fbpx
Wikipedia

Solar thermal energy

Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in industry, and in the residential and commercial sectors.

Roof-mounted close-coupled thermosiphon solar water heater.
The first three units of Solnova in the foreground, with the two towers of the PS10 and PS20 solar power stations in the background.

Solar thermal collectors are classified by the United States Energy Information Administration as low-, medium-, or high-temperature collectors. Low-temperature collectors are generally unglazed and used to heat swimming pools or to heat ventilation air. Medium-temperature collectors are also usually flat plates but are used for heating water or air for residential and commercial use.

High-temperature collectors concentrate sunlight using mirrors or lenses and are generally used for fulfilling heat requirements up to 300 deg C / 20 bar pressure in industries, and for electric power production. Two categories include Concentrated Solar Thermal (CST) for fulfilling heat requirements in industries, and Concentrated Solar Power (CSP) when the heat collected is used for electric power generation. CST and CSP are not replaceable in terms of application.

The largest facilities are located in the American Mojave Desert of California and Nevada. These plants employ a variety of different technologies. The largest examples include, Ouarzazate Solar Power Station in Morocco (510 MW), Ivanpah Solar Power Facility (377 MW), Solar Energy Generating Systems installation (354 MW), and Crescent Dunes (110 MW). Spain is the other major developer of solar thermal power plants. The largest examples include, Solnova Solar Power Station (150 MW), the Andasol solar power station (150 MW), and Extresol Solar Power Station (100 MW).

History Edit

Augustin Mouchot demonstrated a solar collector with a cooling engine making ice cream at the 1878 Universal Exhibition in Paris. The first installation of solar thermal energy equipment occurred in the Sahara approximately in 1910 by Frank Shuman when a steam engine was run on steam produced by sunlight. Because liquid fuel engines were developed and found more convenient, the Sahara project was abandoned, only to be revisited several decades later.[1]

Low-temperature heating and cooling Edit

 
MIT's Solar House #1 built in 1939 used seasonal thermal energy storage (STES) for year-round heating.

Systems for utilizing low-temperature solar thermal energy include means for heat collection; usually heat storage, either short-term or interseasonal; and distribution within a structure or a district heating network. In some cases a single feature can do more than one of these things (e.g. some kinds of solar collectors also store heat). Some systems are passive, others are active (requiring other external energy to function).[2]

Heating is the most obvious application, but solar cooling can be achieved for a building or for district cooling by using a heat-driven absorption or adsorption chiller (heat pump). There is a productive coincidence that the greater the driving heat from insolation, the greater the cooling output. In 1878, Auguste Mouchout pioneered solar cooling by making ice using a solar steam engine attached to a refrigeration device.[3]

In the United States, heating, ventilation, and air conditioning (HVAC) systems account for over 25% (4.75 EJ) of the energy used in commercial buildings (50% in northern cities) and nearly half (10.1 EJ) of the energy used in residential buildings.[4][5] Solar heating, cooling, and ventilation technologies can be used to offset a portion of this energy. The most popular solar heating technology for heating buildings is the building integrated transpired solar air collection system which connects to the building's HVAC equipment. According to Solar Energy Industries Association over 500,000 m2 (5,000,000 square feet) of these panels are in operation in North America as of 2015.

In Europe, since the mid-1990s about 125 large solar-thermal district heating plants have been constructed, each with over 500 m2 (5400 ft2) of solar collectors. The largest are about 10,000 m2, with capacities of 7 MW-thermal and solar heat costs around 4 Eurocents/kWh without subsidies.[6] 40 of them have nominal capacities of 1 MW-thermal or more. The Solar District Heating program (SDH) has participation from 14 European Nations and the European Commission, and is working toward technical and market development, and holds annual conferences.[7]

Low-temperature collectors Edit

Glazed solar collectors are designed primarily for space heating. They recirculate building air through a solar air panel where the air is heated and then directed back into the building. These solar space heating systems require at least two penetrations into the building and only perform when the air in the solar collector is warmer than the building room temperature. Most glazed collectors are used in the residential sector.

 
Unglazed, "transpired" air collector
 
Building integrated unglazed transpired solar air collector with grey walls and white canopy/collection ducts

Unglazed solar collectors are primarily used to pre-heat make-up ventilation air in commercial, industrial and institutional buildings with a high ventilation load. They turn building walls or sections of walls into low cost, high performance, unglazed solar collectors. Also called, "transpired solar panels" or "solar wall", they employ a painted perforated metal solar heat absorber that also serves as the exterior wall surface of the building. Heat transfer to the air takes place on the surface of the absorber, through the metal absorber and behind the absorber. The boundary layer of solar heated air is drawn into a nearby perforation before the heat can escape by convection to the outside air. The heated air is then drawn from behind the absorber plate into the building's ventilation system.

A Trombe wall is a passive solar heating and ventilation system consisting of an air channel sandwiched between a window and a sun-facing thermal mass. During the ventilation cycle, sunlight stores heat in the thermal mass and warms the air channel causing circulation through vents at the top and bottom of the wall. During the heating cycle the Trombe wall radiates stored heat.[8]

Solar roof ponds for solar heating and cooling were developed by Harold Hay in the 1960s. A basic system consists of a roof-mounted water bladder with a movable insulating cover. This system can control heat exchange between interior and exterior environments by covering and uncovering the bladder between night and day. When heating is a concern the bladder is uncovered during the day allowing sunlight to warm the water bladder and store heat for evening use. When cooling is a concern the covered bladder draws heat from the building's interior during the day and is uncovered at night to radiate heat to the cooler atmosphere. The Skytherm house in Atascadero, California uses a prototype roof pond for heating and cooling.[9]

Solar space heating with solar air heat collectors is more popular in the USA and Canada than heating with solar liquid collectors since most buildings already have a ventilation system for heating and cooling. The two main types of solar air panels are glazed and unglazed.

Of the 21,000,000 square feet (2,000,000 m2) of solar thermal collectors produced in the United States in 2007, 16,000,000 square feet (1,500,000 m2) were of the low-temperature variety.[10] Low-temperature collectors are generally installed to heat swimming pools, although they can also be used for space heating. Collectors can use air or water as the medium to transfer the heat to their destination.

Heat storage for space heating Edit

A collection of mature technologies called seasonal thermal energy storage (STES) is capable of storing heat for months at a time, so solar heat collected primarily in Summer can be used for all-year heating. Solar-supplied STES technology has been advanced primarily in Denmark,[11] Germany,[12] and Canada,[13] and applications include individual buildings and district heating networks. Drake Landing Solar Community in Alberta, Canada has a small district system and in 2012 achieved a world record of providing 97% of the community's all-year space heating needs from the sun.[14] STES thermal storage mediums include deep aquifers; native rock surrounding clusters of small-diameter, heat exchanger equipped boreholes; large, shallow, lined pits that are filled with gravel and top-insulated; and large, insulated and buried surface water tanks.

Centralized district heating round the clock is also feasible with concentrated solar thermal (CST) storage plant.[15]

Interseasonal storage. Solar heat (or heat from other sources) can be effectively stored between opposing seasons in aquifers, underground geological strata, large specially constructed pits, and large tanks that are insulated and covered with earth.

Short-term storage. Thermal mass materials store solar energy during the day and release this energy during cooler periods. Common thermal mass materials include stone, concrete, and water. The proportion and placement of thermal mass should consider several factors such as climate, daylighting, and shading conditions. When properly incorporated, thermal mass can passively maintain comfortable temperatures while reducing energy consumption.

