fbpx
Wikipedia

Testin

Testin (also known as TESS) is a protein that in humans is encoded by the TES gene located on chromosome 7.[5] TES is a 47 kDa protein composed of 421 amino acids found at focal adhesions and is thought to have a role in regulation of cell motility.[6] In addition to this, TES functions as a tumour suppressor.[7] The TES gene is located within a fragile region of chromosome 7, and the promoter elements of the TES gene have been shown to be susceptible to methylation – this prevents the expression of the TES protein. TES came to greater prominence towards the end of 2007 as a potential mechanism for its tumour suppressor function was published.

TES
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesTES, TESS, TESS-2, testin LIM domain protein
External IDsOMIM: 606085; MGI: 105081; HomoloGene: 41051; GeneCards: TES; OMA:TES - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_015641
NM_152829

NM_011570
NM_207176

RefSeq (protein)

NP_056456
NP_690042

n/a

Location (UCSC)Chr 7: 116.21 – 116.26 MbChr 6: 17.07 – 17.11 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Domain organisation edit

Tes is composed of the following domains:

Domain Name Boundaries Domain type
Cysteine rich domain 1–90 No Homology
PET domain 90–200 PET domain – no structure
Linker . 201–233 no domain
LIM1 234–300 LIM domain
LIM2 300–365 LIM domain
LIM3 366–421 LIM domain

The structures of the Cysteine rich domain and the PET domain are not known. LIM domains, however, are known as modulators of protein interactions.[8] LIM domain consist of 2 zinc fingers separated by 2 hydrophobic amino acids (generally a phenylalanine and then a leucine).

Binding partners edit

TES does not appear to be an enzyme; rather it is a protein that mediates/regulates cellular functions via protein–protein interactions. Pull down experiments[9] reveal that TES has putative interactions mediated by the indicated domain:

Partner Domain ref Method
mENA/VASP LIM3 [6][9][10] Yeast two Hybrid, Pull-down assay, Structure, ITC
Arp7a ??? [6] Yeast two Hybrid
Zyxin LIM1 [6][9] Yeast two Hybrid, Pull-down assay
Actin PET? [9] Pull-down assay
α-Actinin PET? [9] Pull-down assay
Paxillin PET? [9] Pull-down assay

Garvalov et al. showed that the interaction between TES & zyxin were direct, using recombinant proteins expressed in E. coli.[9]

Some of the potential binding partners (Zyxin, mENA) can be found in focal adhesion complexes; the range of binding partners indicates a potential role for TES in-between 'privileged' Actin polymerisation and focal adhesion contacts to the extracellular matrix. This tallies with the observation that GFP-tagged TES can be seen at focal adhesions.

TES as a tumour suppressor edit

In December 2007, Boeda, Briggs et al.[10] showed that the third LIM domain of TES displaces Mena from its usual subcellular positions (focal adhesions or the cell leading edge). The ENA/VASP protein family (of which Mena is a member) are anchored to specific proteins within the cell by a peptide motif consisting of a phenylalanine residue, followed by four proline residues – known as a FPPPP motif. It is the EVH1 domains of VASP/EVL proteins that directly contact the FPPPP motif. The precise architecture of TES:MENA binding was revealed by X-ray crystallography, and showed that the 3rd LIM domain of TES covered up the FPPPP binding site within Menas EVH1 domain. Isothermal titration calorimetry showed that TES has a greater affinity for Mena than its canonical FPPPP ligand, as presented in the focal adhesion protein zyxin. Using microscopy it was shown that either over-expression of GFP-tagged TES, or just the tagged third LIM domain displaced Mena from focal adhesions and reduced mean cell velocity.

These finding were significant given that Mena is often over-expressed in cancer cells, and is thought to be partly responsible for cancer cell motility, and therefore a factor in cancer metastasis. TES is conversely often not produced in cancer cells. It is possible that a drug designed to mimic TES's interaction with Mena could be used to prevent metastasis and thus development of secondary tumours in cancer patients. The work was widely reported in the British press (the work was carried out by Cancer Research UK),[11][12][13] and also in the international press.[14][15]

Conformational change edit

Based on the observations that:[citation needed]

  • Mammalian cell derived TES binding Zyxin
  • E. coli-produced recombinant TES (rTES) does not bind Zyxin
  • An rTES construct composed of residues 201–421 (i.e., the linker and all 3 LIM domains) does bind Zyxin
  • The above rTES construct binds an N-terminal rTES construct, consisting of the cysteine rich and PET domains – IE, the two-halves of TES interact with each other.

