fbpx
Wikipedia

Transmission line

In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances (this can be as short as millimetres depending on frequency). However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.

Schematic of a wave moving rightward down a lossless two-wire transmission line. Black dots represent electrons, and the arrows show the electric field.
One of the most common types of transmission line, coaxial cable.

Transmission lines are used for purposes such as connecting radio transmitters and receivers with their antennas (they are then called feed lines or feeders), distributing cable television signals, trunklines routing calls between telephone switching centres, computer network connections and high speed computer data buses. RF engineers commonly use short pieces of transmission line, usually in the form of printed planar transmission lines, arranged in certain patterns to build circuits such as filters. These circuits, known as distributed-element circuits, are an alternative to traditional circuits using discrete capacitors and inductors.

Overview

Ordinary electrical cables suffice to carry low frequency alternating current (AC), such as mains power, which reverses direction 100 to 120 times per second, and audio signals. However, they cannot be used to carry currents in the radio frequency range,[1] above about 30 kHz, because the energy tends to radiate off the cable as radio waves, causing power losses. Radio frequency currents also tend to reflect from discontinuities in the cable such as connectors and joints, and travel back down the cable toward the source.[1][2] These reflections act as bottlenecks, preventing the signal power from reaching the destination. Transmission lines use specialized construction, and impedance matching, to carry electromagnetic signals with minimal reflections and power losses. The distinguishing feature of most transmission lines is that they have uniform cross sectional dimensions along their length, giving them a uniform impedance, called the characteristic impedance,[2][3][4] to prevent reflections. Types of transmission line include parallel line (ladder line, twisted pair), coaxial cable, and planar transmission lines such as stripline and microstrip.[5][6] The higher the frequency of electromagnetic waves moving through a given cable or medium, the shorter the wavelength of the waves. Transmission lines become necessary when the transmitted frequency's wavelength is sufficiently short that the length of the cable becomes a significant part of a wavelength.

At microwave frequencies and above, power losses in transmission lines become excessive, and waveguides are used instead,[1] which function as "pipes" to confine and guide the electromagnetic waves.[6] Some sources define waveguides as a type of transmission line;[6] however, this article will not include them. At even higher frequencies, in the terahertz, infrared and visible ranges, waveguides in turn become lossy, and optical methods, (such as lenses and mirrors), are used to guide electromagnetic waves.[6]

History

Mathematical analysis of the behaviour of electrical transmission lines grew out of the work of James Clerk Maxwell, Lord Kelvin, and Oliver Heaviside. In 1855, Lord Kelvin formulated a diffusion model of the current in a submarine cable. The model correctly predicted the poor performance of the 1858 trans-Atlantic submarine telegraph cable. In 1885, Heaviside published the first papers that described his analysis of propagation in cables and the modern form of the telegrapher's equations.[7]

The four terminal model

 
Variations on the schematic electronic symbol for a transmission line.

For the purposes of analysis, an electrical transmission line can be modelled as a two-port network (also called a quadripole), as follows:

 

In the simplest case, the network is assumed to be linear (i.e. the complex voltage across either port is proportional to the complex current flowing into it when there are no reflections), and the two ports are assumed to be interchangeable. If the transmission line is uniform along its length, then its behaviour is largely described by a single parameter called the characteristic impedance, symbol Z0. This is the ratio of the complex voltage of a given wave to the complex current of the same wave at any point on the line. Typical values of Z0 are 50 or 75 ohms for a coaxial cable, about 100 ohms for a twisted pair of wires, and about 300 ohms for a common type of untwisted pair used in radio transmission.

When sending power down a transmission line, it is usually desirable that as much power as possible will be absorbed by the load and as little as possible will be reflected back to the source. This can be ensured by making the load impedance equal to Z0, in which case the transmission line is said to be matched.

 
A transmission line is drawn as two black wires. At a distance x into the line, there is current I(x) travelling through each wire, and there is a voltage difference V(x) between the wires. If the current and voltage come from a single wave (with no reflection), then V(x) / I(x) = Z0, where Z0 is the characteristic impedance of the line.

Some of the power that is fed into a transmission line is lost because of its resistance. This effect is called ohmic or resistive loss (see ohmic heating). At high frequencies, another effect called dielectric loss becomes significant, adding to the losses caused by resistance. Dielectric loss is caused when the insulating material inside the transmission line absorbs energy from the alternating electric field and converts it to heat (see dielectric heating). The transmission line is modelled with a resistance (R) and inductance (L) in series with a capacitance (C) and conductance (G) in parallel. The resistance and conductance contribute to the loss in a transmission line.

The total loss of power in a transmission line is often specified in decibels per metre (dB/m), and usually depends on the frequency of the signal. The manufacturer often supplies a chart showing the loss in dB/m at a range of frequencies. A loss of 3 dB corresponds approximately to a halving of the power.

High-frequency transmission lines can be defined as those designed to carry electromagnetic waves whose wavelengths are shorter than or comparable to the length of the line. Under these conditions, the approximations useful for calculations at lower frequencies are no longer accurate. This often occurs with radio, microwave and optical signals, metal mesh optical filters, and with the signals found in high-speed digital circuits.

Telegrapher's equations

The telegrapher's equations (or just telegraph equations) are a pair of linear differential equations which describe the voltage ( ) and current ( ) on an electrical transmission line with distance and time. They were developed by Oliver Heaviside who created the transmission line model, and are based on Maxwell's equations.

 
Schematic representation of the elementary component of a transmission line.

The transmission line model is an example of the distributed-element model. It represents the transmission line as an infinite series of two-port elementary components, each representing an infinitesimally short segment of the transmission line:

  • The distributed resistance   of the conductors is represented by a series resistor (expressed in ohms per unit length).
  • The distributed inductance   (due to the magnetic field around the wires, self-inductance, etc.) is represented by a series inductor (in henries per unit length).
  • The capacitance   between the two conductors is represented by a shunt capacitor (in farads per unit length).
  • The conductance   of the dielectric material separating the two conductors is represented by a shunt resistor between the signal wire and the return wire (in siemens per unit length).

The model consists of an infinite series of the elements shown in the figure, and the values of the components are specified per unit length so the picture of the component can be misleading.  ,  ,  , and   may also be functions of frequency. An alternative notation is to use  ,  ,   and   to emphasize that the values are derivatives with respect to length. These quantities can also be known as the primary line constants to distinguish from the secondary line constants derived from them, these being the propagation constant, attenuation constant and phase constant.

The line voltage   and the current   can be expressed in the frequency domain as

 
 
(see differential equation, angular frequency ω and imaginary unit j)

Special case of a lossless line

When the elements   and   are negligibly small the transmission line is considered as a lossless structure. In this hypothetical case, the model depends only on the   and   elements which greatly simplifies the analysis. For a lossless transmission line, the second order steady-state Telegrapher's equations are:

 
 

These are wave equations which have plane waves with equal propagation speed in the forward and reverse directions as solutions. The physical significance of this is that electromagnetic waves propagate down transmission lines and in general, there is a reflected component that interferes with the original signal. These equations are fundamental to transmission line theory.

