable 5 2 0 1122 5 91mZr 3167 3 4 keV 4 35 14 ms 21 2 92Zr n 9 40 52 91 9050408 25 Stable 0 0 1715 8 93Zr n 10 40 53 92 9064760 25 1 53 10 106 y b 73 93mNb 5 2 b 27 93Nb 94Zr n 9 40 54 93 9063152 26 Observationally stable n 11 0 0 1738 28 95Zr n 9 40 55 94 9080426 26 64 032 6 d b 95Nb 5 2 96Zr n 12 n 9 n 13 40 56 95 9082734 30 2 0 4 1019 y b b n 14 96Mo 0 0 0280 9 97Zr 40 57 96 9109531 30 16 744 11 h b 97mNb 1 2 98Zr 40 58 97 912735 21 30 7 4 s b 98Nb 0 99Zr 40 59 98 916512 22 2 1 1 s b 99mNb 1 2 100Zr 40 60 99 91776 4 7 1 4 s b 100Nb 0 101Zr 40 61 100 92114 3 2 3 1 s b 101Nb 3 2 102Zr 40 62 101 92298 5 2 9 2 s b 102Nb 0 103Zr 40 63 102 92660 12 1 3 1 s b 103Nb 5 2 104Zr 40 64 103 92878 43 1 2 3 s b 104Nb 0 105Zr 40 65 104 93305 43 0 6 1 s b gt 99 9 105Nb b n lt 1 104Nb 106Zr 40 66 105 93591 54 200 ms gt 300 ns b 106Nb 0 107Zr 40 67 106 94075 32 150 ms gt 300 ns b 107Nb 108Zr 40 68 107 94396 64 80 ms gt 300 ns b 108Nb 0 109Zr 40 69 108 94924 54 60 ms gt 300 ns 110Zr 40 70 109 95287 86 30 ms gt 300 ns 0 111Zr 8 40 71 112Zr 8 40 72 0 113Zr 9 40 73 114Zr 10 40 74 0 This table header amp footer view mZr Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS Bold half life nearly stable half life longer than age of universe a b Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments Second most powerful known neutron absorber a b c d e f Fission product Long lived fission product Believed to decay by b b to 94Mo with a half life over 1 1 1017 years Primordial radionuclide Predicted to be capable of undergoing triple beta decay and quadruple beta decay with very long partial half lives Theorized to also undergo b decay to 96Nb with a partial half life greater than 2 4 1019 y 7 Zirconium 88 edit88Zr is a radioisotope of zirconium with a half life of 83 4 days In January 2019 this isotope was discovered to have a neutron capture cross section of approximately 861 000 barns this is several orders of magnitude greater than predicted and greater than that of any other nuclide except xenon 135 11 Zirconium 89 edit89Zr is a radioisotope of zirconium with a half life of 78 41 hours It is produced by proton irradiation of natural yttrium 89 Its most prominent gamma photon has an energy of 909 keV Zirconium 89 is employed in specialized diagnostic applications using positron emission tomography 12 imaging for example with zirconium 89 labeled antibodies immuno PET 13 For a decay table see Maria Vosjan Zirconium 89 89Zr Cyclotron nl Zirconium 93 editYield per fission 14 Thermal Fast 14 MeV 232Th not fissile 6 70 0 40 5 58 0 16 233U 6 979 0 098 6 94 0 07 5 38 0 32 235U 6 346 0 044 6 25 0 04 5 19 0 31 238U not fissile 4 913 0 098 4 53 0 13 239Pu 3 80 0 03 3 82 0 03 3 0 0 3 241Pu 2 98 0 04 2 98 0 33 Long lived fission productsvte Nuclide t1 2 Yield Q a 1 bg Ma a 2 keV 99Tc 0 211 6 1385 294 b 126Sn 0 230 0 1084 4050 a 3 bg 79Se 0 327 0 0447 151 b 135Cs 1 33 6 9110 a 4 269 b 93Zr 1 53 5 4575 91 bg 107Pd 6 5 1 2499 33 b 129I 15 7 0 8410 194 bg Decay energy is split among b neutrino and g if any Per 65 thermal neutron fissions of 235U and 35 of 239Pu Has decay energy 380 keV but its decay product 126Sb has decay energy 3 67 MeV Lower in thermal reactors because 135Xe its predecessor readily absorbs neutrons 93Zr is a radioisotope of zirconium with a half life of 1 53 million years decaying through emission of a low energy beta particle 73 of decays populate an excited state of niobium 93 which decays with a halflife of 14 years and a low energy gamma ray to the stable ground state of 93Nb while the remaining 27 of decays directly populate the ground state 15 It is one of only 7 long lived fission products The low specific activity and low energy of its radiations limit the radioactive hazards of this isotope Nuclear fission produces it at a fission yield of 6 3 thermal neutron fission of 235U on a par with the other most abundant fission products Nuclear reactors usually contain large amounts of zirconium as fuel rod cladding see zircaloy and neutron irradiation of 92Zr also produces some 93Zr though this is limited by 92Zr s low neutron capture cross section of 0 22 barns Indeed one of the primary reasons for using zirconium in fuel rod cladding is its low cross section 93Zr also has a low neutron capture cross section of 0 7 barns 16 17 