fbpx
Wikipedia

Isotopes of tin

Tin (50Sn) is the element with the greatest number of stable isotopes (ten; three of them are potentially radioactive but have not been observed to decay), which is probably related to the fact that 50 is a "magic number" of protons. Twenty-nine additional unstable isotopes are known, including the "doubly magic" tin-100 (100Sn) (discovered in 1994)[3] and tin-132 (132Sn). The longest-lived radioisotope is 126Sn, with a half-life of 230,000 years. The other 28 radioisotopes have half-lives less than a year.

Main isotopes of tin (50Sn)
Iso­tope Decay
abun­dance half-life (t1/2) mode pro­duct
112Sn 0.97% stable
114Sn 0.66% stable
115Sn 0.34% stable
116Sn 14.54% stable
117Sn 7.68% stable
118Sn 24.22% stable
119Sn 8.59% stable
120Sn 32.58% stable
122Sn 4.63% stable
124Sn 5.79% stable
126Sn trace 2.3×105 y β 126Sb
Standard atomic weight Ar°(Sn)
  • 118.710±0.007
  • 118.71±0.01 (abridged)[1][2]

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4] Normal proportion Range of variation
99Sn[n 8] 50 49 98.94933(64)# 5# ms 9/2+#
100Sn 50 50 99.93904(76) 1.1(4) s
[0.94(+54−27) s]
β+ (83%) 100In 0+
β+, p (17%) 99Cd
101Sn 50 51 100.93606(32)# 3(1) s β+ 101In 5/2+#
β+, p (rare) 100Cd
102Sn 50 52 101.93030(14) 4.5(7) s β+ 102In 0+
β+, p (rare) 101Cd
102mSn 2017(2) keV 720(220) ns (6+)
103Sn 50 53 102.92810(32)# 7.0(6) s β+ 103In 5/2+#
β+, p (rare) 102Cd
104Sn 50 54 103.92314(11) 20.8(5) s β+ 104In 0+
105Sn 50 55 104.92135(9) 34(1) s β+ 105In (5/2+)
β+, p (rare) 104Cd
106Sn 50 56 105.91688(5) 115(5) s β+ 106In 0+
107Sn 50 57 106.91564(9) 2.90(5) min β+ 107In (5/2+)
108Sn 50 58 107.911925(21) 10.30(8) min β+ 108In 0+
109Sn 50 59 108.911283(11) 18.0(2) min β+ 109In 5/2(+)
110Sn 50 60 109.907843(15) 4.11(10) h EC 110In 0+
111Sn 50 61 110.907734(7) 35.3(6) min β+ 111In 7/2+
111mSn 254.72(8) keV 12.5(10) µs 1/2+
112Sn 50 62 111.904818(5) Observationally Stable[n 9] 0+ 0.0097(1)
113Sn 50 63 112.905171(4) 115.09(3) d β+ 113In 1/2+
113mSn 77.386(19) keV 21.4(4) min IT (91.1%) 113Sn 7/2+
β+ (8.9%) 113In
114Sn 50 64 113.902779(3) Stable[n 10] 0+ 0.0066(1)
114mSn 3087.37(7) keV 733(14) ns 7−
115Sn 50 65 114.903342(3) Stable[n 10] 1/2+ 0.0034(1)
115m1Sn 612.81(4) keV 3.26(8) µs 7/2+
115m2Sn 713.64(12) keV 159(1) µs 11/2−
116Sn 50 66 115.901741(3) Stable[n 10] 0+ 0.1454(9)
117Sn 50 67 116.902952(3) Stable[n 10] 1/2+ 0.0768(7)
117m1Sn 314.58(4) keV 13.76(4) d IT 117Sn 11/2−
117m2Sn 2406.4(4) keV 1.75(7) µs (19/2+)
118Sn 50 68 117.901603(3) Stable[n 10] 0+ 0.2422(9)
119Sn 50 69 118.903308(3) Stable[n 10] 1/2+ 0.0859(4)
119m1Sn 89.531(13) keV 293.1(7) d IT 119Sn 11/2−
119m2Sn 2127.0(10) keV 9.6(12) µs (19/2+)
120Sn 50 70 119.9021947(27) Stable[n 10] 0+ 0.3258(9)