Solar-driven cooling Edit

Worldwide, by 2011 there were about 750 cooling systems with solar-driven heat pumps, and annual market growth was 40 to 70% over the prior seven years. It is a niche market because the economics are challenging, with the annual number of cooling hours a limiting factor. Respectively, the annual cooling hours are roughly 1000 in the Mediterranean, 2500 in Southeast Asia, and only 50 to 200 in Central Europe. However, system construction costs dropped about 50% between 2007 and 2011. The International Energy Agency (IEA) Solar Heating and Cooling program (IEA-SHC) task groups working on further development of the technologies involved.[16]

Solar heat-driven ventilation Edit

A solar chimney (or thermal chimney) is a passive solar ventilation system composed of a hollow thermal mass connecting the interior and exterior of a building. As the chimney warms, the air inside is heated causing an updraft that pulls air through the building. These systems have been in use since Roman times and remain common in the Middle East.

Process heat Edit

 
Solar Evaporation Ponds in the Atacama Desert.

Solar process heating systems are designed to provide large quantities of hot water or space heating for nonresidential buildings.[17]

Evaporation ponds are shallow ponds that concentrate dissolved solids through evaporation. The use of evaporation ponds to obtain salt from sea water is one of the oldest applications of solar energy. Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams. Altogether, evaporation ponds represent one of the largest commercial applications of solar energy in use today.[18]

Unglazed transpired collectors are perforated sun-facing walls used for preheating ventilation air. Transpired collectors can also be roof mounted for year-round use and can raise the incoming air temperature up to 22 °C and deliver outlet temperatures of 45-60 °C. The short payback period of transpired collectors (3 to 12 years) make them a more cost-effective alternative to glazed collection systems. As of 2015, over 4000 systems with a combined collector area of 500,000 m2 had been installed worldwide. Representatives include an 860 m2 collector in Costa Rica used for drying coffee beans and a 1300 m2 collector in Coimbatore, India used for drying marigolds.[19][20]

A food processing facility in Modesto, California uses parabolic troughs to produce steam used in the manufacturing process. The 5,000 m2 collector area is expected to provide 15 TJ per year.[21]

Medium-temperature collectors Edit

These collectors could be used to produce approximately 50% and more of the hot water needed for residential and commercial use in the United States.[22] In the United States, a typical system costs $4000–$6000 retail ($1400 to $2200 wholesale for the materials) and 30% of the system qualifies for a federal tax credit + additional state credit exists in about half of the states. Labor for a simple open loop system in southern climates can take 3–5 hours for the installation and 4–6 hours in Northern areas. Northern system require more collector area and more complex plumbing to protect the collector from freezing. With this incentive, the payback time for a typical household is four to nine years, depending on the state. Similar subsidies exist in parts of Europe. A crew of one solar plumber and two assistants with minimal training can install a system per day. Thermosiphon installation have negligible maintenance costs (costs rise if antifreeze and mains power are used for circulation) and in the US reduces a households' operating costs by $6 per person per month. Solar water heating can reduce CO2 emissions of a family of four by 1 ton/year (if replacing natural gas) or 3 ton/year (if replacing electricity).[23] Medium-temperature installations can use any of several designs: common designs are pressurized glycol, drain back, batch systems and newer low pressure freeze tolerant systems using polymer pipes containing water with photovoltaic pumping. European and International standards are being reviewed to accommodate innovations in design and operation of medium temperature collectors. Operational innovations include "permanently wetted collector" operation. This innovation reduces or even eliminates the occurrence of no-flow high temperature stresses called stagnation which would otherwise reduce the life expectancy of collectors.

Solar drying Edit

Solar thermal energy can be useful for drying wood for construction and wood fuels such as wood chips for combustion. Solar is also used for food products such as fruits, grains, and fish. Crop drying by solar means is environmentally friendly as well as cost effective while improving the quality. The less money it takes to make a product, the less it can be sold for, pleasing both the buyers and the sellers. Technologies in solar drying include ultra low cost pumped transpired plate air collectors based on black fabrics. Solar thermal energy is helpful in the process of drying products such as wood chips and other forms of biomass by raising the temperature while allowing air to pass through and get rid of the moisture.[24]

Cooking Edit

 
The Solar Bowl above the Solar Kitchen in Auroville, India concentrates sunlight on a movable receiver to produce steam for cooking.

Solar cookers use sunlight for cooking, drying and pasteurization. Solar cooking offsets fuel costs, reduces demand for fuel or firewood, and improves air quality by reducing or removing a source of smoke.

The simplest type of solar cooker is the box cooker first built by Horace de Saussure in 1767. A basic box cooker consists of an insulated container with a transparent lid. These cookers can be used effectively with partially overcast skies and will typically reach temperatures of 50–100 °C.[25][26]

Concentrating solar cookers use reflectors to concentrate solar energy onto a cooking container. The most common reflector geometries are flat plate, disc and parabolic trough type. These designs cook faster and at higher temperatures (up to 350 °C) but require direct light to function properly.

The Solar Kitchen in Auroville, India uses a unique concentrating technology known as the solar bowl. Contrary to conventional tracking reflector/fixed receiver systems, the solar bowl uses a fixed spherical reflector with a receiver which tracks the focus of light as the Sun moves across the sky. The solar bowl's receiver reaches temperature of 150 °C that is used to produce steam that helps cook 2,000 daily meals.[27]

Many other solar kitchens in India use another unique concentrating technology known as the Scheffler reflector. This technology was first developed by Wolfgang Scheffler in 1986. A Scheffler reflector is a parabolic dish that uses single axis tracking to follow the Sun's daily course. These reflectors have a flexible reflective surface that is able to change its curvature to adjust to seasonal variations in the incident angle of sunlight. Scheffler reflectors have the advantage of having a fixed focal point which improves the ease of cooking and are able to reach temperatures of 450-650 °C.[28] Built in 1999 by the Brahma Kumaris, the world's largest Scheffler reflector system in Abu Road, Rajasthan India is capable of cooking up to 35,000 meals a day.[29] By early 2008, over 2000 large cookers of the Scheffler design had been built worldwide.

Distillation Edit

Solar stills can be used to make drinking water in areas where clean water is not common. Solar distillation is necessary in these situations to provide people with purified water. Solar energy heats up the water in the still. The water then evaporates and condenses on the bottom of the covering glass.[24]

High-temperature collectors Edit

 
Part of the 354 MW SEGS solar complex in northern San Bernardino County, California.
 
The solar furnace at Odeillo in the French Pyrenees-Orientales can reach temperatures up to 3,500°C .

Where temperatures below about 95 °C are sufficient, as for space heating, flat-plate collectors of the nonconcentrating type are generally used. Because of the relatively high heat losses through the glazing, flat plate collectors will not reach temperatures much above 200 °C even when the heat transfer fluid is stagnant. Such temperatures are too low for efficient conversion to electricity.

The efficiency of heat engines increases with the temperature of the heat source. To achieve this in solar thermal energy plants, solar radiation is concentrated by mirrors or lenses to obtain higher temperatures – a technique called Concentrated Solar Power (CSP). The practical effect of high efficiencies is to reduce the plant's collector size and total land use per unit power generated, reducing the environmental impacts of a power plant as well as its expense.