Most fission zirconium consists of other isotopes the other isotope with a significant neutron absorption cross section is 91Zr with a cross section of 1 24 barns 93Zr is a less attractive candidate for disposal by nuclear transmutation than are 99Tc and 129I Mobility in soil is relatively low so that geological disposal may be an adequate solution Alternatively if the effect on the neutron economy of 93 Zr s higher cross section is deemed acceptable irradiated cladding and fission product Zirconium which are mixed together in most current nuclear reprocessing methods could be used to form new zircalloy cladding Once the cladding is inside the reactor the relatively low level radioactivity can be tolerated but transport and manufacturing might require special precautions References edit Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae Pritychenko Boris Tretyak V Adopted Double Beta Decay Data National Nuclear Data Center Retrieved 2008 02 11 Standard Atomic Weights Zirconium CIAAW 1983 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline Bohlke John K Chesson Lesley A Coplen Tyler B Ding Tiping Dunn Philip J H Groning Manfred Holden Norman E Meijer Harro A J 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 List of Adopted Double Beta bb Decay Values National Nuclear Data Center Brookhaven National Laboratory H Heiskanen M T Mustonen J Suhonen 30 March 2007 Theoretical half life for beta decay of 96Zr Journal of Physics G Nuclear and Particle Physics 34 5 837 843 doi 10 1088 0954 3899 34 5 005 Finch S W Tornow W 2016 Search for the b decay of 96Zr Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 806 70 74 Bibcode 2016NIMPA 806 70F doi 10 1016 j nima 2015 09 098 a b Ohnishi Tetsuya Kubo Toshiyuki Kusaka Kensuke et al 2010 Identification of 45 New Neutron Rich Isotopes Produced by In Flight Fission of a 238U Beam at 345 MeV nucleon J Phys Soc Jpn 79 7 Physical Society of Japan 073201 arXiv 1006 0305 Bibcode 2010JPSJ 79g3201T doi 10 1143 JPSJ 79 073201 Shimizu Yohei et al 2018 Observation of New Neutron rich Isotopes among Fission Fragments from In flight Fission of 345MeV nucleon 238U Search for New Isotopes Conducted Concurrently with Decay Measurement Campaigns Journal of the Physical Society of Japan 87 1 014203 Bibcode 2018JPSJ 87a4203S doi 10 7566 JPSJ 87 014203 Sumikama T et al 2021 Observation of new neutron rich isotopes in the vicinity of Zr110 Physical Review C 103 1 014614 Bibcode 2021PhRvC 103a4614S doi 10 1103 PhysRevC 103 014614 hdl 10261 260248 S2CID 234019083 Shusterman J A Scielzo N D Thomas K J Norman E B Lapi S E Loveless C S Peters N J Robertson J D Shaughnessy D A Tonchev A P 2019 The surprisingly large neutron capture cross section of 88Zr Nature 565 7739 328 330 Bibcode 2019Natur 565 328S doi 10 1038 s41586 018 0838 z OSTI 1512575 PMID 30617314 S2CID 57574387 Dilworth Jonathan R Pascu Sofia I 2018 The chemistry of PET imaging with zirconium 89 Chemical Society Reviews 47 8 2554 2571 doi 10 1039 C7CS00014F PMID 29557435 Van Dongen GA Vosjan MJ August 2010 Immuno positron emission tomography shedding light on clinical antibody therapy Cancer Biotherapy and Radiopharmaceuticals 25 4 375 85 doi 10 1089 cbr 2010 0812 PMID 20707716 M B Chadwick et al ENDF B VII 1 Nuclear Data for Science and Technology Cross Sections Covariances Fission Product Yields and Decay Data Nucl Data Sheets 112 2011 2887 accessed at www nds iaea org exfor endf htm Cassette P Chartier F Isnard H Frechou C Laszak I Degros J P Be M M Lepy M C Tartes I 2010 Determination of 93Zr decay scheme and half life Applied Radiation and Isotopes 68 1 122 130 doi 10 1016 j apradiso 2009 08 011 PMID 19734052 ENDF B VII 1 Zr 93 n g National Nuclear Data Center Brookhaven National Laboratory 2011 12 22 Archived from the original on 2009 07 20 Retrieved 2014 11 20 S Nakamura et al 2007 Thermal neutron capture cross sections of Zirconium 91 and Zirconium 93 by prompt gamma ray spectroscopy Journal of Nuclear Science and Technology 44 1 21 28 Bibcode 2007JNST 44 21N doi 10 1080 18811248 2007 9711252 S2CID 96087661 Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Retrieved from https en wikipedia org w index php title Isotopes of zirconium amp oldid 1205487411 Zirconium 94, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.