120m1Sn 2481.63(6) keV 11.8(5) µs (7−)
120m2Sn 2902.22(22) keV 6.26(11) µs (10+)#
121Sn[n 11] 50 71 120.9042355(27) 27.03(4) h β 121Sb 3/2+
121m1Sn 6.30(6) keV 43.9(5) y IT (77.6%) 121Sn 11/2−
β (22.4%) 121Sb
121m2Sn 1998.8(9) keV 5.3(5) µs (19/2+)#
121m3Sn 2834.6(18) keV 0.167(25) µs (27/2−)
122Sn[n 11] 50 72 121.9034390(29) Observationally Stable[n 12] 0+ 0.0463(3)
123Sn[n 11] 50 73 122.9057208(29) 129.2(4) d β 123Sb 11/2−
123m1Sn 24.6(4) keV 40.06(1) min β 123Sb 3/2+
123m2Sn 1945.0(10) keV 7.4(26) µs (19/2+)
123m3Sn 2153.0(12) keV 6 µs (23/2+)
123m4Sn 2713.0(14) keV 34 µs (27/2−)
124Sn[n 11] 50 74 123.9052739(15) Observationally Stable[n 13] 0+ 0.0579(5)
124m1Sn 2204.622(23) keV 0.27(6) µs 5-
124m2Sn 2325.01(4) keV 3.1(5) µs 7−
124m3Sn 2656.6(5) keV 45(5) µs (10+)#
125Sn[n 11] 50 75 124.9077841(16) 9.64(3) d β 125Sb 11/2−
125mSn 27.50(14) keV 9.52(5) min β 125Sb 3/2+
126Sn[n 14] 50 76 125.907653(11) 2.30(14)×105 y β (66.5%) 126m2Sb 0+
β (33.5%) 126m1Sb
126m1Sn 2218.99(8) keV 6.6(14) µs 7−
126m2Sn 2564.5(5) keV 7.7(5) µs (10+)#
127Sn 50 77 126.910360(26) 2.10(4) h β 127Sb (11/2−)
127mSn 4.7(3) keV 4.13(3) min β 127Sb (3/2+)
128Sn 50 78 127.910537(29) 59.07(14) min β 128Sb 0+
128mSn 2091.50(11) keV 6.5(5) s IT 128Sn (7−)
129Sn 50 79 128.91348(3) 2.23(4) min β 129Sb (3/2+)#
129mSn 35.2(3) keV 6.9(1) min β (99.99%) 129Sb (11/2−)#
IT (.002%) 129Sn
130Sn 50 80 129.913967(11) 3.72(7) min β 130Sb 0+
130m1Sn 1946.88(10) keV 1.7(1) min β 130Sb (7−)#
130m2Sn 2434.79(12) keV 1.61(15) µs (10+)
131Sn 50 81 130.917000(23) 56.0(5) s β 131Sb (3/2+)
131m1Sn 80(30)# keV 58.4(5) s β (99.99%) 131Sb (11/2−)
IT (.0004%) 131Sn
131m2Sn 4846.7(9) keV 300(20) ns (19/2− to 23/2−)
132Sn 50 82 131.917816(15) 39.7(8) s β 132Sb 0+
133Sn 50 83 132.92383(4) 1.45(3) s β (99.97%) 133Sb (7/2−)#
β, n (.0294%) 132Sb
134Sn 50 84 133.92829(11) 1.050(11) s β (83%) 134Sb 0+
β, n (17%) 133Sb
135Sn 50 85 134.93473(43)# 530(20) ms β 135Sb (7/2−)
β, n 134Sb
136Sn 50 86 135.93934(54)# 0.25(3) s β 136Sb 0+
β, n 135Sb
137Sn 50 87 136.94599(64)# 190(60) ms β 137Sb 5/2−#
138Sn 50 88 137.951840(540)# 140 ms +30-20 β 138Sb
138mSn 1344(2) keV 210(45) ns
139Sn 50 89 137.951840(540)# 130 ms β 139Sb
This table header & footer:
  1. ^ mSn – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ Heaviest known nuclide with more protons than neutrons
  9. ^ Believed to decay by β+β+ to 112Cd
  10. ^ a b c d e f g Theoretically capable of spontaneous fission
  11. ^ a b c d e Fission product
  12. ^ Believed to undergo ββ decay to 122Te
  13. ^ Believed to undergo ββ decay to 124Te with a half-life over 100×1015 years
  14. ^ Long-lived fission product

Tin-121m

Tin-121m is a radioisotope and nuclear isomer of tin with a half-life of 43.9 years.