As the temperature increases, different forms of conversion become practical. Up to 600 °C, steam turbines, standard technology, have an efficiency up to 41%. Above 600 °C, gas turbines can be more efficient. Higher temperatures are problematic because different materials and techniques are needed. One proposal for very high temperatures is to use liquid fluoride salts operating between 700 °C to 800 °C, using multi-stage turbine systems to achieve 50% or more thermal efficiencies.[30] The higher operating temperatures permit the plant to use higher-temperature dry heat exchangers for its thermal exhaust, reducing the plant's water use – critical in the deserts where large solar plants are practical. High temperatures also make heat storage more efficient, because more watt-hours are stored per unit of fluid.

Commercial concentrating solar thermal power (CSP) plants were first developed in the 1980s. The world’s largest solar thermal power plants are now the 370 MW Ivanpah Solar Power Facility, commissioned in 2014, and the 354 MW SEGS CSP installation, both located in the Mojave Desert of California, where several other solar projects have been realized as well.

The principal advantage of CSP is the ability to efficiently add thermal storage, allowing the dispatching of electricity over up to a 24-hour period. Since peak electricity demand typically occurs between about 4 and 8 pm,[31] many CSP power plants use 3 to 5 hours of thermal storage. With current technology, storage of heat is much cheaper and more efficient than storage of electricity. In this way, the CSP plant can produce electricity day and night. If the CSP site has predictable solar radiation, then the CSP plant becomes a reliable power plant. Reliability can further be improved by installing a back-up combustion system. The back-up system can use most of the CSP plant, which decreases the cost of the back-up system.

With reliability, unused desert, no pollution, and no fuel costs, the obstacles for large deployment for CSP are cost, aesthetics, land use and similar factors for the necessary connecting high tension lines. Although only a small percentage of the desert is necessary to meet global electricity demand, still a large area must be covered with mirrors or lenses to obtain a significant amount of energy. An important way to decrease cost is the use of a simple design.

When considering land use impacts associated with the exploration and extraction through to transportation and conversion of fossil fuels, which are used for most of our electrical power, utility-scale solar power compares as one of the most land-efficient energy resources available:[32]

The federal government has dedicated nearly 2,000 times more acreage to oil and gas leases than to solar development. In 2010 the Bureau of Land Management approved nine large-scale solar projects, with a total generating capacity of 3,682 megawatts, representing approximately 40,000 acres. In contrast, in 2010, the Bureau of Land Management processed more than 5,200 applications gas and oil leases, and issued 1,308 leases, for a total of 3.2 million acres. Currently, 38.2 million acres of onshore public lands and an additional 36.9 million acres of offshore exploration in the Gulf of Mexico are under lease for oil and gas development, exploration and production.[32][failed verification]

System designs Edit

During the day the sun has different positions. For low concentration systems (and low temperatures) tracking can be avoided (or limited to a few positions per year) if nonimaging optics are used.[33][34] For higher concentrations, however, if the mirrors or lenses do not move, then the focus of the mirrors or lenses changes. A tracking system that follows the position of the sun is required. The tracking system increases the cost and complexity. With this in mind, different designs can be distinguished in how they concentrate the light and track the position of the sun.

Parabolic trough designs Edit

 
Sketch of a parabolic trough design. A change of position of the sun parallel to the receiver does not require adjustment of the mirrors.

Parabolic trough power plants use a curved, mirrored trough which reflects the direct solar radiation onto a glass tube containing a fluid (also called a receiver, absorber or collector) running the length of the trough, positioned at the focal point of the reflectors. The trough is parabolic along one axis and linear in the orthogonal axis. For change of the daily position of the sun perpendicular to the receiver, the trough tilts east to west so that the direct radiation remains focused on the receiver. However, seasonal changes in the angle of sunlight parallel to the trough does not require adjustment of the mirrors, since the light is simply concentrated elsewhere on the receiver. Thus the trough design does not require tracking on a second axis. The receiver may be enclosed in a glass vacuum chamber. The vacuum significantly reduces convective heat loss.

A fluid (also called heat transfer fluid) passes through the receiver and becomes very hot. Common fluids are synthetic oil, molten salt and pressurized steam. The fluid containing the heat is transported to a heat engine where about a third of the heat is converted to electricity.

Full-scale parabolic trough systems consist of many such troughs laid out in parallel over a large area of land. Since 1985 a solar thermal system using this principle has been in full operation in California in the United States. It is called the Solar Energy Generating Systems (SEGS) system.[35] Other CSP designs lack this kind of long experience and therefore it can currently be said that the parabolic trough design is the most thoroughly proven CSP technology.

The SEGS is a collection of nine plants with a total capacity of 354 MW and has been the world's largest solar power plant, both thermal and non-thermal, for many years. A newer plant is Nevada Solar One plant with a capacity of 64 MW. The 150 MW Andasol solar power stations are in Spain with each site having a capacity of 50 MW. Note however, that those plants have heat storage which requires a larger field of solar collectors relative to the size of the steam turbine-generator to store heat and send heat to the steam turbine at the same time. Heat storage enables better utilization of the steam turbine. With day and some nighttime operation of the steam-turbine Andasol 1 at 50 MW peak capacity produces more energy than Nevada Solar One at 64 MW peak capacity, due to the former plant's thermal energy storage system and larger solar field. The 280MW Solana Generating Station came online in Arizona in 2013 with 6 hours of power storage. Hassi R'Mel integrated solar combined cycle power station in Algeria and Martin Next Generation Solar Energy Center both use parabolic troughs in a combined cycle with natural gas.

Enclosed trough Edit

 
Inside an enclosed trough system

The enclosed trough architecture encapsulates the solar thermal system within a greenhouse-like glasshouse. The glasshouse creates a protected environment to withstand the elements that can negatively impact reliability and efficiency of the solar thermal system.[36]

Lightweight curved solar-reflecting mirrors are suspended within the glasshouse structure. A single-axis tracking system positions the mirrors to track the sun and focus its light onto a network of stationary steel pipes, also suspended from the glasshouse structure.[37] Steam is generated directly, using oil field-quality water, as water flows from the inlet throughout the length of the pipes, without heat exchangers or intermediate working fluids.

The steam produced is then fed directly to the field’s existing steam distribution network, where the steam is continuously injected deep into the oil reservoir. Sheltering the mirrors from the wind allows them to achieve higher temperature rates and prevents dust from building up as a result from exposure to humidity.[36] GlassPoint Solar, the company that created the Enclosed Trough design, states its technology can produce heat for EOR for about $5 per million British thermal units in sunny regions, compared to between $10 and $12 for other conventional solar thermal technologies.[38]

GlassPoint’s enclosed trough system has been utilized at the Miraah facility in Oman, and a new project has recently been announced for the company to bring its enclosed trough technology to the South Belridge Oil Field, near Bakersfield, California.[39]

Power tower designs Edit

 
Ivanpah Solar Electric Generating System with all three towers under load, Feb., 2014. Taken from I-15 in San Bernardino County, California. The Clark Mountain Range can be seen in the distance.

Power towers (also known as 'central tower' power plants or 'heliostat' power plants) capture and focus the sun's thermal energy with thousands of tracking mirrors (called heliostats) in roughly a two square mile field. A tower resides in the center of the heliostat field. The heliostats focus concentrated sunlight on a receiver which sits on top of the tower. Within the receiver the concentrated sunlight heats molten salt to over 1,000 °F (538 °C). The heated molten salt then flows into a thermal storage tank where it is stored, maintaining 98% thermal efficiency, and eventually pumped to a steam generator. The steam drives a standard turbine to generate electricity. This process, also known as the "Rankine cycle" is similar to a standard coal-fired power plant, except it is fueled by solar energy.