General case of a line with losses

In the general case the loss terms,   and  , are both included, and the full form of the Telegrapher's equations become:

 
 

where   is the (complex) propagation constant. These equations are fundamental to transmission line theory. They are also wave equations, and have solutions similar to the special case, but which are a mixture of sines and cosines with exponential decay factors. Solving for the propagation constant   in terms of the primary parameters  ,  ,  , and   gives:

 

and the characteristic impedance can be expressed as

 

The solutions for   and   are:

 
 

The constants   must be determined from boundary conditions. For a voltage pulse  , starting at   and moving in the positive   direction, then the transmitted pulse   at position   can be obtained by computing the Fourier Transform,  , of  , attenuating each frequency component by  , advancing its phase by  , and taking the inverse Fourier Transform. The real and imaginary parts of   can be computed as

 
 

with

 
 

the right-hand expressions holding when neither  , nor  , nor   is zero, and with

 

where atan2 is the everywhere-defined form of two-parameter arctangent function, with arbitrary value zero when both arguments are zero.

Alternatively, the complex square root can be evaluated algebraically, to yield:

 

and

 

with the plus or minus signs chosen opposite to the direction of the wave's motion through the conducting medium. (Note that a is usually negative, since   and   are typically much smaller than   and  , respectively, so −a is usually positive. b is always positive.)

Special, low loss case

For small losses and high frequencies, the general equations can be simplified: If   and   then

 
 

Since an advance in phase by   is equivalent to a time delay by  ,   can be simply computed as

 

Heaviside condition

The Heaviside condition is a special case where the wave travels down the line without any dispersion distortion. The condition for this to take place is

 

Input impedance of transmission line

 
Looking towards a load through a length   of lossless transmission line, the impedance changes as   increases, following the blue circle on this impedance Smith chart. (This impedance is characterized by its reflection coefficient, which is the reflected voltage divided by the incident voltage.) The blue circle, centred within the chart, is sometimes called an SWR circle (short for constant standing wave ratio).

The characteristic impedance   of a transmission line is the ratio of the amplitude of a single voltage wave to its current wave. Since most transmission lines also have a reflected wave, the characteristic impedance is generally not the impedance that is measured on the line.

The impedance measured at a given distance   from the load impedance   may be expressed as

 ,

where   is the propagation constant and   is the voltage reflection coefficient measured at the load end of the transmission line. Alternatively, the above formula can be rearranged to express the input impedance in terms of the load impedance rather than the load voltage reflection coefficient:

 .

Input impedance of lossless transmission line

For a lossless transmission line, the propagation constant is purely imaginary,  , so the above formulas can be rewritten as

 

where   is the wavenumber.

In calculating   the wavelength is generally different inside the transmission line to what it would be in free-space. Consequently, the velocity factor of the material the transmission line is made of needs to be taken into account when doing such a calculation.

Special cases of lossless transmission lines

Half wave length

For the special case where   where n is an integer (meaning that the length of the line is a multiple of half a wavelength), the expression reduces to the load impedance so that

 

for all   This includes the case when  , meaning that the length of the transmission line is negligibly small compared to the wavelength. The physical significance of this is that the transmission line can be ignored (i.e. treated as a wire) in either case.

Quarter wave length

For the case where the length of the line is one quarter wavelength long, or an odd multiple of a quarter wavelength long, the input impedance becomes

 

Matched load

Another special case is when the load impedance is equal to the characteristic impedance of the line (i.e. the line is matched), in which case the impedance reduces to the characteristic impedance of the line so that

 

for all   and all  .

Short

 
Standing waves on a transmission line with an open-circuit load (top), and a short-circuit load (bottom). Black dots represent electrons, and the arrows show the electric field.

For the case of a shorted load (i.e.  ), the input impedance is purely imaginary and a periodic function of position and wavelength (frequency)

 

Open

For the case of an open load (i.e.  ), the input impedance is once again imaginary and periodic

 

Practical types

Coaxial cable

Coaxial lines confine virtually all of the electromagnetic wave to the area inside the cable. Coaxial lines can therefore be bent and twisted (subject to limits) without negative effects, and they can be strapped to conductive supports without inducing unwanted currents in them. In radio-frequency applications up to a few gigahertz, the wave propagates in the transverse electric and magnetic mode (TEM) only, which means that the electric and magnetic fields are both perpendicular to the direction of propagation (the electric field is radial, and the magnetic field is circumferential). However, at frequencies for which the wavelength (in the dielectric) is significantly shorter than the circumference of the cable other transverse modes can propagate. These modes are classified into two groups, transverse electric (TE) and transverse magnetic (TM) waveguide modes. When more than one mode can exist, bends and other irregularities in the cable geometry can cause power to be transferred from one mode to another.

The most common use for coaxial cables is for television and other signals with bandwidth of multiple megahertz. In the middle 20th century they carried long distance telephone connections.

Planar lines

Planar transmission lines are transmission lines with conductors, or in some cases dielectric strips, that are flat, ribbon-shaped lines. They are used to interconnect components on printed circuits and integrated circuits working at microwave frequencies because the planar type fits in well with the manufacturing methods for these components. Several forms of planar transmission lines exist.

Microstrip

 
A type of transmission line called a cage line, used for high power, low frequency applications. It functions similarly to a large coaxial cable. This example is the antenna feed line for a longwave radio transmitter in Poland, which operates at a frequency of 225 kHz and a power of 1200 kW.

A microstrip circuit uses a thin flat conductor which is parallel to a ground plane. Microstrip can be made by having a strip of copper on one side of a printed circuit board (PCB) or ceramic substrate while the other side is a continuous ground plane. The width of the strip, the thickness of the insulating layer (PCB or ceramic) and the dielectric constant of the insulating layer determine the characteristic impedance. Microstrip is an open structure whereas coaxial cable is a closed structure.

Stripline

A stripline circuit uses a flat strip of metal which is sandwiched between two parallel ground planes. The insulating material of the substrate forms a dielectric. The width of the strip, the thickness of the substrate and the relative permittivity of the substrate determine the characteristic impedance of the strip which is a transmission line.

Coplanar waveguide

A coplanar waveguide consists of a center strip and two adjacent outer conductors, all three of them flat structures that are deposited onto the same insulating substrate and thus are located in the same plane ("coplanar"). The width of the center conductor, the distance between inner and outer conductors, and the relative permittivity of the substrate determine the characteristic impedance of the coplanar transmission line.

Balanced lines

A balanced line is a transmission line consisting of two conductors of the same type, and equal impedance to ground and other circuits. There are many formats of balanced lines, amongst the most common are twisted pair, star quad and twin-lead.

Twisted pair

Twisted pairs are commonly used for terrestrial telephone communications. In such cables, many pairs are grouped together in a single cable, from two to several thousand.[8] The format is also used for data network distribution inside buildings, but the cable is more expensive because the transmission line parameters are tightly controlled.