Garvalov et al. propose that TES exists in two conformational states: A 'closed' state where the N & C halves of TES interact, obscuring the Zyxin binding site in LIM1, and an 'open' state where the Zyxin binding site is accessible and the two halves no-longer interact in the same fashion, if at all. The regulatory mechanism switching between the two states is not presently fully understood.

Phenotype edit

In RNAi experiments, cells that had impaired TES expression showed an inability to correctly organise their focal adhesions and actin stress fibres.

In gene knockout experiments, transgenic mice lacking both copies of the TES gene displayed an increased susceptibility to tumour formation when challenged with a carcinogen. Mice retaining the TES gene were less susceptible: thus, TES is a tumour suppressor gene.

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000135269 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000029552 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Tatarelli C, Linnenbach A, Mimori K, Croce CM (August 2000). "Characterization of the human TESTIN gene localized in the FRA7G region at 7q31.2". Genomics. 68 (1): 1–12. doi:10.1006/geno.2000.6272. PMID 10950921.
  6. ^ a b c d Coutts AS, MacKenzie E, Griffith E, Black DM (March 2003). "TES is a novel focal adhesion protein with a role in cell spreading". J. Cell Sci. 116 (Pt 5): 897–906. doi:10.1242/jcs.00278. PMID 12571287. S2CID 26602119.
  7. ^ Drusco A, Zanesi N, Roldo C, Trapasso F, Farber JL, Fong LY, Croce CM (August 2005). "Knockout mice reveal a tumor suppressor function for Testin". Proc. Natl. Acad. Sci. U.S.A. 102 (31): 10947–51. Bibcode:2005PNAS..10210947D. doi:10.1073/pnas.0504934102. PMC 1182460. PMID 16033868.
  8. ^ Dawid IB, Breen JJ, Toyama R (April 1998). "LIM domains: multiple roles as adapters and functional modifiers in protein interactions". Trends Genet. 14 (4): 156–62. doi:10.1016/S0168-9525(98)01424-3. PMID 9594664.
  9. ^ a b c d e f g Garvalov BK, Higgins TE, Sutherland JD, Zettl M, Scaplehorn N, Köcher T, Piddini E, Griffiths G, Way M (April 2003). "The conformational state of Tes regulates its zyxin-dependent recruitment to focal adhesions". J. Cell Biol. 161 (1): 33–9. doi:10.1083/jcb.200211015. PMC 2172870. PMID 12695497.
  10. ^ a b Boëda B, Briggs DC, Higgins T, Garvalov BK, Fadden AJ, McDonald NQ, Way M (December 2007). "Tes, a specific Mena interacting partner, breaks the rules for EVH1 binding". Mol. Cell. 28 (6): 1071–82. doi:10.1016/j.molcel.2007.10.033. PMID 18158903.
  11. ^ "Drug target to stop cancer spread". BBC News. 6 October 2010. Retrieved 6 October 2010.
  12. ^ Jha A (28 December 2007). "New light shed on how cancers spread". Science. The Guardian. Retrieved 6 October 2010.
  13. ^ Fletcher V (28 December 2007). "The Cancer 'Life Saver'". UK News. Express.co.uk. Retrieved 6 October 2010.
  14. ^ "Cancer's spreading mechanism found". Science. The Sydney Morning Herald. 29 December 2007. Retrieved 6 October 2010.
  15. ^ . The Times of India. 29 December 2007. Archived from the original on 19 October 2012. Retrieved 6 October 2010.