The advantage of this design above the parabolic trough design is the higher temperature. Thermal energy at higher temperatures can be converted to electricity more efficiently and can be more cheaply stored for later use. Furthermore, there is less need to flatten the ground area. In principle a power tower can be built on the side of a hill. Mirrors can be flat and plumbing is concentrated in the tower. The disadvantage is that each mirror must have its own dual-axis control, while in the parabolic trough design single axis tracking can be shared for a large array of mirrors.

A cost/performance comparison between power tower and parabolic trough concentrators was made by the NREL which estimated that by 2020 electricity could be produced from power towers for 5.47 ¢/kWh and for 6.21 ¢/kWh from parabolic troughs. The capacity factor for power towers was estimated to be 72.9% and 56.2% for parabolic troughs.[40] There is some hope that the development of cheap, durable, mass producible heliostat power plant components could bring this cost down.[41]

The first commercial tower power plant was PS10 in Spain with a capacity of 11 MW, completed in 2007. Since then a number of plants have been proposed, several have been built in a number of countries (Spain, Germany, U.S., Turkey, China, India) but several proposed plants were cancelled as photovoltaic solar prices plummeted. A solar power tower went online in South Africa in 2016.[42] Ivanpah Solar Power Facility in California generates 392 MW of electricity from three towers, making it the largest solar power tower plant when it came online in late 2013.

Dish designs Edit

 
A parabolic solar dish concentrating the sun's rays on the heating element of a Stirling engine. The entire unit acts as a solar tracker.

A dish Stirling system uses a large, reflective, parabolic dish (similar in shape to a satellite television dish). It focuses all the sunlight that strikes the dish up onto a single point above the dish, where a receiver captures the heat and transforms it into a useful form. Typically the dish is coupled with a Stirling engine in a Dish-Stirling System, but also sometimes a steam engine is used.[43] These create rotational kinetic energy that can be converted to electricity using an electric generator.[44]

In 2005 Southern California Edison announced an agreement to purchase solar powered Stirling engines from Stirling Energy Systems over a twenty-year period and in quantities (20,000 units) sufficient to generate 500 megawatts of electricity. In January 2010, Stirling Energy Systems and Tessera Solar commissioned the first demonstration 1.5-megawatt power plant ("Maricopa Solar") using Stirling technology in Peoria, Arizona.[45] At the beginning of 2011 Stirling Energy's development arm, Tessera Solar, sold off its two large projects, the 709 MW Imperial project and the 850 MW Calico project to AES Solar and K.Road, respectively.[46][47] In 2012 the Maricopa plant was bought and dismantled by United Sun Systems.[48] United Sun Systems released a new generation system, based on a V-shaped Stirling engine and a peak production of 33 kW. The new CSP-Stirling technology brings down LCOE to USD 0.02 in utility scale.[citation needed]

According to its developer, Rispasso Energy, a Swedish firm, in 2015 its Dish Sterling system being tested in the Kalahari Desert in South Africa showed 34% efficiency.[49]

Fresnel technologies Edit

 
Fresnel reflector

A linear Fresnel reflector power plant uses a series of long, narrow, shallow-curvature (or even flat) mirrors to focus light onto one or more linear receivers positioned above the mirrors. On top of the receiver a small parabolic mirror can be attached for further focusing the light. These systems aim to offer lower overall costs by sharing a receiver between several mirrors (as compared with trough and dish concepts), while still using the simple line-focus geometry with one axis for tracking. This is similar to the trough design (and different from central towers and dishes with dual-axis). The receiver is stationary and so fluid couplings are not required (as in troughs and dishes). The mirrors also do not need to support the receiver, so they are structurally simpler. When suitable aiming strategies are used (mirrors aimed at different receivers at different times of day), this can allow a denser packing of mirrors on available land area.

Rival single axis tracking technologies include the relatively new linear Fresnel reflector (LFR) and compact-LFR (CLFR) technologies. The LFR differs from that of the parabolic trough in that the absorber is fixed in space above the mirror field. Also, the reflector is composed of many low row segments, which focus collectively on an elevated long tower receiver running parallel to the reflector rotational axis.[50]

Prototypes of Fresnel lens concentrators have been produced for the collection of thermal energy by International Automated Systems.[51] No full-scale thermal systems using Fresnel lenses are known to be in operation, although products incorporating Fresnel lenses in conjunction with photovoltaic cells are already available.[52]

MicroCSP Edit

MicroCSP is used for community-sized power plants (1 MW to 50 MW), for industrial, agricultural and manufacturing 'process heat' applications, and when large amounts of hot water are needed, such as resort swimming pools, water parks, large laundry facilities, sterilization, distillation and other such uses.

Heat collection and exchange Edit

Heat in a solar thermal system is guided by five basic principles: heat gain; heat transfer; heat storage; heat transport; and heat insulation.[53] Here, heat is the measure of the amount of thermal energy an object contains and is determined by the temperature, mass and specific heat of the object. Solar thermal power plants use heat exchangers that are designed for constant working conditions, to provide heat exchange. Copper heat exchangers are important in solar thermal heating and cooling systems because of copper’s high thermal conductivity, resistance to atmospheric and water corrosion, sealing and joining by soldering, and mechanical strength. Copper is used both in receivers and in primary circuits (pipes and heat exchangers for water tanks) of solar thermal water systems.[54]

Heat gain is the heat accumulated from the sun in the system. Solar thermal heat is trapped using the greenhouse effect; the greenhouse effect in this case is the ability of a reflective surface to transmit short wave radiation and reflect long wave radiation. Heat and infrared radiation (IR) are produced when short wave radiation light hits the absorber plate, which is then trapped inside the collector. Fluid, usually water, in the absorber tubes collect the trapped heat and transfer it to a heat storage vault.

Heat is transferred either by conduction or convection. When water is heated, kinetic energy is transferred by conduction to water molecules throughout the medium. These molecules spread their thermal energy by conduction and occupy more space than the cold slow moving molecules above them. The distribution of energy from the rising hot water to the sinking cold water contributes to the convection process. Heat is transferred from the absorber plates of the collector in the fluid by conduction. The collector fluid is circulated through the carrier pipes to the heat transfer vault. Inside the vault, heat is transferred throughout the medium through convection.

Heat storage enables solar thermal plants to produce electricity during hours without sunlight. Heat is transferred to a thermal storage medium in an insulated reservoir during hours with sunlight, and is withdrawn for power generation during hours lacking sunlight. Thermal storage mediums will be discussed in a heat storage section. Rate of heat transfer is related to the conductive and convection medium as well as the temperature differences. Bodies with large temperature differences transfer heat faster than bodies with lower temperature differences.

Heat transport refers to the activity in which heat from a solar collector is transported to the heat storage vault. Heat insulation is vital in both heat transport tubing as well as the storage vault. It prevents heat loss, which in turn relates to energy loss, or decrease in the efficiency of the system.

Heat storage for electric base loads Edit

Heat storage allows a solar thermal plant to produce electricity at night and on overcast days. This allows the use of solar power for baseload generation as well as peak power generation, with the potential of displacing both coal- and natural gas-fired power plants. Additionally, the utilization of the generator is higher which reduces cost. Even short term storage can help by smoothing out the "duck curve" of rapid change in generation requirements at sunset when a grid includes large amounts of solar capacity.