Star quad

Star quad is a four-conductor cable in which all four conductors are twisted together around the cable axis. It is sometimes used for two circuits, such as 4-wire telephony and other telecommunications applications. In this configuration each pair uses two non-adjacent conductors. Other times it is used for a single, balanced line, such as audio applications and 2-wire telephony. In this configuration two non-adjacent conductors are terminated together at both ends of the cable, and the other two conductors are also terminated together.

When used for two circuits, crosstalk is reduced relative to cables with two separate twisted pairs.

When used for a single, balanced line, magnetic interference picked up by the cable arrives as a virtually perfect common mode signal, which is easily removed by coupling transformers.

The combined benefits of twisting, balanced signalling, and quadrupole pattern give outstanding noise immunity, especially advantageous for low signal level applications such as microphone cables, even when installed very close to a power cable.[9][10][11][12][13] The disadvantage is that star quad, in combining two conductors, typically has double the capacitance of similar two-conductor twisted and shielded audio cable. High capacitance causes increasing distortion and greater loss of high frequencies as distance increases.[14][15]

Twin-lead

Twin-lead consists of a pair of conductors held apart by a continuous insulator. By holding the conductors a known distance apart, the geometry is fixed and the line characteristics are reliably consistent. It is lower loss than coaxial cable because the characteristic impedance of twin-lead is generally higher than coaxial cable, leading to lower resistive losses due to the reduced current. However, it is more susceptible to interference.

Lecher lines

Lecher lines are a form of parallel conductor that can be used at UHF for creating resonant circuits. They are a convenient practical format that fills the gap between lumped components (used at HF/VHF) and resonant cavities (used at UHF/SHF).

Single-wire line

Unbalanced lines were formerly much used for telegraph transmission, but this form of communication has now fallen into disuse. Cables are similar to twisted pair in that many cores are bundled into the same cable but only one conductor is provided per circuit and there is no twisting. All the circuits on the same route use a common path for the return current (earth return). There is a power transmission version of single-wire earth return in use in many locations.

General applications

Signal transfer

Electrical transmission lines are very widely used to transmit high frequency signals over long or short distances with minimum power loss. One familiar example is the down lead from a TV or radio aerial to the receiver.

Transmission line circuits

A large variety of circuits can also be constructed with transmission lines including impedance matching circuits, filters, power dividers and directional couplers.

Stepped transmission line

 
A simple example of stepped transmission line consisting of three segments.

A stepped transmission line is used for broad range impedance matching. It can be considered as multiple transmission line segments connected in series, with the characteristic impedance of each individual element to be  .[16] The input impedance can be obtained from the successive application of the chain relation

 

where   is the wave number of the  -th transmission line segment and   is the length of this segment, and   is the front-end impedance that loads the  -th segment.

 
The impedance transformation circle along a transmission line whose characteristic impedance   is smaller than that of the input cable  . And as a result, the impedance curve is off-centred towards the   axis. Conversely, if  , the impedance curve should be off-centred towards the   axis.

Because the characteristic impedance of each transmission line segment   is often different from the impedance   of the fourth, input cable (only shown as an arrow marked   on the left side of the diagram above), the impedance transformation circle is off-centred along the   axis of the Smith Chart whose impedance representation is usually normalized against  .

Stub filters

If a short-circuited or open-circuited transmission line is wired in parallel with a line used to transfer signals from point A to point B, then it will function as a filter. The method for making stubs is similar to the method for using Lecher lines for crude frequency measurement, but it is 'working backwards'. One method recommended in the RSGB's radiocommunication handbook is to take an open-circuited length of transmission line wired in parallel with the feeder delivering signals from an aerial. By cutting the free end of the transmission line, a minimum in the strength of the signal observed at a receiver can be found. At this stage the stub filter will reject this frequency and the odd harmonics, but if the free end of the stub is shorted then the stub will become a filter rejecting the even harmonics.

Wideband filters can be achieved using multiple stubs. However, this is a somewhat dated technique. Much more compact filters can be made with other methods such as parallel-line resonators.

Pulse generation

Transmission lines are used as pulse generators. By charging the transmission line and then discharging it into a resistive load, a rectangular pulse equal in length to twice the electrical length of the line can be obtained, although with half the voltage. A Blumlein transmission line is a related pulse forming device that overcomes this limitation. These are sometimes used as the pulsed power sources for radar transmitters and other devices.

Sound

The theory of sound wave propagation is very similar mathematically to that of electromagnetic waves, so techniques from transmission line theory are also used to build structures to conduct acoustic waves; and these are called acoustic transmission lines.

See also

References

Part of this article was derived from Federal Standard 1037C.

  1. ^ a b c Jackman, Shawn M.; Matt Swartz; Marcus Burton; Thomas W. Head (2011). CWDP Certified Wireless Design Professional Official Study Guide: Exam PW0-250. John Wiley & Sons. pp. Ch. 7. ISBN 978-1118041611.
  2. ^ a b Oklobdzija, Vojin G.; Ram K. Krishnamurthy (2006). High-Performance Energy-Efficient Microprocessor Design. Springer Science & Business Media. p. 297. ISBN 978-0387340470.
  3. ^ Guru, Bhag Singh; Hüseyin R. Hızıroğlu (2004). Electromagnetic Field Theory Fundamentals, 2nd Ed. Cambridge Univ. Press. pp. 422–423. ISBN 978-1139451925.
  4. ^ Schmitt, Ron Schmitt (2002). Electromagnetics Explained: A Handbook for Wireless/ RF, EMC, and High-Speed Electronics. Newnes. pp. 153. ISBN 978-0080505237.
  5. ^ Carr, Joseph J. (1997). Microwave & Wireless Communications Technology. USA: Newnes. pp. 46–47. ISBN 978-0750697071.
  6. ^ a b c d Raisanen, Antti V.; Arto Lehto (2003). Radio Engineering for Wireless Communication and Sensor Applications. Artech House. pp. 35–37. ISBN 978-1580536691.
  7. ^ Weber, Ernst; Nebeker, Frederik (1994). The Evolution of Electrical Engineering. Piscataway, New Jersey: IEEE Press. ISBN 0-7803-1066-7.
  8. ^ Syed V. Ahamed, Victor B. Lawrence, Design and engineering of intelligent communication systems, pp.130–131, Springer, 1997 ISBN 0-7923-9870-X.
  9. ^ The Importance of Star-Quad Microphone Cable
  10. ^ Evaluating Microphone Cable Performance & Specifications 2016-05-09 at the Wayback Machine
  11. ^ The Star Quad Story 2016-12-23 at the Wayback Machine
  12. ^ What's Special About Star-Quad Cable?
  13. ^ How Starquad Works 2016-11-12 at the Wayback Machine
  14. ^ Lampen, Stephen H. (2002). Audio/Video Cable Installer's Pocket Guide. McGraw-Hill. pp. 32, 110, 112. ISBN 978-0071386210.
  15. ^ Rayburn, Ray (2011). Eargle's The Microphone Book: From Mono to Stereo to Surround – A Guide to Microphone Design and Application (3 ed.). Focal Press. pp. 164–166. ISBN 978-0240820750.
  16. ^ Qian, Chunqi; Brey, William W. (2009). "Impedance matching with an adjustable segmented transmission line". Journal of Magnetic Resonance. 199 (1): 104–110. Bibcode:2009JMagR.199..104Q. doi:10.1016/j.jmr.2009.04.005. PMID 19406676.
  • Steinmetz, Charles Proteus (27 August 1898). "The natural period of a transmission line and the frequency of lightning discharge therefrom". The Electrical World: 203–205.
  • Grant, I.S.; Phillips, W.R. (1991-08-26). Electromagnetism (2nd ed.). John Wiley. ISBN 978-0-471-92712-9.
  • Ulaby, F.T. (2004). Fundamentals of Applied Electromagnetics (2004 media ed.). Prentice Hall. ISBN 978-0-13-185089-7.
  • "Chapter 17". Radio communication handbook. Radio Society of Great Britain. 1982. p. 20. ISBN 978-0-900612-58-9.
  • Naredo, J.L.; Soudack, A.C.; Marti, J.R. (Jan 1995). "Simulation of transients on transmission lines with corona via the method of characteristics". IEE Proceedings - Generation, Transmission and Distribution. 142 (1): 81. doi:10.1049/ip-gtd:19951488. ISSN 1350-2360.