testin, confused, with, testin, unrelated, pseudoenzyme, also, known, tess, protein, that, humans, encoded, gene, located, chromosome, protein, composed, amino, acids, found, focal, adhesions, thought, have, role, regulation, cell, motility, addition, this, fu. Not to be confused with testin the unrelated rat pseudoenzyme Testin also known as TESS is a protein that in humans is encoded by the TES gene located on chromosome 7 5 TES is a 47 kDa protein composed of 421 amino acids found at focal adhesions and is thought to have a role in regulation of cell motility 6 In addition to this TES functions as a tumour suppressor 7 The TES gene is located within a fragile region of chromosome 7 and the promoter elements of the TES gene have been shown to be susceptible to methylation this prevents the expression of the TES protein TES came to greater prominence towards the end of 2007 as a potential mechanism for its tumour suppressor function was published TESAvailable structuresPDBOrtholog search PDBe RCSBList of PDB id codes2IYB 2XQNIdentifiersAliasesTES TESS TESS 2 testin LIM domain proteinExternal IDsOMIM 606085 MGI 105081 HomoloGene 41051 GeneCards TES OMA TES orthologsGene location Human Chr Chromosome 7 human 1 Band7q31 2Start116 210 506 bp 1 End116 258 783 bp 1 Gene location Mouse Chr Chromosome 6 mouse 2 Band6 A2 6 7 67 cMStart17 065 148 bp 2 End17 105 827 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed inseminal vesiculasaphenous veingastric mucosasuperficial temporal arterynipplemyometriumsmooth muscle tissuepopliteal arteryascending aortaamniotic fluidTop expressed inretinal pigment epitheliumpyloric antrumleft colonspermatidseminiferous tubulemedullary collecting ductgastric mucosacumulus cellmucous cell of stomachjejunumMore reference expression dataBioGPSn aGene ontologyMolecular functionzinc ion binding protein binding metal ion binding RNA binding cadherin bindingCellular componentcell junction plasma membrane nucleus focal adhesion cytoplasm cytosol protein containing complexBiological processregulation of cell population proliferation negative regulation of cell population proliferationSources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez2613621753EnsemblENSG00000135269ENSMUSG00000029552UniProtQ9UGI8P47226RefSeq mRNA NM 015641NM 152829NM 011570NM 207176RefSeq protein NP 056456NP 690042n aLocation UCSC Chr 7 116 21 116 26 MbChr 6 17 07 17 11 MbPubMed search 3 4 WikidataView Edit HumanView Edit Mouse Contents 1 Domain organisation 2 Binding partners 3 TES as a tumour suppressor 4 Conformational change 5 Phenotype 6 ReferencesDomain organisation editTes is composed of the following domains Domain Name Boundaries Domain type Cysteine rich domain 1 90 No Homology PET domain 90 200 PET domain no structure Linker 201 233 no domain LIM1 234 300 LIM domain LIM2 300 365 LIM domain LIM3 366 421 LIM domain The structures of the Cysteine rich domain and the PET domain are not known LIM domains however are known as modulators of protein interactions 8 LIM domain consist of 2 zinc fingers separated by 2 hydrophobic amino acids generally a phenylalanine and then a leucine Binding partners editTES does not appear to be an enzyme rather it is a protein that mediates regulates cellular functions via protein protein interactions Pull down experiments 9 reveal that TES has putative interactions mediated by the indicated domain Partner Domain ref Method mENA VASP LIM3 6 9 10 Yeast two Hybrid Pull down assay Structure ITC Arp7a 6 Yeast two Hybrid Zyxin LIM1 6 9 Yeast two Hybrid Pull down assay Actin PET 9 Pull down assay a Actinin PET 9 Pull down assay Paxillin PET 9 Pull down assay Garvalov et al showed that the interaction between TES amp zyxin were direct using recombinant proteins expressed in E coli 9 Some of the potential binding partners Zyxin mENA can be found in focal adhesion complexes the range of binding partners indicates a potential role for TES in between privileged Actin polymerisation and focal adhesion contacts to the extracellular matrix This tallies with the observation that GFP tagged TES can be seen at focal adhesions TES as a tumour suppressor editIn December 2007 Boeda Briggs et al 10 showed that the third LIM domain of TES displaces Mena from its usual subcellular positions focal adhesions or the cell leading edge The ENA VASP protein family of which Mena is a member are anchored to specific proteins within the cell by a peptide motif consisting of a phenylalanine residue followed by four proline residues known as a FPPPP motif It is the EVH1 domains of VASP EVL proteins that