fbpx
Wikipedia

Isotopes of palladium

Naturally occurring palladium (46Pd) is composed of six stable isotopes, 102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, although 102Pd and 110Pd are theoretically unstable. The most stable radioisotopes are 107Pd with a half-life of 6.5 million years, 103Pd with a half-life of 17 days, and 100Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with atomic weights ranging from 90.949 u (91Pd) to 128.96 u (129Pd). Most of these have half-lives that are less than a half an hour except 101Pd (half-life: 8.47 hours), 109Pd (half-life: 13.7 hours), and 112Pd (half-life: 21 hours).

Main isotopes of palladium (46Pd)
Iso­tope Decay
abun­dance half-life (t1/2) mode pro­duct
100Pd syn 3.63 d ε 100Rh
γ
102Pd 1.02% stable
103Pd syn 16.991 d ε 103Rh
104Pd 11.14% stable
105Pd 22.33% stable
106Pd 27.33% stable
107Pd trace 6.5×106 y β 107Ag
108Pd 26.46% stable
110Pd 11.72% stable
Standard atomic weight Ar°(Pd)
  • 106.42±0.01
  • 106.42±0.01 (abridged)[1][2]

The primary decay mode before the most abundant stable isotope, 106Pd, is electron capture and the primary mode after is beta decay. The primary decay product before 106Pd is rhodium and the primary product after is silver.

Radiogenic 107Ag is a decay product of 107Pd and was first discovered in the Santa Clara meteorite of 1978.[3] The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus Ag correlations observed in bodies, which have clearly been melted since accretion of the Solar System, must reflect the presence of short-lived nuclides in the early Solar System.[4]

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4] Normal proportion Range of variation
91Pd 46 45 90.94911(61)# 10# ms [>1.5 µs] β+ 91Rh 7/2+#
92Pd 46 46 91.94042(54)# 1.1(3) s [0.7(+4−2) s] β+ 92Rh 0+
93Pd 46 47 92.93591(43)# 1.07(12) s β+ 93Rh (9/2+)
93mPd 0+X keV 9.3(+25−17) s
94Pd 46 48 93.92877(43)# 9.0(5) s β+ 94Rh 0+
94mPd 4884.4(5) keV 530(10) ns (14+)
95Pd 46 49 94.92469(43)# 10# s β+ 95Rh 9/2+#
95mPd 1860(500)# keV 13.3(3) s β+ (94.1%) 95Rh (21/2+)
IT (5%) 95Pd
β+, p (.9%) 94Ru
96Pd 46 50 95.91816(16) 122(2) s β+ 96Rh 0+
96mPd 2530.8(1) keV 1.81(1) µs 8+
97Pd 46 51 96.91648(32) 3.10(9) min β+ 97Rh 5/2+#
98Pd 46 52 97.912721(23) 17.7(3) min β+ 98Rh 0+
99Pd 46 53 98.911768(16) 21.4(2) min β+ 99Rh (5/2)+
100Pd 46 54 99.908506(12) 3.63(9) d EC 100Rh 0+
101Pd 46 55 100.908289(19) 8.47(6) h β+ 101Rh 5/2+
102Pd 46 56 101.905609(3) Observationally Stable[n 8] 0+ 0.0102(1)
103Pd[n 9] 46 57 102.906087(3) 16.991(19) d EC 103Rh 5/2+
103mPd 784.79(10) keV 25(2) ns 11/2−
104Pd 46 58 103.904036(4) Stable[n 10] 0+ 0.1114(8)
105Pd[n 11] 46 59 104.905085(4) Stable[n 10] 5/2+ 0.2233(8)
106Pd[n 11] 46 60 105.903486(4) Stable[n 10] 0+ 0.2733(3)
107Pd[n 12] 46 61 106.905133(4) 6.5(3)×106 y β 107Ag 5/2+ trace[n 13]
107m1Pd 115.74(12) keV 0.85(10) µs 1/2+
107m2Pd 214.6(3) keV 21.3(5) s IT 107Pd 11/2−
108Pd[n 11] 46 62 107.903892(4) Stable[n 10] 0+ 0.2646(9)
109Pd[n 11] 46 63 108.905950(4) 13.7012(24) h β 109mAg 5/2+
109m1Pd 113.400(10) keV 380(50) ns 1/2+
109m2Pd 188.990(10) keV 4.696(3) min IT 109Pd 11/2−
110Pd[n 11] 46 64 109.905153(12) Observationally Stable[n 14] 0+ 0.1172(9)
111Pd 46 65 110.907671(12) 23.4(2) min β 111mAg 5/2+
111mPd 172.18(8) keV 5.5(1) h IT 111Pd 11/2−
β 111mAg
112Pd 46 66 111.907314(19) 21.03(5) h β 112Ag 0+
113Pd 46 67 112.91015(4) 93(5) s β 113mAg (5/2+)
113mPd 81.1(3) keV 0.3(1) s IT 113Pd (9/2−)
114Pd 46 68 113.910363(25) 2.42(6) min β 114Ag 0+
115Pd 46 69 114.91368(7) 25(2) s β 115mAg (5/2+)#
115mPd 89.18(25) keV 50(3) s β (92%) 115Ag (11/2−)#
IT (8%) 115Pd
116Pd 46 70 115.91416(6) 11.8(4) s β 116Ag 0+
117Pd 46 71 116.91784(6) 4.3(3) s β 117mAg (5/2+)
117mPd 203.2(3) keV 19.1(7) ms IT 117Pd (11/2−)#
118Pd 46 72 117.91898(23) 1.9(1) s β 118Ag 0+
119Pd 46 73 118.92311(32)# 0.92(13) s β 119Ag
120Pd 46 74 119.92469(13) 0.5(1) s β 120Ag 0+
121Pd 46 75 120.92887(54)# 285 ms β 121Ag
122Pd 46 76 121.93055(43)# 175 ms [>300 ns] β 122Ag 0+
123Pd 46 77 122.93493(64)# 108 ms β 123Ag
124Pd 46 78 123.93688(54)# 38 ms β 124Ag 0+
125Pd[5] 46 79 57 ms β 125Ag
126Pd[6][7] 46 80 48.6 ms β 126Ag 0+
126m1Pd 2023 keV 330 ns IT 126Pd 5−
126m2Pd 2110 keV 440 ns IT 126m1Pd 7−
127Pd 46 81 38 ms β 127Ag
128Pd[6][7] 46 82 35 ms β 128Ag 0+
128mPd 2151 keV 5.8 µs IT 128Pd 8+
129Pd 46 83 31 ms β 129Ag
This table header & footer:
  1. ^ mPd – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ Believed to decay by β+β+ to 102Ru
  9. ^ Used in medicine
  10. ^ a b c d Theoretically capable of spontaneous fission
  11. ^ a b c d e Fission product
  12. ^ Long-lived fission product
  13. ^ Cosmogenic nuclide, also found as nuclear contamination
  14. ^ Believed to decay by ββ to 110Cd with a half-life over 6×1017 years