Further reading

  • Honoring of Guglielmo Marconi. Annual Dinner of the Institute at the Waldorf-Astoria. New York: American Institute of Electrical Engineers. 13 January 1902.
  • . Star-Hspice Manual. Avant! Software. June 2001. Archived from the original on 25 September 2005.
  • Cornille, P. (1990). "On the propagation of inhomogeneous waves". Journal of Physics D: Applied Physics. 23 (2): 129–135. Bibcode:1990JPhD...23..129C. doi:10.1088/0022-3727/23/2/001.
  • Farlow, S.J. (1982). Partial Differential Equations for Scientists and Engineers. J. Wiley and Sons. p. 126. ISBN 0-471-08639-8.
  • Kupershmidt, Boris A. (1998). "Remarks on random evolutions in Hamiltonian representation". J. Nonlinear Math. Phys. 5 (4): 383–395. arXiv:math-ph/9810020. Bibcode:1998JNMP....5..483K. doi:10.2991/jnmp.1998.5.4.10. S2CID 14771417. Math-ph/9810020.
  • "Transmission line matching" (PDF). Department of Electronic and Information Engineering. High Frequency Circuit Design. Hong Kong Polytechnic University. EIE403.
  • Wilson, B. (19 October 2005). . Connexions. Archived from the original on 9 January 2006.
  • Wöhlbier, John Greaton (2000). (PDF). Electrical and Computer Engineering (M.S.). Madison, WI: University of Wisconsin. §"Fundamental Equation" and §"Transforming the Telegrapher's Equations". Archived from the original (PDF) on 19 June 2006.
  • "Wave Propagation along a Transmission Line" (Educational Java Applet). Educational Resources. Keysight Technologies.[permanent dead link] (May need to add "http://www.keysight.com" to your Java Exception Site list.)
  • Qian, Chunqi; Brey, William W. (2009). "Impedance matching with an adjustable, segmented transmission line". Journal of Magnetic Resonance. 199 (1): 104–110. Bibcode:2009JMagR.199..104Q. doi:10.1016/j.jmr.2009.04.005. PMID 19406676.

External links

  • "Transmission Line Calculator (Including radiation and surface-wave excitation losses)". terahertz.tudelft.nl. Delft, NL: Technical University of Delft.
  • "Transmission Line Parameter Calculator". cecas.clemson.edu/cvel. Clemson, SC: Clemson University.