In a normal thermal reactor, it has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce 121mSn at higher yields. For example, its yield from U-235 is 0.0007% per thermal fission and 0.002% per fast fission.[4]

Tin-126

Yield, % per fission[4]
Thermal Fast 14 MeV
232Th not fissile 0.0481 ± 0.0077 0.87 ± 0.20
233U 0.224 ± 0.018 0.278 ± 0.022 1.92 ± 0.31
235U 0.056 ± 0.004 0.0137 ± 0.001 1.70 ± 0.14
238U not fissile 0.054 ± 0.004 1.31 ± 0.21
239Pu 0.199 ± 0.016 0.26 ± 0.02 2.02 ± 0.22
241Pu 0.082 ± 0.019 0.22 ± 0.03 ?

Tin-126 is a radioisotope of tin and one of only seven long-lived fission products. While tin-126's half-life of 230,000 years translates to a low specific activity of gamma radiation, its short-lived decay products, two isomers of antimony-126, emit 17 and 40 keV gamma radiation and a 3.67 MeV beta particle on their way to stable tellurium-126, making external exposure to tin-126 a potential concern.

126Sn is in the middle of the mass range for fission products. Thermal reactors, which make up almost all current nuclear power plants, produce it at a very low yield (0.056% for 235U), since slow neutrons almost always fission 235U or 239Pu into unequal halves. Fast fission in a fast reactor or nuclear weapon, or fission of some heavy minor actinides such as californium, will produce it at higher yields.

    References

    1. ^ "Standard Atomic Weights: Tin". CIAAW. 1983.
    2. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; et al. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
    3. ^ K. Sümmerer; R. Schneider; T Faestermann; J. Friese; H. Geissel; R. Gernhäuser; H. Gilg; F. Heine; J. Homolka; P. Kienle; H. J. Körner; G. Münzenberg; J. Reinhold; K. Zeitelhack (April 1997). "Identification and decay spectroscopy of 100Sn at the GSI projectile fragment separator FRS". Nuclear Physics A. 616 (1–2): 341–345. Bibcode:1997NuPhA.616..341S. doi:10.1016/S0375-9474(97)00106-1.
    4. ^ a b M. B. Chadwick et al, "Evaluated Nuclear Data File (ENDF) : ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields, and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at https://www-nds.iaea.org/exfor/endf.htm)