Palladium-103

Palladium-103 is a radioisotope of the element palladium that has uses in radiation therapy for prostate cancer and uveal melanoma. Palladium-103 may be created from palladium-102 or from rhodium-103 using a cyclotron. Palladium-103 has a half-life of 16.99[8] days and decays by electron capture to rhodium-103, emitting characteristic x-rays with 21 keV of energy.

Palladium-107

Nuclide t12 Yield Q[a 1] βγ
(Ma) (%)[a 2] (keV)
99Tc 0.211 6.1385 294 β
126Sn 0.230 0.1084 4050[a 3] βγ
79Se 0.327 0.0447 151 β
93Zr 1.53 5.4575 91 βγ
135Cs 2.3   6.9110[a 4] 269 β
107Pd 6.5   1.2499 33 β
129I 15.7   0.8410 194 βγ
  1. ^ Decay energy is split among β, neutrino, and γ if any.
  2. ^ Per 65 thermal neutron fissions of 235U and 35 of 239Pu.
  3. ^ Has decay energy 380 keV, but its decay product 126Sb has decay energy 3.67 MeV.
  4. ^ Lower in thermal reactors because 135Xe, its predecessor, readily absorbs neutrons.

Palladium-107 is the second-longest lived (half-life of 6.5 million years[8]) and least radioactive (decay energy only 33 keV, specific activity 5×10−5 Ci/g) of the 7 long-lived fission products. It undergoes pure beta decay (without gamma radiation) to 107Ag, which is stable.

Its yield from thermal neutron fission of uranium-235 is 0.1629% per fission[citation needed], only 1/4 that of iodine-129, and only 1/40 those of 99Tc, 93Zr, and 135Cs. Yield from 233U is slightly lower, but yield from 239Pu is much higher, 3.3%. Fast fission or fission of some heavier actinides[which?] will produce palladium-107 at higher yields.

One source[9] estimates that palladium produced from fission contains the isotopes 104Pd (16.9%),105Pd (29.3%), 106Pd (21.3%), 107Pd (17%), 108Pd (11.7%) and 110Pd (3.8%). According to another source, the proportion of 107Pd is 9.2% for palladium from thermal neutron fission of 235U, 11.8% for 233U, and 20.4% for 239Pu (and the 239Pu yield of palladium is about 10 times that of 235U).