transmission, line, this, article, about, radio, frequency, component, movement, electrical, energy, electric, power, transmission, usage, acoustics, acoustic, transmission, line, electrical, engineering, transmission, line, specialized, cable, other, structur. This article is about the radio frequency component For the movement of electrical energy see Electric power transmission For the usage in acoustics see Acoustic transmission line In electrical engineering a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account This applies especially to radio frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances this can be as short as millimetres depending on frequency However the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines especially submarine telegraph cables Schematic of a wave moving rightward down a lossless two wire transmission line Black dots represent electrons and the arrows show the electric field One of the most common types of transmission line coaxial cable Transmission lines are used for purposes such as connecting radio transmitters and receivers with their antennas they are then called feed lines or feeders distributing cable television signals trunklines routing calls between telephone switching centres computer network connections and high speed computer data buses RF engineers commonly use short pieces of transmission line usually in the form of printed planar transmission lines arranged in certain patterns to build circuits such as filters These circuits known as distributed element circuits are an alternative to traditional circuits using discrete capacitors and inductors Contents 1 Overview 2 History 3 The four terminal model 4 Telegrapher s equations 4 1 Special case of a lossless line 4 2 General case of a line with losses 4 3 Special low loss case 4 4 Heaviside condition 5 Input impedance of transmission line 5 1 Input impedance of lossless transmission line 5 2 Special cases of lossless transmission lines 5 2 1 Half wave length 5 2 2 Quarter wave length 5 2 3 Matched load 5 2 4 Short 5 2 5 Open 6 Practical types 6 1 Coaxial cable 6 2 Planar lines 6 2 1 Microstrip 6 2 2 Stripline 6 2 3 Coplanar waveguide 6 3 Balanced lines 6 3 1 Twisted pair 6 3 2 Star quad 6 3 3 Twin lead 6 3 4 Lecher lines 6 4 Single wire line 7 General applications 7 1 Signal transfer 7 2 Transmission line circuits 7 2 1 Stepped transmission line 7 3 Stub filters 7 4 Pulse generation 8 Sound 9 See also 10 References 11 Further reading 12 External linksOverview EditOrdinary electrical cables suffice to carry low frequency alternating current AC such as mains power which reverses direction 100 to 120 times per second and audio signals However they cannot be used to carry currents in the radio frequency range 1 above about 30 kHz because the energy tends to radiate off the cable as radio waves causing power losses Radio frequency currents also tend to reflect from discontinuities in the cable such as connectors and joints and travel back down the cable toward the source 1 2 These reflections act as bottlenecks preventing the signal power from reaching the destination Transmission lines use specialized construction and impedance matching to carry electromagnetic signals with minimal reflections and power losses The distinguishing feature of most transmission lines is that they have uniform cross sectional dimensions along their length giving them a uniform impedance called the characteristic impedance 2 3 4 to prevent reflections Types of transmission line include parallel line ladder line twisted pair coaxial cable and planar transmission lines such as stripline and microstrip 5 6 The higher the frequency of electromagnetic waves moving through a given cable or medium the shorter the wavelength of the waves Transmission lines become necessary when the transmitted frequency s wavelength is sufficiently short that the length of the cable becomes a significant part of a wavelength At microwave frequencies and above power losses in transmission lines become excessive and waveguides are used instead 1 which function as pipes to confine and guide the electromagnetic waves 6 Some sources define waveguides as a type of transmission line 6 however this article will not include them At even higher frequencies in the terahertz infrared and visible ranges waveguides in turn become lossy and optical methods such as lenses and mirrors are used to guide electromagnetic waves 6 History EditMathematical analysis of the behaviour of electrical transmission lines grew out of the work of James Clerk Maxwell Lord Kelvin and Oliver Heaviside In 1855 Lord Kelvin formulated a diffusion model of the current in a submarine cable The model correctly predicted the poor performance of the 1858 trans Atlantic submarine telegraph cable In 1885 Heaviside published the first papers that described his analysis of propagation in cables and the modern form of the telegrapher s equations 7 The four terminal model Edit Variations on the schematic electronic symbol for a transmission line For the purposes of analysis an electrical transmission line can be modelled as a two port network also called a quadripole as follows In the simplest case the network is assumed to be linear i e the complex voltage across either port is proportional to the complex current flowing into it when there are no reflections and the two ports are assumed to be interchangeable If the transmission line is uniform along its length then its behaviour is largely described by a single parameter called the characteristic impedance symbol Z0 This is the ratio of the complex voltage of a given wave to the complex current of the same wave at any point on the line Typical values of Z0 are 50 or 75 ohms for a coaxial cable about 100 ohms for a twisted pair of wires and about 300 ohms for a common type of untwisted pair used in radio transmission When sending power down a transmission line it is usually desirable that as much power as possible will be absorbed by the load and as little as possible will be reflected back to the source This can be ensured by making the load impedance equal to Z0 in which case the transmission line is said to be matched A transmission line is drawn as two black wires At a distance x into the line there is current I x travelling through each wire and there is a voltage difference V x between the wires If the current and voltage come from a single wave with no reflection then V x I x Z0 where Z0 is the characteristic impedance of the line Some of the power that is fed into a transmission line is lost because of its resistance This effect is called ohmic or resistive loss see ohmic heating At high frequencies another effect called dielectric loss becomes significant adding to the losses caused by resistance Dielectric loss is caused when the insulating material inside the transmission line absorbs energy from the alternating electric field and converts it to heat see dielectric heating The transmission line is modelled with a resistance R and inductance L in series with a capacitance C and conductance G in parallel The resistance and conductance contribute to the loss in a transmission line The total loss of power in a transmission line is often specified in decibels per metre dB m and usually depends on the frequency of the signal The manufacturer often supplies a chart showing the loss in dB m at a range of frequencies A loss of 3 dB corresponds approximately to a halving of the power High frequency transmission lines can be defined as those designed to carry electromagnetic waves whose wavelengths are shorter than or comparable to the length of the line Under these conditions the approximations useful for calculations at lower frequencies are no longer accurate This often occurs with radio microwave and optical signals metal mesh optical filters and with the signals found in high speed digital circuits Telegrapher s equations EditMain article Telegrapher s equations See also Reflections on copper lines The telegrapher s equations or just telegraph equations are a pair of linear differential equations which describe the voltage V displaystyle V and current I displaystyle I on an electrical transmission line with distance and time They were developed by Oliver Heaviside who created the transmission line model and are based on Maxwell s equations Schematic representation of the elementary component of a transmission line The transmission line model is an example of the distributed element model It represents the transmission line as an infinite series of two port elementary components each representing an infinitesimally short segment of the transmission line The distributed resistance R displaystyle R of the conductors is represented by a series resistor expressed in ohms per unit length The distributed inductance L displaystyle L due to the magnetic field around the wires self inductance etc is represented