Heat is transferred to a thermal storage medium in an insulated reservoir during the day, and withdrawn for power generation at night. Thermal storage media include pressurized steam, concrete, a variety of phase change materials, and molten salts such as calcium, sodium and potassium nitrate.[55][56]

Steam accumulator Edit

The PS10 solar power tower stores heat in tanks as pressurized steam at 50 bar and 285 °C. The steam condenses and flashes back to steam, when pressure is lowered. Storage is for one hour. It is suggested that longer storage is possible, but that has not been proven in an existing power plant.[57]

Molten salt storage Edit

 
The 150 MW Andasol solar power station is a commercial parabolic trough solar thermal power plant, located in Spain. The Andasol plant uses tanks of molten salt to store solar energy so that it can continue generating electricity even when the sun isn't shining.[58]

Molten salt is used to transport heat in solar power tower systems because it is liquid at atmospheric pressure, provides a low-cost medium to store thermal energy, its operating temperatures are compatible with today's steam turbines, and it is non-flammable and nontoxic. Molten salt is also used in the chemical and metals industries to transport heat.

The first commercial molten salt mixture was a common form of saltpeter, 60% sodium nitrate and 40% potassium nitrate. Saltpeter melts at 220 °C (430 °F) and is kept liquid at 290 °C (550 °F) in an insulated storage tank. Calcium nitrate can reduce the melting point to 131 °C, permitting more energy to be extracted before the salt freezes. There are now several technical calcium nitrate grades stable at more than 500 °C.

This solar power system can generate power in cloudy weather or at night using the heat in the tank of hot salt. The tanks are insulated, able to store heat for a week. Tanks that power a 100-megawatt turbine for four hours would be about 9 m (30 ft) tall and 24 m (80 ft) in diameter.

The Andasol power plant in Spain is the first commercial solar thermal power plant using molten salt for heat storage and nighttime generation. It came on line March 2009.[59] On July 4, 2011, a company in Spain celebrated an historic moment for the solar industry: Torresol’s 19.9 MW concentrating solar power plant became the first ever to generate uninterrupted electricity for 24 hours straight, using a molten salt heat storage.[60]

In January 2019 Shouhang Energy Saving Dunhuang 100MW molten salt tower solar energy photothermal power station project was connected to grid and started operating. Its configuration includes an 11-hour molten salt heat storage system and can generate power consecutively for 24 hours.[61]

Phase-change materials for storage Edit

Phase Change Material (PCMs) offer an alternative solution in energy storage.[62] Using a similar heat transfer infrastructure, PCMs have the potential of providing a more efficient means of storage. PCMs can be either organic or inorganic materials. Advantages of organic PCMs include no corrosives, low or no undercooling, and chemical and thermal stability. Disadvantages include low phase-change enthalpy, low thermal conductivity, and flammability. Inorganics are advantageous with greater phase-change enthalpy, but exhibit disadvantages with undercooling, corrosion, phase separation, and lack of thermal stability. The greater phase-change enthalpy in inorganic PCMs make hydrate salts a strong candidate in the solar energy storage field.[63]

Use of water Edit

A design which requires water for condensation or cooling may conflict with location of solar thermal plants in desert areas with good solar radiation but limited water resources. The conflict is illustrated by plans of Solar Millennium, a German company, to build a plant in the Amargosa Valley of Nevada which would require 20% of the water available in the area. Some other projected plants by the same and other companies in the Mojave Desert of California may also be affected by difficulty in obtaining adequate and appropriate water rights. California water law currently prohibits use of potable water for cooling.[64]

Other designs require less water. The Ivanpah Solar Power Facility in south-eastern California conserves scarce desert water by using air-cooling to convert the steam back into water. Compared to conventional wet-cooling, this results in a 90% reduction in water usage at the cost of some loss of efficiency. The water is then returned to the boiler in a closed process which is environmentally friendly.[65]

Electrical conversion efficiency Edit

Of all of these technologies the solar dish/Stirling engine has the highest energy efficiency. A single solar dish-Stirling engine installed at Sandia National Laboratories National Solar Thermal Test Facility (NSTTF) produces as much as 25 kW of electricity, with a conversion efficiency of 31.25%.[66]

Solar parabolic trough plants have been built with efficiencies of about 20%.[citation needed] Fresnel reflectors have a slightly lower efficiency (but this is compensated by the denser packing).

The gross conversion efficiencies (taking into account that the solar dishes or troughs occupy only a fraction of the total area of the power plant) are determined by net generating capacity over the solar energy that falls on the total area of the solar plant. The 500-megawatt (MW) SCE/SES plant would extract about 2.75% of the radiation (1 kW/m²; see Solar power for a discussion) that falls on its 4,500 acres (18.2 km²).[67] For the 50 MW AndaSol Power Plant[68] that is being built in Spain (total area of 1,300×1,500 m = 1.95 km²) gross conversion efficiency comes out at 2.6%.

Efficiency does not directly relate to cost: total cost includes the cost of construction and maintenance.

Standards Edit

  • EN 12975 (efficiency test)