Because of this dilution and because 105Pd has 11 times the neutron absorption cross section, 107Pd is not amenable to disposal by nuclear transmutation. However, as a noble metal, palladium is not as mobile in the environment as iodine or technetium.

References

  • Patent application for Palladium-103 implantable radiation-delivery device[permanent dead link] (accessed 12/7/05)
  1. ^ "Standard Atomic Weights: Palladium". CIAAW. 1979.
  2. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; et al. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. ^ W. R. Kelly; G. J. Wasserburg (1978). "Evidence for the existence of 107Pd in the early solar system". Geophysical Research Letters. 5 (12): 1079–1082. Bibcode:1978GeoRL...5.1079K. doi:10.1029/GL005i012p01079.
  4. ^ J. H. Chen; G. J. Wasserburg (1990). "The isotopic composition of Ag in meteorites and the presence of 107Pd in protoplanets". Geochimica et Cosmochimica Acta. 54 (6): 1729–1743. Bibcode:1990GeCoA..54.1729C. doi:10.1016/0016-7037(90)90404-9.
  5. ^ Future Plan of the Experimental Program on Synthesizing the Heaviest Element at RIKEN, Kosuke Morita September 17, 2012, at the Wayback Machine
  6. ^ a b H. Watanabe; et al. (2013-10-08). "Isomers in 128Pd and 126Pd: Evidence for a Robust Shell Closure at the Neutron Magic Number 82 in Exotic Palladium Isotopes" (PDF). Physical Review Letters. 111 (15): 152501. Bibcode:2013PhRvL.111o2501W. doi:10.1103/PhysRevLett.111.152501. hdl:2437/215438. PMID 24160593.
  7. ^ a b "Experiments on neutron-rich atomic nuclei could help scientists to understand nuclear reactions in exploding stars". phys.org. 2013-11-29.
  8. ^ a b Winter, Mark. "Isotopes of palladium". WebElements. The University of Sheffield and WebElements Ltd, UK. Retrieved 4 March 2013.
  9. ^ R. P. Bush (1991). (PDF). Platinum Metals Review. 35 (4): 202–208. Archived from the original (PDF) on 2015-09-24. Retrieved 2011-04-02.
  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.