by a series inductor in henries per unit length The capacitance C displaystyle C between the two conductors is represented by a shunt capacitor in farads per unit length The conductance G displaystyle G of the dielectric material separating the two conductors is represented by a shunt resistor between the signal wire and the return wire in siemens per unit length The model consists of an infinite series of the elements shown in the figure and the values of the components are specified per unit length so the picture of the component can be misleading R displaystyle R L displaystyle L C displaystyle C and G displaystyle G may also be functions of frequency An alternative notation is to use R displaystyle R L displaystyle L C displaystyle C and G displaystyle G to emphasize that the values are derivatives with respect to length These quantities can also be known as the primary line constants to distinguish from the secondary line constants derived from them these being the propagation constant attenuation constant and phase constant The line voltage V x displaystyle V x and the current I x displaystyle I x can be expressed in the frequency domain as V x x R j w L I x displaystyle frac partial V x partial x R j omega L I x I x x G j w C V x displaystyle frac partial I x partial x G j omega C V x see differential equation angular frequency w and imaginary unit j dd Special case of a lossless line Edit When the elements R displaystyle R and G displaystyle G are negligibly small the transmission line is considered as a lossless structure In this hypothetical case the model depends only on the L displaystyle L and C displaystyle C elements which greatly simplifies the analysis For a lossless transmission line the second order steady state Telegrapher s equations are 2 V x x 2 w 2 L C V x 0 displaystyle frac partial 2 V x partial x 2 omega 2 L C V x 0 2 I x x 2 w 2 L C I x 0 displaystyle frac partial 2 I x partial x 2 omega 2 L C I x 0 These are wave equations which have plane waves with equal propagation speed in the forward and reverse directions as solutions The physical significance of this is that electromagnetic waves propagate down transmission lines and in general there is a reflected component that interferes with the original signal These equations are fundamental to transmission line theory General case of a line with losses Edit In the general case the loss terms R displaystyle R and G displaystyle G are both included and the full form of the Telegrapher s equations become 2 V x x 2 g 2 V x displaystyle frac partial 2 V x partial x 2 gamma 2 V x 2 I x x 2 g 2 I x displaystyle frac partial 2 I x partial x 2 gamma 2 I x where g displaystyle gamma is the complex propagation constant These equations are fundamental to transmission line theory They are also wave equations and have solutions similar to the special case but which are a mixture of sines and cosines with exponential decay factors Solving for the propagation constant g displaystyle gamma in terms of the primary parameters R displaystyle R L displaystyle L G displaystyle G and C displaystyle C gives g R j w L G j w C displaystyle gamma sqrt R j omega L G j omega C and the characteristic impedance can be expressed as Z 0 R j w L G j w C displaystyle Z 0 sqrt frac R j omega L G j omega C The solutions for V x displaystyle V x and I x displaystyle I x are V x V e g x V e g x displaystyle V x V e gamma x V e gamma x I x 1 Z 0 V e g x V e g x displaystyle I x frac 1 Z 0 left V e gamma x V e gamma x right The constants V displaystyle V pm must be determined from boundary conditions For a voltage pulse V i n t displaystyle V mathrm in t starting at x 0 displaystyle x 0 and moving in the positive x displaystyle x direction then the transmitted pulse V o u t x t displaystyle V mathrm out x t at position x displaystyle x can be obtained by computing the Fourier Transform V w displaystyle tilde V omega of V i n t displaystyle V mathrm in t attenuating each frequency component by e Re g x displaystyle e operatorname Re gamma x advancing its phase by Im g x displaystyle operatorname Im gamma x and taking the inverse Fourier Transform The real and imaginary parts of g displaystyle gamma can be computed as Re g a a 2 b 2 1 4 cos ps displaystyle operatorname Re gamma alpha a 2 b 2 1 4 cos psi Im g b a 2 b 2 1 4 sin ps displaystyle operatorname Im gamma beta a 2 b 2 1 4 sin psi with a R G w 2 L C w 2 L C R w L G w C 1 displaystyle a equiv R G omega 2 L C omega 2 L C left left frac R omega L right left frac G omega C right 1 right b w C R w L G w 2 L C R w L G w C displaystyle b equiv omega C R omega L G omega 2 L C left frac R omega L frac G omega C right the right hand expressions holding when neither L displaystyle L nor C displaystyle C nor w displaystyle omega is zero and with ps 1 2 atan2 b a displaystyle psi equiv tfrac 1 2 operatorname atan2 b a where atan2 is the everywhere defined form of two parameter arctangent function with arbitrary value zero when both arguments are zero Alternatively the complex square root can be evaluated algebraically to yield a b 2 a a 2 b 2 displaystyle alpha frac pm b sqrt 2 left a sqrt a 2 b 2 right and b 1 2 a a 2 b 2 displaystyle beta pm sqrt tfrac 1 2 left a sqrt a 2 b 2 right with the plus or minus signs chosen opposite to the direction of the wave s motion through the conducting medium Note that a is usually negative since G displaystyle G and R displaystyle R are typically much smaller than w C displaystyle omega C and w L displaystyle omega L respectively so a is usually positive b is always positive Special low loss case Edit For small losses and high frequencies the general equations can be simplified If R w L 1 displaystyle tfrac R omega L ll 1 and G w C 1 displaystyle tfrac G omega C ll 1 then Re g a 1 2 L C R L G C displaystyle operatorname Re gamma alpha approx tfrac 1 2 sqrt L C left frac R L frac G C right Im g b w L C displaystyle operatorname Im gamma beta approx omega sqrt L C Since an advance in phase by w d displaystyle omega delta is equivalent to a time delay by d displaystyle delta V o u t t displaystyle V out t can be simply computed as V o u t x t V i n t L C x e 1 2 L C R L G C x displaystyle V mathrm out x t approx V mathrm in t sqrt L C x e tfrac 1 2 sqrt L C left frac R L frac G C right x Heaviside condition Edit Main article Heaviside condition The Heaviside condition is a special case where the wave travels down the line without any dispersion distortion The condition for this to take place is G C R L displaystyle frac G C frac R L Input impedance of transmission line Edit Looking towards a load through a length ℓ displaystyle ell of lossless transmission line the impedance changes as ℓ displaystyle ell increases following the blue circle on this impedance Smith chart This impedance is characterized by its reflection coefficient which is the reflected voltage divided by the incident voltage The blue circle centred within the chart is sometimes called an SWR circle short for constant standing wave ratio The characteristic impedance Z 0 displaystyle Z 0 of a transmission line is the ratio of the amplitude of a single voltage wave to its current wave Since most transmission lines also have a reflected wave the characteristic impedance is generally not the impedance that is measured on the line The impedance measured at a given distance ℓ displaystyle ell from the load impedance Z L displaystyle Z mathrm L may be expressed as Z i n ℓ V ℓ I ℓ Z 0 1 G L e 2 g ℓ 1 G L e 2 g ℓ displaystyle Z mathrm in left ell right frac V ell I ell Z 0 frac 1 mathit Gamma mathrm L e 2 gamma ell 1 mathit Gamma mathrm L e 2 gamma ell where g displaystyle gamma is the propagation constant and G L Z L Z 0 Z L Z 0 displaystyle mathit Gamma mathrm L frac Z mathrm L Z 0 Z mathrm L Z 0 is the voltage reflection coefficient measured at the load end of the transmission line Alternatively the above formula can be rearranged to express the input impedance in terms of the load impedance rather than the load voltage reflection coefficient Z i n ℓ Z 0 Z L Z 0 tanh g ℓ Z 0 Z L tanh g ℓ displaystyle Z mathrm in ell Z 0 frac Z mathrm L Z 0 tanh left gamma ell right Z 0 Z mathrm L tanh left gamma ell right Input impedance of lossless transmission line Edit For a lossless transmission line the propagation constant is purely imaginary g j b displaystyle gamma j beta so the above formulas can be rewritten as Z i n ℓ Z 0 Z L j Z 0 tan b ℓ Z 0 j Z L tan b ℓ displaystyle Z mathrm in ell Z 0 frac Z mathrm L j Z 0 tan beta ell Z 0 j Z mathrm L tan beta ell where b 2 p l displaystyle beta frac 2 pi lambda is the wavenumber In calculating b displaystyle beta the wavelength is generally different inside the transmission line to what it would be in free space Consequently the velocity factor of the material the transmission line is made of needs to be taken into account when doing such a calculation Special cases