    isotopes, 50sn, element, with, greatest, number, stable, isotopes, three, them, potentially, radioactive, have, been, observed, decay, which, probably, related, fact, that, magic, number, protons, twenty, nine, additional, unstable, isotopes, known, including,. Tin 50Sn is the element with the greatest number of stable isotopes ten three of them are potentially radioactive but have not been observed to decay which is probably related to the fact that 50 is a magic number of protons Twenty nine additional unstable isotopes are known including the doubly magic tin 100 100Sn discovered in 1994 3 and tin 132 132Sn The longest lived radioisotope is 126Sn with a half life of 230 000 years The other 28 radioisotopes have half lives less than a year Main isotopes of tin 50Sn Iso tope Decayabun dance half life t1 2 mode pro duct112Sn 0 97 stable114Sn 0 66 stable115Sn 0 34 stable116Sn 14 54 stable117Sn 7 68 stable118Sn 24 22 stable119Sn 8 59 stable120Sn 32 58 stable122Sn 4 63 stable124Sn 5 79 stable126Sn trace 2 3 105 y b 126SbStandard atomic weight Ar Sn 118 710 0 007118 71 0 01 abridged 1 2 viewtalkedit Contents 1 List of isotopes 2 Tin 121m 3 Tin 126 4 ReferencesList of isotopes EditNuclide n 1 Z N Isotopic mass Da n 2 n 3 Half life n 4 Decaymode n 5 Daughterisotope n 6 Spin andparity n 7 n 4 Natural abundance mole fraction Excitation energy n 4 Normal proportion Range of variation99Sn n 8 50 49 98 94933 64 5 ms 9 2 100Sn 50 50 99 93904 76 1 1 4 s 0 94 54 27 s b 83 100In 0 b p 17 99Cd101Sn 50 51 100 93606 32 3 1 s b 101In 5 2 b p rare 100Cd102Sn 50 52 101 93030 14 4 5 7 s b 102In 0 b p rare 101Cd102mSn 2017 2 keV 720 220 ns 6 103Sn 50 53 102 92810 32 7 0 6 s b 103In 5 2 b p rare 102Cd104Sn 50 54 103 92314 11 20 8 5 s b 104In 0 105Sn 50 55 104 92135 9 34 1 s b 105In 5 2 b p rare 104Cd106Sn 50 56 105 91688 5 115 5 s b 106In 0 107Sn 50 57 106 91564 9 2 90 5 min b 107In 5 2 108Sn 50 58 107 911925 21 10 30 8 min b 108In 0 109Sn 50 59 108 911283 11 18 0 2 min b 109In 5 2 110Sn 50 60 109 907843 15 4 11 10 h EC 110In 0 111Sn 50 61 110 907734 7 35 3 6 min b 111In 7 2 111mSn 254 72 8 keV 12 5 10 µs 1 2 112Sn 50 62 111 904818 5 Observationally Stable n 9 0 0 0097 1 113Sn 50 63 112 905171 4 115 09 3 d b 113In 1 2 113mSn 77 386 19 keV 21 4 4 min IT 91 1 113Sn 7 2 b 8 9 113In114Sn 50 64 113 902779 3 Stable n 10 0 0 0066 1 114mSn 3087 37 7 keV 733 14 ns 7 115Sn 50 65 114 903342 3 Stable n 10 1 2 0 0034 1 115m1Sn 612 81 4 keV 3 26 8 µs 7 2 115m2Sn 713 64 12 keV 159 1 µs 11 2 116Sn 50 66 115 901741 3 Stable n 10 0 0 1454 9 117Sn 50 67 116 902952 3 Stable n 10 1 2 0 0768 7 117m1Sn 314 58 4 keV 13 76 4 d IT 117Sn 11 2 117m2Sn 2406 4 4 keV 1 75 7 µs 19 2 118Sn 50 68 117 901603 3 Stable n 10 0 0 2422 9 119Sn 50 69 118 903308 3 Stable n 10 1 2 0 0859 4 119m1Sn 89 531 13 keV 293 1 7 d IT 119Sn 11 2 119m2Sn 2127 0 10 keV 9 6 12 µs 19 2 120Sn 50 70 119 9021947 27 Stable n 10 0 0 3258 9 120m1Sn 2481 63 6 keV 11 8 5 µs 7 120m2Sn 2902 22 22 keV 6 26 11 µs 10 121Sn n 11 50 71 120 9042355 27 27 03 4 h b 121Sb 3 2 121m1Sn 6 30 6 keV 43 9 5 y IT 77 6 121Sn 11 2 b 22 4 121Sb121m2Sn 1998 8 9 keV 5 3 5 µs 19 2 121m3Sn 2834 6 18 keV 0 167 25 µs 27 2 122Sn n 11 50 72 121 9034390 29 Observationally Stable n 12 0 0 0463 3 123Sn n 11 50 73 122 9057208 29 129 2 4 d b 123Sb 11 2 123m1Sn 24 6 4 keV 40 06 1 min b 123Sb 3 2 123m2Sn 1945 0 10 keV 7 4 26 µs 19 2 123m3Sn 2153 0 12 keV 6 µs 23 2 123m4Sn 2713 0 14 keV 34 µs 27 2 124Sn n 11 50 74 123 9052739 15 Observationally Stable n 13 0 0 0579 5 124m1Sn 2204 622 23 keV 0 27 6 µs 5 124m2Sn 2325 01 4 keV 3 1 5 µs 7 124m3Sn 2656 6 5 keV 45 5 µs 10 125Sn n 11 50 75 124 9077841 16 9 64 3 d b 125Sb 11 2 125mSn 27 50 14 keV 9 52 5 min b 125Sb 3 2 126Sn n 14 50 76 125 907653 11 2 30 14 105 y b 66 5 126m2Sb 0 b 33 5 126m1Sb126m1Sn 2218 99 8 keV 6 6 14 µs 7 126m2Sn 2564 5 5 keV 7 7 5 µs 10 127Sn 50 77 126 910360 26 2 10 4 h b 127Sb 11 2 127mSn 4 7 3 keV 4 13 3 min b 127Sb 3 2 128Sn 50 78 127 910537 29 59 07 14 min b 128Sb 0 128mSn 2091 50 11 