isotopes, palladium, naturally, occurring, palladium, 46pd, composed, stable, isotopes, 102pd, 104pd, 105pd, 106pd, 108pd, 110pd, although, 102pd, 110pd, theoretically, unstable, most, stable, radioisotopes, 107pd, with, half, life, million, years, 103pd, with. Naturally occurring palladium 46Pd is composed of six stable isotopes 102Pd 104Pd 105Pd 106Pd 108Pd and 110Pd although 102Pd and 110Pd are theoretically unstable The most stable radioisotopes are 107Pd with a half life of 6 5 million years 103Pd with a half life of 17 days and 100Pd with a half life of 3 63 days Twenty three other radioisotopes have been characterized with atomic weights ranging from 90 949 u 91Pd to 128 96 u 129Pd Most of these have half lives that are less than a half an hour except 101Pd half life 8 47 hours 109Pd half life 13 7 hours and 112Pd half life 21 hours Main isotopes of palladium 46Pd Iso tope Decayabun dance half life t1 2 mode pro duct100Pd syn 3 63 d e 100Rhg 102Pd 1 02 stable103Pd syn 16 991 d e 103Rh104Pd 11 14 stable105Pd 22 33 stable106Pd 27 33 stable107Pd trace 6 5 106 y b 107Ag108Pd 26 46 stable110Pd 11 72 stableStandard atomic weight Ar Pd 106 42 0 01106 42 0 01 abridged 1 2 viewtalkeditThe primary decay mode before the most abundant stable isotope 106Pd is electron capture and the primary mode after is beta decay The primary decay product before 106Pd is rhodium and the primary product after is silver Radiogenic 107Ag is a decay product of 107Pd and was first discovered in the Santa Clara meteorite of 1978 3 The discoverers suggest that the coalescence and differentiation of iron cored small planets may have occurred 10 million years after a nucleosynthetic event 107Pd versus Ag correlations observed in bodies which have clearly been melted since accretion of the Solar System must reflect the presence of short lived nuclides in the early Solar System 4 Contents 1 List of isotopes 2 Palladium 103 3 Palladium 107 4 ReferencesList of isotopes EditNuclide n 1 Z N Isotopic mass Da n 2 n 3 Half life n 4 Decaymode n 5 Daughterisotope n 6 Spin andparity n 7 n 4 Natural abundance mole fraction Excitation energy n 4 Normal proportion Range of variation91Pd 46 45 90 94911 61 10 ms gt 1 5 µs b 91Rh 7 2 92Pd 46 46 91 94042 54 1 1 3 s 0 7 4 2 s b 92Rh 0 93Pd 46 47 92 93591 43 1 07 12 s b 93Rh 9 2 93mPd 0 X keV 9 3 25 17 s94Pd 46 48 93 92877 43 9 0 5 s b 94Rh 0 94mPd 4884 4 5 keV 530 10 ns 14 95Pd 46 49 94 92469 43 10 s b 95Rh 9 2 95mPd 1860 500 keV 13 3 3 s b 94 1 95Rh 21 2 IT 5 95Pdb p 9 94Ru96Pd 46 50 95 91816 16 122 2 s b 96Rh 0 96mPd 2530 8 1 keV 1 81 1 µs 8 97Pd 46 51 96 91648 32 3 10 9 min b 97Rh 5 2 98Pd 46 52 97 912721 23 17 7 3 min b 98Rh 0 99Pd 46 53 98 911768 16 21 4 2 min b 99Rh 5 2 100Pd 46 54 99 908506 12 3 63 9 d EC 100Rh 0 101Pd 46 55 100 908289 19 8 47 6 h b 101Rh 5 2 102Pd 46 56 101 905609 3 Observationally Stable n 8 0 0 0102 1 103Pd n 9 46 57 102 906087 3 16 991 19 d EC 103Rh 5 2 103mPd 784 79 10 keV 25 2 ns 11 2 104Pd 46 58 103 904036 4 Stable n 10 0 0 1114 8 105Pd n 11 46 59 104 905085 4 Stable n 10 5 2 0 2233 8 106Pd n 11 46 60 105 903486 4 Stable n 10 0 0 2733 3 107Pd n 12 46 61 106 905133 4 6 5 3 106 y b 107Ag 5 2 trace n 13 107m1Pd 115 74 12 keV 0 85 10 µs 1 2 107m2Pd 214 6 3 keV 21 3 5 s IT 107Pd 11 2 108Pd n 11 46 62 107 903892 4 Stable n 10 0 0 2646 9 109Pd n 11 46 63 108 905950 4 13 7012 24 h b 109mAg 5 2 109m1Pd 113 400 10 keV 380 50 ns 1 2 109m2Pd 188 990 10 keV 4 696 3 min IT 109Pd 11 2 110Pd n 11 46 64 109 905153 12 Observationally Stable n 14 0 0 1172 9 111Pd 46 65 110 907671 12 23 4 2 min b 111mAg 5 2 111mPd 172 18 8 keV 5 5 1 h IT 111Pd 11 2 b 111mAg112Pd 46 66 111 907314 19 21 03 5 h b 112Ag 0 113Pd 46 67 112 91015 4 93 5 s b 113mAg 5 2 113mPd 81 1 3 keV 0 3 1 s IT 113Pd 9 2 114Pd 46 68 113 910363 25 2 42 6 min b 114Ag 0 115Pd 46 69 114 91368 7 25 2 s b 115mAg 5 2 115mPd 89 18 25 keV 50 3 s b 92 115Ag 11 2 IT 8 115Pd116Pd 46 70 115 91416 6 11 8 4 s b 116Ag 0 117Pd 46 71 116 91784 6 4 3 3 s b 117mAg 5 2 117mPd 203 2 3 keV 19 1 7 ms IT 117Pd 11 2 118Pd 46 72 117 91898 23 1 9 1 s b 118Ag 0 119Pd 46 73 118 92311 32 0 92 13 s b 119Ag120Pd 46 74 119 92469 13 0 5 1 s b 120Ag 0 121Pd 46 75 120 92887 54 285 ms b 121Ag122Pd 46 76 121 93055 43 175 ms gt 300 ns b 122Ag 0 123Pd 46 77 122 93493 64 108 ms b 123Ag124Pd 46 78 123 93688 54 38 ms b 124Ag 0 125Pd 5 46 79 57 ms b 125Ag126Pd 6 7 46 80 48 6 ms b 126Ag 0 126m1Pd 2023 keV 330 ns IT 126Pd 5 126m2Pd 2110 keV 440 ns IT 126m1Pd 7 127Pd 46 81 38 ms b 127Ag128Pd 6 7 46 82 35 ms b 128Ag 0 128mPd 