of lossless transmission lines Edit Half wave length Edit For the special case where b ℓ n p displaystyle beta ell n pi where n is an integer meaning that the length of the line is a multiple of half a wavelength the expression reduces to the load impedance so that Z i n Z L displaystyle Z mathrm in Z mathrm L for all n displaystyle n This includes the case when n 0 displaystyle n 0 meaning that the length of the transmission line is negligibly small compared to the wavelength The physical significance of this is that the transmission line can be ignored i e treated as a wire in either case Quarter wave length Edit Main article quarter wave impedance transformer For the case where the length of the line is one quarter wavelength long or an odd multiple of a quarter wavelength long the input impedance becomes Z i n Z 0 2 Z L displaystyle Z mathrm in frac Z 0 2 Z mathrm L Matched load Edit Another special case is when the load impedance is equal to the characteristic impedance of the line i e the line is matched in which case the impedance reduces to the characteristic impedance of the line so that Z i n Z L Z 0 displaystyle Z mathrm in Z mathrm L Z 0 for all ℓ displaystyle ell and all l displaystyle lambda Short Edit Standing waves on a transmission line with an open circuit load top and a short circuit load bottom Black dots represent electrons and the arrows show the electric field Main article stub For the case of a shorted load i e Z L 0 displaystyle Z mathrm L 0 the input impedance is purely imaginary and a periodic function of position and wavelength frequency Z i n ℓ j Z 0 tan b ℓ displaystyle Z mathrm in ell j Z 0 tan beta ell Open Edit Main article stub For the case of an open load i e Z L displaystyle Z mathrm L infty the input impedance is once again imaginary and periodic Z i n ℓ j Z 0 cot b ℓ displaystyle Z mathrm in ell j Z 0 cot beta ell Practical types EditCoaxial cable Edit Main article coaxial cable Coaxial lines confine virtually all of the electromagnetic wave to the area inside the cable Coaxial lines can therefore be bent and twisted subject to limits without negative effects and they can be strapped to conductive supports without inducing unwanted currents in them In radio frequency applications up to a few gigahertz the wave propagates in the transverse electric and magnetic mode TEM only which means that the electric and magnetic fields are both perpendicular to the direction of propagation the electric field is radial and the magnetic field is circumferential However at frequencies for which the wavelength in the dielectric is significantly shorter than the circumference of the cable other transverse modes can propagate These modes are classified into two groups transverse electric TE and transverse magnetic TM waveguide modes When more than one mode can exist bends and other irregularities in the cable geometry can cause power to be transferred from one mode to another The most common use for coaxial cables is for television and other signals with bandwidth of multiple megahertz In the middle 20th century they carried long distance telephone connections Planar lines Edit Main article Planar transmission line Planar transmission lines are transmission lines with conductors or in some cases dielectric strips that are flat ribbon shaped lines They are used to interconnect components on printed circuits and integrated circuits working at microwave frequencies because the planar type fits in well with the manufacturing methods for these components Several forms of planar transmission lines exist Microstrip Edit A type of transmission line called a cage line used for high power low frequency applications It functions similarly to a large coaxial cable This example is the antenna feed line for a longwave radio transmitter in Poland which operates at a frequency of 225 kHz and a power of 1200 kW Main article microstrip A microstrip circuit uses a thin flat conductor which is parallel to a ground plane Microstrip can be made by having a strip of copper on one side of a printed circuit board PCB or ceramic substrate while the other side is a continuous ground plane The width of the strip the thickness of the insulating layer PCB or ceramic and the dielectric constant of the insulating layer determine the characteristic impedance Microstrip is an open structure whereas coaxial cable is a closed structure Stripline Edit Main article Stripline A stripline circuit uses a flat strip of metal which is sandwiched between two parallel ground planes The insulating material of the substrate forms a dielectric The width of the strip the thickness of the substrate and the relative permittivity of the substrate determine the characteristic impedance of the strip which is a transmission line Coplanar waveguide Edit Main article Coplanar waveguide A coplanar waveguide consists of a center strip and two adjacent outer conductors all three of them flat structures that are deposited onto the same insulating substrate and thus are located in the same plane coplanar The width of the center conductor the distance between inner and outer conductors and the relative permittivity of the substrate determine the characteristic impedance of the coplanar transmission line Balanced lines Edit Main article Balanced line A balanced line is a transmission line consisting of two conductors of the same type and equal impedance to ground and other circuits There are many formats of balanced lines amongst the most common are twisted pair star quad and twin lead Twisted pair Edit Main article Twisted pair Twisted pairs are commonly used for terrestrial telephone communications In such cables many pairs are grouped together in a single cable from two to several thousand 8 The format is also used for data network distribution inside buildings but the cable is more expensive because the transmission line parameters are tightly controlled Star quad Edit Main article Star quad cable Star quad is a four conductor cable in which all four conductors are twisted together around the cable axis It is sometimes used for two circuits such as 4 wire telephony and other telecommunications applications In this configuration each pair uses two non adjacent conductors Other times it is used for a single balanced line such as audio applications and 2 wire telephony In this configuration two non adjacent conductors are terminated together at both ends of the cable and the other two conductors are also terminated together When used for two circuits crosstalk is reduced relative to cables with two separate twisted pairs When used for a single balanced line magnetic interference picked up by the cable arrives as a virtually perfect common mode signal which is easily removed by coupling transformers The combined benefits of twisting balanced signalling and quadrupole pattern give outstanding noise immunity especially advantageous for low signal level applications such as microphone cables even when installed very close to a power cable 9 10 11 12 13 The disadvantage is that star quad in combining two conductors typically has double the capacitance of similar two conductor twisted and shielded audio cable High capacitance causes increasing distortion and greater loss of high frequencies as distance increases 14 15 Twin lead Edit Main article Twin lead Twin lead consists of a pair of conductors held apart by a continuous insulator By holding the conductors a known distance apart the geometry is fixed and the line characteristics are reliably consistent It is lower loss than coaxial cable because the characteristic impedance of twin lead is generally higher than coaxial cable leading to lower resistive losses due to the reduced current However it is more susceptible to interference Lecher lines Edit Main article Lecher lines Lecher lines are a form of parallel conductor that can be used at UHF for creating resonant circuits They are a convenient practical format that fills the gap between lumped components used at HF VHF and resonant cavities used at UHF SHF Single wire line Edit Unbalanced lines were formerly much used for telegraph transmission but this form of communication has now fallen into disuse Cables are similar to twisted pair in that many cores are bundled into the same cable but only one conductor is provided per circuit and there is no twisting All the circuits on the same route use a common path for the return current earth return There is a power transmission version of single wire earth return in use in many locations General applications EditSignal transfer Edit Electrical transmission lines are very widely used to transmit high frequency signals over long or short distances with minimum power loss One familiar example is the down lead from a TV or radio aerial to the receiver Transmission line circuits Edit Main article Distributed element circuit A large variety of circuits can also be constructed