See also Edit

Notes Edit

References Edit

  1. ^ American Inventor Uses Egypt's Sun for Power; Appliance Concentrates the Heat Rays and Produces Steam, Which Can Be Used to Drive Irrigation Pumps in Hot Climates
  2. ^ Norton, Brian (2013). Harnessing Solar Heat. Springer. ISBN 978-94-007-7275-5.
  3. ^ Butti & Perlin (1981), p. 72.
  4. ^ (PDF). United States Department of Energy. pp. 1–6, 2–1. Archived from the original (PDF) on 2008-04-10. Retrieved 2008-04-09.
  5. ^ Apte, J.; et al. (PDF). ASHRAE. Archived from the original (PDF) on 2008-04-10. Retrieved 2008-04-09.
  6. ^ SDH (2011). Supplying Renewable Zero-Emission Heat. The SDH Project, of Intelligent Energy Europe.
  7. ^ SDH - Solar District Heating program. Website 2013-10-14 at the Wayback Machine. (Europe)
  8. ^ . United States Department of Energy. Archived from the original on 15 April 2012. Retrieved 2007-09-29.
  9. ^ Douglass, Elizabeth (2007-11-10). . Los Angeles Times. Archived from the original on 2007-12-15. Retrieved 2007-11-14.
  10. ^ EIA Renewable Energy- Shipments of Solar Thermal Collectors by Market Sector, End Use, and Type
  11. ^ Holm L. (2012). Long Term Experiences with Solar District Heating in Denmark[permanent dead link]. Presentation. European Sustainable Energy Week, Brussels. 18–22 June 2012.
  12. ^ Pauschinger T. (2012). Solar District Heating with Seasonal Thermal Energy Storage in Germany 2016-10-18 at the Wayback Machine. Presentation. European Sustainable Energy Week, Brussels. 18–22 June 2012.
  13. ^ Wong B. (2011). Drake Landing Solar Community. Presentation. IDEA/CDEA District Energy/CHP 2011 Conference. Toronto, June 26-29, 2011. 2016-03-04 at the Wayback Machine
  14. ^ Wong B., Thornton J. (2013). Integrating Solar & Heat Pumps 2016-06-10 at the Wayback Machine. Presentation. Renewable Heat Workshop.
  15. ^ "Tibet's first solar district heating plant". Retrieved 20 December 2019.
  16. ^ Mugnier, D.; Jakob, U. (2012) Keeping Cool with the Sun 2015-05-06 at the Wayback Machine. International Sustainable Energy Review, 6:1{28-30.
  17. ^ . Nrel.gov. 2013-04-08. Archived from the original on 2013-09-01. Retrieved 2013-08-20.
  18. ^ Bartlett (1998), pp. 393–394.
  19. ^ Leon (2006), p. 62.
  20. ^ "Solar Buildings (Transpired Air Collectors – Ventilation Preheating)" (PDF). National Renewable Energy Laboratory. Retrieved 2007-09-29.
  21. ^ . The Modesto Bee. Archived from the original on 2008-04-08. Retrieved 2008-04-25.
  22. ^ Denholm, P. (March 2007). The Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States (PDF) (Technical report). National Renewable Energy Laboratory. NREL/TP-640-41157. Retrieved 2007-12-28.
  23. ^ Kincaid, J. (May 2006). (Report). Archived from the original on 2007-07-15. Retrieved 2007-12-28.
  24. ^ a b Bennamoun, Lyes; Belhamri, Azeddine (January 2011). "Study of solar thermal energy in the north region of Algeria with simulation and modeling of an indirect convective solar drying system". Nature and Technology. 4. hdl:2268/105237.
  25. ^ Butti & Perlin (1981), pp. 54–59.
  26. ^ . Arizona Solar Center. Archived from the original on 2002-03-28. Retrieved 2007-09-30.
  27. ^ . Auroville Universal Township. Archived from the original on 2008-06-05. Retrieved 2008-04-25.
  28. ^ . Solare Bruecke. Archived from the original on 2008-04-22. Retrieved 2008-04-25.
  29. ^ . Gadhia Solar. Archived from the original on 2007-11-11. Retrieved 2008-04-25.
  30. ^ (PDF). Archived from the original (PDF) on 2007-08-16. Retrieved 2013-08-20.
  31. ^ "Peak Demand". Energex. Retrieved 30 November 2017.
  32. ^ a b Joe Desmond (September 24, 2012). "Sorry, Critics - Solar Is Not a Rip-Off". Renewable energy World.
  33. ^ Chaves, Julio (2015). Introduction to Nonimaging Optics, Second Edition. CRC Press. ISBN 978-1482206739.
  34. ^ Roland Winston et al., Nonimaging Optics, Academic Press, 2004 ISBN 978-0127597515
  35. ^ . Fplenergy.com. Archived from the original on 2014-08-05. Retrieved 2013-08-20.
  36. ^ a b Deloitte Touche Tohmatsu Ltd, "Energy & Resources Predictions 2012" 2013-01-06 at the Wayback Machine, 2 November 2011
  37. ^ Helman, Christopher, "Oil from the sun", "Forbes", April 25, 2011
  38. ^ Goossens, Ehren, "Chevron Uses Solar-Thermal Steam to Extract Oil in California", "Bloomberg", October 3, 2011
  39. ^ "Belridge Solar Announcement".
  40. ^ . Nrel.gov. 2010-09-23. Archived from the original on 2013-06-27. Retrieved 2013-08-20.
  41. ^ "Google's Goal: Renewable Energy Cheaper than Coal November 27, 2007". Retrieved 2013-08-20.
  42. ^ "Concentrating Solar Power Projects – Khi Solar One". NREL. National Renewable Energy Laboratory. Retrieved February 28, 2019.
  43. ^ ANU 'Big Dish', http://solar-thermal.anu.edu.au/
  44. ^ . Stirlingenergy.com. Archived from the original on 2002-02-20. Retrieved 2013-08-20.
  45. ^ O'Grady, Patrick (23 January 2010). "SES, Tessera debut new solar plant in Peoria". Phoenix Business Journal. Retrieved June 17, 2010.
  46. ^ . Pv-tech.org. Archived from the original on 2013-07-19. Retrieved 2013-08-20.
  47. ^ Wang, Ucilia (2010-12-29). . Gigaom.com. Archived from the original on 2012-12-13. Retrieved 2013-08-20.
  48. ^ Runyon, Jennifer (2011). "Solar Shakeout Continues: Stirling Energy Systems Files for Chapter 7 Bankruptcy". renewableenergyworld.com. Retrieved November 14, 2011.
  49. ^ Jeffrey Barbee (May 13, 2015). "Could this be the world's most efficient solar electricity system? Using military technology and a zero-emission engine invented by a 19th-century Scot, Swedish firm seeks to revolutionise solar energy production". The Guardian. Retrieved May 13, 2015. 34% of the sun's energy hitting the mirrors is converted directly to grid-available electric power
  50. ^ Mills, D. "Advances in Solar Thermal Electricity Technology." Solar Energy 76 (2004): 19-31. 28 May 2008.
  51. ^ . Iaus.com. Archived from the original on 2013-09-20. Retrieved 2013-08-20.
  52. ^ SunCube
  53. ^ Five Solar Thermal Principles Canivan, John, JC Solarhomes, 26 May 2008
  54. ^ 2011 global status report by Renewable Energy Policy Network for the 21st Century (REN21)); . Archived from the original on 2012-11-03. Retrieved 2012-10-21.
  55. ^ . Sandia.gov. 2012-11-29. Archived from the original on 2011-06-05. Retrieved 2013-08-20.
  56. ^ . Nrel.gov. 2010-01-28. Archived from the original on 2013-09-01. Retrieved 2013-08-20.
  57. ^ Biello, David (2008-10-20). "Sunny Outlook: Can Sunshine Provide All U.S. Electricity?". Scientificamerican.com. Retrieved 2013-08-20.
  58. ^ Edwin Cartlidge (18 November 2011). "Saving for a Rainy Day". Science. 334 (6058): 922–924. Bibcode:2011Sci...334..922C. doi:10.1126/science.334.6058.922. PMID 22096185.
  59. ^ . Solarmillennium.de. 2012-01-12. Archived from the original on 2012-12-02. Retrieved 2013-08-20.
  60. ^ . Thinkprogress.org. 2011-07-05. Archived from the original on 2013-11-02. Retrieved 2013-08-20.
  61. ^ "Voluntary Announcement The First Hundred-Megawatt Molten Salt Tower" (PDF). HKEXnews. Retrieved February 28, 2019.
  62. ^ "Encapsulated Phase Change Materials (EPCM) Thermal Energy Storage (TES)". Retrieved 2 November 2017.
  63. ^ Zalba, Belen, Jose M. Marin, Luisa F. Cabeza, and Harald Mehling. "Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications." Applied Thermal Engineering 23 (2003): 251-283.
  64. ^ "Alternative Energy Projects Stumble on a Need for Water" article by Todd Woody in The New York Times September 29, 2009
  65. ^ BrightSource & Bechtel Partner on 440-MW Ivanpah CSP Project Renewable Energy World, September 10, 2009.
  66. ^ (Press release). Sandia National Laboratories. 2008-02-12. Archived from the original on 2008-11-23. Retrieved 2008-11-13.
  67. ^ Major New Solar Energy Project Announced By Southern California Edison and Stirling Energy Systems, Inc., press release
  68. ^ . Solarpaces.org. Archived from the original on 2013-05-15. Retrieved 2013-08-20.