2151 keV 5 8 µs IT 128Pd 8 129Pd 46 83 31 ms b 129AgThis table header amp footer view mPd Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS a b c Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Modes of decay EC Electron captureIT Isomeric transitionp Proton emission Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments Believed to decay by b b to 102Ru Used in medicine a b c d Theoretically capable of spontaneous fission a b c d e Fission product Long lived fission product Cosmogenic nuclide also found as nuclear contamination Believed to decay by b b to 110Cd with a half life over 6 1017 yearsPalladium 103 EditPalladium 103 is a radioisotope of the element palladium that has uses in radiation therapy for prostate cancer and uveal melanoma Palladium 103 may be created from palladium 102 or from rhodium 103 using a cyclotron Palladium 103 has a half life of 16 99 8 days and decays by electron capture to rhodium 103 emitting characteristic x rays with 21 keV of energy Palladium 107 EditLong lived fission productsvte Nuclide t1 2 Yield Q a 1 bg Ma a 2 keV 99Tc 0 211 6 1385 294 b126Sn 0 230 0 1084 4050 a 3 bg79Se 0 327 0 0447 151 b93Zr 1 53 5 4575 91 bg135Cs 2 3 6 9110 a 4 269 b107Pd 6 5 1 2499 33 b129I 15 7 0 8410 194 bg Decay energy is split among b neutrino and g if any Per 65 thermal neutron fissions of 235U and 35 of 239Pu Has decay energy 380 keV but its decay product 126Sb has decay energy 3 67 MeV Lower in thermal reactors because 135Xe its predecessor readily absorbs neutrons Palladium 107 is the second longest lived half life of 6 5 million years 8 and least radioactive decay energy only 33 keV specific activity 5 10 5 Ci g of the 7 long lived fission products It undergoes pure beta decay without gamma radiation to 107Ag which is stable Its yield from thermal neutron fission of uranium 235 is 0 1629 per fission citation needed only 1 4 that of iodine 129 and only 1 40 those of 99Tc 93Zr and 135Cs Yield from 233U is slightly lower but yield from 239Pu is much higher 3 3 Fast fission or fission of some heavier actinides which will produce palladium 107 at higher yields One source 9 estimates that palladium produced from fission contains the isotopes 104Pd 16 9 105Pd 29 3 106Pd 21 3 107Pd 17 108Pd 11 7 and 110Pd 3 8 According to another source the proportion of 107Pd is 9 2 for palladium from thermal neutron fission of 235U 11 8 for 233U and 20 4 for 239Pu and the 239Pu yield of palladium is about 10 times that of 235U Because of this dilution and because 105Pd has 11 times the neutron absorption cross section 107Pd is not amenable to disposal by nuclear transmutation However as a noble metal palladium is not as mobile in the environment as iodine or technetium References EditPatent application for Palladium 103 implantable radiation delivery device permanent dead link accessed 12 7 05 Standard Atomic Weights Palladium CIAAW 1979 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline et al 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 W R Kelly G J Wasserburg 1978 Evidence for the existence of 107Pd in the early solar system Geophysical Research Letters 5 12 1079 1082 Bibcode 1978GeoRL 5 1079K doi 10 1029 GL005i012p01079 J H Chen G J Wasserburg 1990 The isotopic composition of Ag in meteorites and the presence of 107Pd in protoplanets Geochimica et Cosmochimica Acta 54 6 1729 1743 Bibcode 1990GeCoA 54 1729C doi 10 1016 0016 7037 90 90404 9 Future Plan of the Experimental Program on Synthesizing the Heaviest Element at RIKEN Kosuke Morita Archived September 17 2012 at the Wayback Machine a b H Watanabe et al 2013 10 08 Isomers in 128Pd and 126Pd Evidence for a Robust Shell Closure at the Neutron Magic Number 82 in Exotic Palladium Isotopes PDF Physical Review Letters 111 15 152501 Bibcode 2013PhRvL 111o2501W doi 10 1103 PhysRevLett 111 152501 hdl 2437 215438 PMID 24160593 a b Experiments on neutron rich atomic nuclei could help scientists to understand nuclear reactions in exploding stars phys org 2013 11 29 a b Winter Mark Isotopes of palladium WebElements The University of Sheffield and WebElements Ltd UK Retrieved 4 March 2013 R P Bush 1991 Recovery of Platinum Group Metals from High Level Radioactive Waste PDF Platinum Metals Review 35 4 202 208 Archived from the original PDF on 2015 09 24 Retrieved 2011 04 02 Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Retrieved from https en wikipedia org w index php title Isotopes of palladium amp oldid 1138471400 Palladium 107, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.