keV 6 5 5 s IT 128Sn 7 129Sn 50 79 128 91348 3 2 23 4 min b 129Sb 3 2 129mSn 35 2 3 keV 6 9 1 min b 99 99 129Sb 11 2 IT 002 129Sn130Sn 50 80 129 913967 11 3 72 7 min b 130Sb 0 130m1Sn 1946 88 10 keV 1 7 1 min b 130Sb 7 130m2Sn 2434 79 12 keV 1 61 15 µs 10 131Sn 50 81 130 917000 23 56 0 5 s b 131Sb 3 2 131m1Sn 80 30 keV 58 4 5 s b 99 99 131Sb 11 2 IT 0004 131Sn131m2Sn 4846 7 9 keV 300 20 ns 19 2 to 23 2 132Sn 50 82 131 917816 15 39 7 8 s b 132Sb 0 133Sn 50 83 132 92383 4 1 45 3 s b 99 97 133Sb 7 2 b n 0294 132Sb134Sn 50 84 133 92829 11 1 050 11 s b 83 134Sb 0 b n 17 133Sb135Sn 50 85 134 93473 43 530 20 ms b 135Sb 7 2 b n 134Sb136Sn 50 86 135 93934 54 0 25 3 s b 136Sb 0 b n 135Sb137Sn 50 87 136 94599 64 190 60 ms b 137Sb 5 2 138Sn 50 88 137 951840 540 140 ms 30 20 b 138Sb138mSn 1344 2 keV 210 45 ns139Sn 50 89 137 951840 540 130 ms b 139SbThis table header amp footer view mSn Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS a b c Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Modes of decay EC Electron captureIT Isomeric transitionn Neutron emissionp Proton emission Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments Heaviest known nuclide with more protons than neutrons Believed to decay by b b to 112Cd a b c d e f g Theoretically capable of spontaneous fission a b c d e Fission product Believed to undergo b b decay to 122Te Believed to undergo b b decay to 124Te with a half life over 100 1015 years Long lived fission productTin 121m EditTin 121m is a radioisotope and nuclear isomer of tin with a half life of 43 9 years In a normal thermal reactor it has a very low fission product yield thus this isotope is not a significant contributor to nuclear waste Fast fission or fission of some heavier actinides will produce 121mSn at higher yields For example its yield from U 235 is 0 0007 per thermal fission and 0 002 per fast fission 4 Tin 126 EditYield per fission 4 Thermal Fast 14 MeV232Th not fissile 0 0481 0 0077 0 87 0 20233U 0 224 0 018 0 278 0 022 1 92 0 31235U 0 056 0 004 0 0137 0 001 1 70 0 14238U not fissile 0 054 0 004 1 31 0 21239Pu 0 199 0 016 0 26 0 02 2 02 0 22241Pu 0 082 0 019 0 22 0 03 Tin 126 is a radioisotope of tin and one of only seven long lived fission products While tin 126 s half life of 230 000 years translates to a low specific activity of gamma radiation its short lived decay products two isomers of antimony 126 emit 17 and 40 keV gamma radiation and a 3 67 MeV beta particle on their way to stable tellurium 126 making external exposure to tin 126 a potential concern 126Sn is in the middle of the mass range for fission products Thermal reactors which make up almost all current nuclear power plants produce it at a very low yield 0 056 for 235U since slow neutrons almost always fission 235U or 239Pu into unequal halves Fast fission in a fast reactor or nuclear weapon or fission of some heavy minor actinides such as californium will produce it at higher yields ANL factsheetReferences Edit Standard Atomic Weights Tin CIAAW 1983 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline et al 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 K Summerer R Schneider T Faestermann J Friese H Geissel R Gernhauser H Gilg F Heine J Homolka P Kienle H J Korner G Munzenberg J Reinhold K Zeitelhack April 1997 Identification and decay spectroscopy of 100Sn at the GSI projectile fragment separator FRS Nuclear Physics A 616 1 2 341 345 Bibcode 1997NuPhA 616 341S doi 10 1016 S0375 9474 97 00106 1 a b M B Chadwick et al Evaluated Nuclear Data File ENDF ENDF B VII 1 Nuclear Data for Science and Technology Cross Sections Covariances Fission Product Yields and Decay Data Nucl Data Sheets 112 2011 2887 accessed at https www nds iaea org exfor endf htm Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Retrieved from https en wikipedia org w index php title Isotopes of tin amp oldid 1069510076 Tin 126, wikipedia, wiki, book, books, library,

    article

    , read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.