External links Edit

  • MSN Money
  • World's Largest Solar Thermal in Saudi Arabia
  • Onsite Renewable Technologies at United States Environmental Protection Agency website
  • Renewable solar energy websites at Curlie
  • Assessment of the World Bank/GEF Strategy for the Market Development of Concentrating Solar Thermal Power
  • Concentrating Solar Power An overview of the technology by Gerry Wolff, coordinator of TREC-UK
  • NREL Concentrating Solar Power Program Site
  • Nevada Gets First U.S. Solar Thermal Plant
  • Solar thermal and concentrated solar power barometer[permanent dead link] - 2013 Pdf
  • Solar Water Heating TechScope Market Readiness Assessment Report - UNEP[permanent dead link]
  • Guide for Solar Heating and Cooling Awareness-Raising Campaigns - UNEP
  • Guidelines for Standardization and Quality Assurance for Solar Thermal - UNEP
  • Guidelines for Solar Water Heating and Cooling Policy and Framework Conditions - UNEP
  • Solar Water Heating, a Strategic Planning Guide for Cities in Developing Countries - UNEP[permanent dead link]

solar, thermal, energy, form, energy, technology, harnessing, solar, energy, generate, thermal, energy, industry, residential, commercial, sectors, roof, mounted, close, coupled, thermosiphon, solar, water, heater, first, three, units, solnova, foreground, wit. Solar thermal energy STE is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in industry and in the residential and commercial sectors Roof mounted close coupled thermosiphon solar water heater The first three units of Solnova in the foreground with the two towers of the PS10 and PS20 solar power stations in the background Solar thermal collectors are classified by the United States Energy Information Administration as low medium or high temperature collectors Low temperature collectors are generally unglazed and used to heat swimming pools or to heat ventilation air Medium temperature collectors are also usually flat plates but are used for heating water or air for residential and commercial use High temperature collectors concentrate sunlight using mirrors or lenses and are generally used for fulfilling heat requirements up to 300 deg C 20 bar pressure in industries and for electric power production Two categories include Concentrated Solar Thermal CST for fulfilling heat requirements in industries and Concentrated Solar Power CSP when the heat collected is used for electric power generation CST and CSP are not replaceable in terms of application The largest facilities are located in the American Mojave Desert of California and Nevada These plants employ a variety of different technologies The largest examples include Ouarzazate Solar Power Station in Morocco 510 MW Ivanpah Solar Power Facility 377 MW Solar Energy Generating Systems installation 354 MW and Crescent Dunes 110 MW Spain is the other major developer of solar thermal power plants The largest examples include Solnova Solar Power Station 150 MW the Andasol solar power station 150 MW and Extresol Solar Power Station 100 MW Contents 1 History 2 Low temperature heating and cooling 2 1 Low temperature collectors 3 Heat storage for space heating 3 1 Solar driven cooling 3 2 Solar heat driven ventilation 3 3 Process heat 4 Medium temperature collectors 4 1 Solar drying 4 2 Cooking 4 3 Distillation 5 High temperature collectors 5 1 System designs 5 1 1 Parabolic trough designs 5 1 2 Enclosed trough 5 1 3 Power tower designs 5 1 4 Dish designs 5 1 5 Fresnel technologies 5 1 6 MicroCSP 6 Heat collection and exchange 7 Heat storage for electric base loads 7 1 Steam accumulator 7 2 Molten salt storage 7 3 Phase change materials for storage 8 Use of water 9 Electrical conversion efficiency 10 Standards 11 See also 12 Notes 13 References 14 External linksHistory EditAugustin Mouchot demonstrated a solar collector with a cooling engine making ice cream at the 1878 Universal Exhibition in Paris The first installation of solar thermal energy equipment occurred in the Sahara approximately in 1910 by Frank Shuman when a steam engine was run on steam produced by sunlight Because liquid fuel engines were developed and found more convenient the Sahara project was abandoned only to be revisited several decades later 1 Low temperature heating and cooling EditMain articles HVAC Solar air heat Passive solar building design Thermal mass Trombe wall Solar chimney Solar air conditioning and Seasonal thermal energy storage MIT s Solar House 1 built in 1939 used seasonal thermal energy storage STES for year round heating Systems for utilizing low temperature solar thermal energy include means for heat collection usually heat storage either short term or interseasonal and distribution within a structure or a district heating network In some cases a single feature can do more than one of these things e g some kinds of solar collectors also store heat Some systems are passive others are active requiring other external energy to function 2 Heating is the most obvious application but solar cooling can be achieved for a building or for district cooling by using a heat driven absorption or adsorption chiller heat pump There is a productive coincidence that the greater the driving heat from insolation the greater the cooling output In 1878 Auguste Mouchout pioneered solar cooling by making ice using a solar steam engine attached to a refrigeration device 3 In the United States heating ventilation and air conditioning HVAC systems account for over 25 4 75 EJ of the energy used in commercial buildings 50 in northern cities and nearly half 10 1 EJ of the energy used in residential buildings 4 5 Solar heating cooling and ventilation technologies can be used to offset a portion of this energy The most popular solar heating technology for heating buildings is the building integrated transpired solar air collection system which connects to the building s HVAC equipment According to Solar Energy Industries Association over 500 000 m2 5 000 000 square feet of these panels are in operation in North America as of 2015 In Europe since the mid 1990s about 125 large solar thermal district heating plants have been constructed each with over 500 m2 5400 ft2 of solar collectors The largest are about 10 000 m2 with capacities of 7 MW thermal and solar heat costs around 4 Eurocents kWh without subsidies 6 40 of them have nominal capacities of 1 MW thermal or more The Solar District Heating program SDH has participation from 14 European Nations and the European Commission and is working toward technical and market development and holds annual conferences 7 Low temperature collectors Edit Main article Solar thermal collector Glazed solar collectors are designed primarily for space heating They recirculate building air through a solar air panel where the air is heated and then directed back into the building These solar space heating systems require at least two penetrations into the building and only perform when the air in the solar collector is warmer than the building room temperature Most glazed collectors are used in the residential sector Unglazed transpired air collector Building integrated unglazed transpired solar air collector with grey walls and white canopy collection ductsUnglazed solar collectors are primarily used to pre heat make up ventilation air in commercial industrial and institutional buildings with a high ventilation load They turn building walls or sections of walls into low cost high performance unglazed solar collectors Also called transpired solar panels or solar wall they employ a painted perforated metal solar heat absorber that also serves as the exterior wall surface of the building Heat transfer to the air takes place on the surface of the absorber through the metal absorber and behind the absorber The boundary layer of solar heated air is drawn into a nearby perforation before the heat can escape by convection to the outside air The heated air is then drawn from behind the absorber plate into the building s ventilation system A Trombe wall is a passive solar heating and ventilation system consisting of an air channel sandwiched between a window and a sun facing thermal mass During the ventilation cycle sunlight stores heat in the thermal mass and warms the air channel causing circulation through vents at the top and bottom of the wall During the heating cycle the Trombe wall radiates stored heat 8 Solar roof ponds for solar heating and cooling were developed by Harold Hay in the 1960s A basic system consists of a roof mounted water bladder with a movable insulating cover This system can control heat exchange between interior and exterior environments by covering and uncovering the bladder between night and day When heating is a concern the bladder is uncovered during the day allowing sunlight to warm the water bladder and store heat for evening use When cooling is a concern the covered bladder draws heat from the building s interior during the day and is uncovered at night to radiate heat to the cooler atmosphere The Skytherm house in Atascadero California uses a prototype roof pond for heating and cooling 9 Solar space heating with solar air heat collectors is more popular in the USA and Canada than heating with solar liquid collectors since most buildings already have a ventilation system for heating and cooling The two main types of solar air panels are glazed and unglazed Of the 21 000 000 square feet 2 000 000 m2 of solar thermal collectors produced in the United States in 2007 16 000 000 square feet 1 500 000 m2 were of the low temperature variety 10 Low temperature collectors are generally installed to heat swimming pools although they can also be used for space heating Collectors can use air or water as the medium to transfer the heat to their destination Heat storage for space heating EditMain article Seasonal thermal energy storage A collection of mature technologies called seasonal