with transmission lines including impedance matching circuits filters power dividers and directional couplers Stepped transmission line Edit See also Waveguide filter Impedance matching A simple example of stepped transmission line consisting of three segments A stepped transmission line is used for broad range impedance matching It can be considered as multiple transmission line segments connected in series with the characteristic impedance of each individual element to be Z 0 i displaystyle Z mathrm 0 i 16 The input impedance can be obtained from the successive application of the chain relation Z i 1 Z 0 i Z i j Z 0 i tan b i ℓ i Z 0 i j Z i tan b i ℓ i displaystyle Z mathrm i 1 Z mathrm 0 i frac Z mathrm i j Z mathrm 0 i tan beta mathrm i ell mathrm i Z mathrm 0 i j Z mathrm i tan beta mathrm i ell mathrm i where b i displaystyle beta mathrm i is the wave number of the i displaystyle mathrm i th transmission line segment and ℓ i displaystyle ell mathrm i is the length of this segment and Z i displaystyle Z mathrm i is the front end impedance that loads the i displaystyle mathrm i th segment The impedance transformation circle along a transmission line whose characteristic impedance Z 0 i displaystyle Z mathrm 0 i is smaller than that of the input cable Z 0 displaystyle Z 0 And as a result the impedance curve is off centred towards the x displaystyle x axis Conversely if Z 0 i gt Z 0 displaystyle Z mathrm 0 i gt Z 0 the impedance curve should be off centred towards the x displaystyle x axis Because the characteristic impedance of each transmission line segment Z 0 i displaystyle Z mathrm 0 i is often different from the impedance Z 0 displaystyle Z 0 of the fourth input cable only shown as an arrow marked Z 0 displaystyle Z 0 on the left side of the diagram above the impedance transformation circle is off centred along the x displaystyle x axis of the Smith Chart whose impedance representation is usually normalized against Z 0 displaystyle Z 0 Stub filters Edit See also Distributed element filter Stub band pass filters If a short circuited or open circuited transmission line is wired in parallel with a line used to transfer signals from point A to point B then it will function as a filter The method for making stubs is similar to the method for using Lecher lines for crude frequency measurement but it is working backwards One method recommended in the RSGB s radiocommunication handbook is to take an open circuited length of transmission line wired in parallel with the feeder delivering signals from an aerial By cutting the free end of the transmission line a minimum in the strength of the signal observed at a receiver can be found At this stage the stub filter will reject this frequency and the odd harmonics but if the free end of the stub is shorted then the stub will become a filter rejecting the even harmonics Wideband filters can be achieved using multiple stubs However this is a somewhat dated technique Much more compact filters can be made with other methods such as parallel line resonators Pulse generation Edit Transmission lines are used as pulse generators By charging the transmission line and then discharging it into a resistive load a rectangular pulse equal in length to twice the electrical length of the line can be obtained although with half the voltage A Blumlein transmission line is a related pulse forming device that overcomes this limitation These are sometimes used as the pulsed power sources for radar transmitters and other devices Sound EditThe theory of sound wave propagation is very similar mathematically to that of electromagnetic waves so techniques from transmission line theory are also used to build structures to conduct acoustic waves and these are called acoustic transmission lines See also Edit Wikimedia Commons has media related to Transmission lines Artificial transmission line Longitudinal electromagnetic wave Propagation velocity Radio frequency power transmission Time domain reflectometerReferences EditPart of this article was derived from Federal Standard 1037C a b c Jackman Shawn M Matt Swartz Marcus Burton Thomas W Head 2011 CWDP Certified Wireless Design Professional Official Study Guide Exam PW0 250 John Wiley amp Sons pp Ch 7 ISBN 978 1118041611 a b Oklobdzija Vojin G Ram K Krishnamurthy 2006 High Performance Energy Efficient Microprocessor Design Springer Science amp Business Media p 297 ISBN 978 0387340470 Guru Bhag Singh Huseyin R Hiziroglu 2004 Electromagnetic Field Theory Fundamentals 2nd Ed Cambridge Univ Press pp 422 423 ISBN 978 1139451925 Schmitt Ron Schmitt 2002 Electromagnetics Explained A Handbook for Wireless RF EMC and High Speed Electronics Newnes pp 153 ISBN 978 0080505237 Carr Joseph J 1997 Microwave amp Wireless Communications Technology USA Newnes pp 46 47 ISBN 978 0750697071 a b c d Raisanen Antti V Arto Lehto 2003 Radio Engineering for Wireless Communication and Sensor Applications Artech House pp 35 37 ISBN 978 1580536691 Weber Ernst Nebeker Frederik 1994 The Evolution of Electrical Engineering Piscataway New Jersey IEEE Press ISBN 0 7803 1066 7 Syed V Ahamed Victor B Lawrence Design and engineering of intelligent communication systems pp 130 131 Springer 1997 ISBN 0 7923 9870 X The Importance of Star Quad Microphone Cable Evaluating Microphone Cable Performance amp Specifications Archived 2016 05 09 at the Wayback Machine The Star Quad Story Archived 2016 12 23 at the Wayback Machine What s Special About Star Quad Cable How Starquad Works Archived 2016 11 12 at the Wayback Machine Lampen Stephen H 2002 Audio Video Cable Installer s Pocket Guide McGraw Hill pp 32 110 112 ISBN 978 0071386210 Rayburn Ray 2011 Eargle s The Microphone Book From Mono to Stereo to Surround A Guide to Microphone Design and Application 3 ed Focal Press pp 164 166 ISBN 978 0240820750 Qian Chunqi Brey William W 2009 Impedance matching with an adjustable segmented transmission line Journal of Magnetic Resonance 199 1 104 110 Bibcode 2009JMagR 199 104Q doi 10 1016 j jmr 2009 04 005 PMID 19406676 Steinmetz Charles Proteus 27 August 1898 The natural period of a transmission line and the frequency of lightning discharge therefrom The Electrical World 203 205 Grant I S Phillips W R 1991 08 26 Electromagnetism 2nd ed John Wiley ISBN 978 0 471 92712 9 Ulaby F T 2004 Fundamentals of Applied Electromagnetics 2004 media ed Prentice Hall ISBN 978 0 13 185089 7 Chapter 17 Radio communication handbook Radio Society of Great Britain 1982 p 20 ISBN 978 0 900612 58 9 Naredo J L Soudack A C Marti J R Jan 1995 Simulation of transients on transmission lines with corona via the method of characteristics IEE Proceedings Generation Transmission and Distribution 142 1 81 doi 10 1049 ip gtd 19951488 ISSN 1350 2360 Further reading EditHonoring of Guglielmo Marconi Annual Dinner of the Institute at the Waldorf Astoria New York American Institute of Electrical Engineers 13 January 1902 Using Transmission Line Equations and Parameters Star Hspice Manual Avant Software June 2001 Archived from the original on 25 September 2005 Cornille P 1990 On the propagation of inhomogeneous waves Journal of Physics D Applied Physics 23 2 129 135 Bibcode 1990JPhD 23 129C doi 10 1088 0022 3727 23 2 001 Farlow S J 1982 Partial Differential Equations for Scientists and Engineers J Wiley and Sons p 126 ISBN 0 471 08639 8 Kupershmidt Boris A 1998 Remarks on random evolutions in Hamiltonian representation J Nonlinear Math Phys 5 4 383 395 arXiv math ph 9810020 Bibcode 1998JNMP 5 483K doi 10 2991 jnmp 1998 5 4 10 S2CID 14771417 Math ph 9810020 Transmission line matching PDF Department of Electronic and Information Engineering High Frequency Circuit Design Hong Kong Polytechnic University EIE403 Wilson B 19 October 2005 Telegrapher s Equations Connexions Archived from the original on 9 January 2006 Wohlbier John Greaton 2000 Modeling and Analysis of a Traveling Wave under Multitone Excitation PDF Electrical and Computer Engineering M S Madison WI University of Wisconsin Fundamental Equation and Transforming the Telegrapher s Equations Archived from the original PDF on 19 June 2006 Wave Propagation along a Transmission Line Educational Java Applet Educational Resources Keysight Technologies permanent dead link May need to add http www keysight com to your Java Exception Site list Qian Chunqi Brey William W 2009 Impedance matching with an adjustable segmented transmission line Journal of Magnetic Resonance 199 1 104 110 Bibcode 2009JMagR 199 104Q doi 10 1016 j jmr 2009 04 005 PMID 19406676 External links Edit Transmission Line Calculator Including radiation and surface wave excitation losses terahertz tudelft nl Delft NL Technical University of Delft Transmission Line Parameter Calculator cecas clemson edu cvel Clemson SC Clemson University Retrieved from https en wikipedia org w index php title Transmission line amp oldid 1136652637, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.