directly contact the FPPPP motif The precise architecture of TES MENA binding was revealed by X ray crystallography and showed that the 3rd LIM domain of TES covered up the FPPPP binding site within Menas EVH1 domain Isothermal titration calorimetry showed that TES has a greater affinity for Mena than its canonical FPPPP ligand as presented in the focal adhesion protein zyxin Using microscopy it was shown that either over expression of GFP tagged TES or just the tagged third LIM domain displaced Mena from focal adhesions and reduced mean cell velocity These finding were significant given that Mena is often over expressed in cancer cells and is thought to be partly responsible for cancer cell motility and therefore a factor in cancer metastasis TES is conversely often not produced in cancer cells It is possible that a drug designed to mimic TES s interaction with Mena could be used to prevent metastasis and thus development of secondary tumours in cancer patients The work was widely reported in the British press the work was carried out by Cancer Research UK 11 12 13 and also in the international press 14 15 Conformational change editBased on the observations that citation needed Mammalian cell derived TES binding Zyxin E coli produced recombinant TES rTES does not bind Zyxin An rTES construct composed of residues 201 421 i e the linker and all 3 LIM domains does bind Zyxin The above rTES construct binds an N terminal rTES construct consisting of the cysteine rich and PET domains IE the two halves of TES interact with each other Garvalov et al propose that TES exists in two conformational states A closed state where the N amp C halves of TES interact obscuring the Zyxin binding site in LIM1 and an open state where the Zyxin binding site is accessible and the two halves no longer interact in the same fashion if at all The regulatory mechanism switching between the two states is not presently fully understood Phenotype editIn RNAi experiments cells that had impaired TES expression showed an inability to correctly organise their focal adhesions and actin stress fibres In gene knockout experiments transgenic mice lacking both copies of the TES gene displayed an increased susceptibility to tumour formation when challenged with a carcinogen Mice retaining the TES gene were less susceptible thus TES is a tumour suppressor gene References edit a b c GRCh38 Ensembl release 89 ENSG00000135269 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000029552 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Tatarelli C Linnenbach A Mimori K Croce CM August 2000 Characterization of the human TESTIN gene localized in the FRA7G region at 7q31 2 Genomics 68 1 1 12 doi 10 1006 geno 2000 6272 PMID 10950921 a b c d Coutts AS MacKenzie E Griffith E Black DM March 2003 TES is a novel focal adhesion protein with a role in cell spreading J Cell Sci 116 Pt 5 897 906 doi 10 1242 jcs 00278 PMID 12571287 S2CID 26602119 Drusco A Zanesi N Roldo C Trapasso F Farber JL Fong LY Croce CM August 2005 Knockout mice reveal a tumor suppressor function for Testin Proc Natl Acad Sci U S A 102 31 10947 51 Bibcode 2005PNAS 10210947D doi 10 1073 pnas 0504934102 PMC 1182460 PMID 16033868 Dawid IB Breen JJ Toyama R April 1998 LIM domains multiple roles as adapters and functional modifiers in protein interactions Trends Genet 14 4 156 62 doi 10 1016 S0168 9525 98 01424 3 PMID 9594664 a b c d e f g Garvalov BK Higgins TE Sutherland JD Zettl M Scaplehorn N Kocher T Piddini E Griffiths G Way M April 2003 The conformational state of Tes regulates its zyxin dependent recruitment to focal adhesions J Cell Biol 161 1 33 9 doi 10 1083 jcb 200211015 PMC 2172870 PMID 12695497 a b Boeda B Briggs DC Higgins T Garvalov BK Fadden AJ McDonald NQ Way M December 2007 Tes a specific Mena interacting partner breaks the rules for EVH1 binding Mol Cell 28 6 1071 82 doi 10 1016 j molcel 2007 10 033 PMID 18158903 Drug target to stop cancer spread BBC News 6 October 2010 Retrieved 6 October 2010 Jha A 28 December 2007 New light shed on how cancers spread Science The Guardian Retrieved 6 October 2010 Fletcher V 28 December 2007 The Cancer Life Saver UK News Express co uk Retrieved 6 October 2010 Cancer s spreading mechanism found Science The Sydney Morning Herald 29 December 2007 Retrieved 6 October 2010 Clue found to checking cancer spread The Times of India 29 December 2007 Archived from the original on 19 October 2012 Retrieved 6 October 2010 Retrieved from https en wikipedia org w index php title Testin amp oldid 1209782549, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.