thermal energy storage STES is capable of storing heat for months at a time so solar heat collected primarily in Summer can be used for all year heating Solar supplied STES technology has been advanced primarily in Denmark 11 Germany 12 and Canada 13 and applications include individual buildings and district heating networks Drake Landing Solar Community in Alberta Canada has a small district system and in 2012 achieved a world record of providing 97 of the community s all year space heating needs from the sun 14 STES thermal storage mediums include deep aquifers native rock surrounding clusters of small diameter heat exchanger equipped boreholes large shallow lined pits that are filled with gravel and top insulated and large insulated and buried surface water tanks Centralized district heating round the clock is also feasible with concentrated solar thermal CST storage plant 15 Interseasonal storage Solar heat or heat from other sources can be effectively stored between opposing seasons in aquifers underground geological strata large specially constructed pits and large tanks that are insulated and covered with earth Short term storage Thermal mass materials store solar energy during the day and release this energy during cooler periods Common thermal mass materials include stone concrete and water The proportion and placement of thermal mass should consider several factors such as climate daylighting and shading conditions When properly incorporated thermal mass can passively maintain comfortable temperatures while reducing energy consumption Solar driven cooling Edit Main article Solar air conditioning Worldwide by 2011 there were about 750 cooling systems with solar driven heat pumps and annual market growth was 40 to 70 over the prior seven years It is a niche market because the economics are challenging with the annual number of cooling hours a limiting factor Respectively the annual cooling hours are roughly 1000 in the Mediterranean 2500 in Southeast Asia and only 50 to 200 in Central Europe However system construction costs dropped about 50 between 2007 and 2011 The International Energy Agency IEA Solar Heating and Cooling program IEA SHC task groups working on further development of the technologies involved 16 Solar heat driven ventilation Edit A solar chimney or thermal chimney is a passive solar ventilation system composed of a hollow thermal mass connecting the interior and exterior of a building As the chimney warms the air inside is heated causing an updraft that pulls air through the building These systems have been in use since Roman times and remain common in the Middle East Process heat Edit Main articles Solar pond Salt evaporation pond and Solar furnace Solar Evaporation Ponds in the Atacama Desert Solar process heating systems are designed to provide large quantities of hot water or space heating for nonresidential buildings 17 Evaporation ponds are shallow ponds that concentrate dissolved solids through evaporation The use of evaporation ponds to obtain salt from sea water is one of the oldest applications of solar energy Modern uses include concentrating brine solutions used in leach mining and removing dissolved solids from waste streams Altogether evaporation ponds represent one of the largest commercial applications of solar energy in use today 18 Unglazed transpired collectors are perforated sun facing walls used for preheating ventilation air Transpired collectors can also be roof mounted for year round use and can raise the incoming air temperature up to 22 C and deliver outlet temperatures of 45 60 C The short payback period of transpired collectors 3 to 12 years make them a more cost effective alternative to glazed collection systems As of 2015 over 4000 systems with a combined collector area of 500 000 m2 had been installed worldwide Representatives include an 860 m2 collector in Costa Rica used for drying coffee beans and a 1300 m2 collector in Coimbatore India used for drying marigolds 19 20 A food processing facility in Modesto California uses parabolic troughs to produce steam used in the manufacturing process The 5 000 m2 collector area is expected to provide 15 TJ per year 21 Medium temperature collectors EditMain article solar water heating These collectors could be used to produce approximately 50 and more of the hot water needed for residential and commercial use in the United States 22 In the United States a typical system costs 4000 6000 retail 1400 to 2200 wholesale for the materials and 30 of the system qualifies for a federal tax credit additional state credit exists in about half of the states Labor for a simple open loop system in southern climates can take 3 5 hours for the installation and 4 6 hours in Northern areas Northern system require more collector area and more complex plumbing to protect the collector from freezing With this incentive the payback time for a typical household is four to nine years depending on the state Similar subsidies exist in parts of Europe A crew of one solar plumber and two assistants with minimal training can install a system per day Thermosiphon installation have negligible maintenance costs costs rise if antifreeze and mains power are used for circulation and in the US reduces a households operating costs by 6 per person per month Solar water heating can reduce CO2 emissions of a family of four by 1 ton year if replacing natural gas or 3 ton year if replacing electricity 23 Medium temperature installations can use any of several designs common designs are pressurized glycol drain back batch systems and newer low pressure freeze tolerant systems using polymer pipes containing water with photovoltaic pumping European and International standards are being reviewed to accommodate innovations in design and operation of medium temperature collectors Operational innovations include permanently wetted collector operation This innovation reduces or even eliminates the occurrence of no flow high temperature stresses called stagnation which would otherwise reduce the life expectancy of collectors Solar drying Edit Solar thermal energy can be useful for drying wood for construction and wood fuels such as wood chips for combustion Solar is also used for food products such as fruits grains and fish Crop drying by solar means is environmentally friendly as well as cost effective while improving the quality The less money it takes to make a product the less it can be sold for pleasing both the buyers and the sellers Technologies in solar drying include ultra low cost pumped transpired plate air collectors based on black fabrics Solar thermal energy is helpful in the process of drying products such as wood chips and other forms of biomass by raising the temperature while allowing air to pass through and get rid of the moisture 24 Cooking Edit Main article Solar cooker The Solar Bowl above the Solar Kitchen in Auroville India concentrates sunlight on a movable receiver to produce steam for cooking Solar cookers use sunlight for cooking drying and pasteurization Solar cooking offsets fuel costs reduces demand for fuel or firewood and improves air quality by reducing or removing a source of smoke The simplest type of solar cooker is the box cooker first built by Horace de Saussure in 1767 A basic box cooker consists of an insulated container with a transparent lid These cookers can be used effectively with partially overcast skies and will typically reach temperatures of 50 100 C 25 26 Concentrating solar cookers use reflectors to concentrate solar energy onto a cooking container The most common reflector geometries are flat plate disc and parabolic trough type These designs cook faster and at higher temperatures up to 350 C but require direct light to function properly The Solar Kitchen in Auroville India uses a unique concentrating technology known as the solar bowl Contrary to conventional tracking reflector fixed receiver systems the solar bowl uses a fixed spherical reflector with a receiver which tracks the focus of light as the Sun moves across the sky The solar bowl s receiver reaches temperature of 150 C that is used to produce steam that helps cook 2 000 daily meals 27 Many other solar kitchens in India use another unique concentrating technology known as the Scheffler reflector This technology was first developed by Wolfgang Scheffler in 1986 A Scheffler reflector is a parabolic dish that uses single axis tracking to follow the Sun s daily course These reflectors have a flexible reflective surface that is able to change its curvature to adjust to seasonal variations in the incident angle of sunlight Scheffler reflectors have the advantage of having a fixed focal point which improves the ease of cooking and are able to reach temperatures of 450 650 C 28 Built in 1999 by the Brahma Kumaris the world s largest Scheffler reflector system in Abu Road Rajasthan India is capable of cooking up to 35 000 meals a day 29 By early 2008 over 2000 large cookers of the Scheffler design had been built worldwide Distillation Edit Main article Solar still Solar stills can be used to make drinking water in areas where clean water is not common Solar distillation is necessary in these situations to provide people with purified water Solar energy heats up the water in the still The water then evaporates and condenses on the bottom of the covering glass 24 High temperature collectors EditMain article Concentrated solar power Part of the 354 MW SEGS solar complex in northern San Bernardino County California The solar furnace at Odeillo in the French Pyrenees Orientales can reach temperatures up to 3 500 C Where temperatures below about 95 C are sufficient as for space heating flat plate collectors of the nonconcentrating type are generally used Because of the relatively high heat losses through the glazing flat plate collectors will not reach temperatures much above 200 C even when the heat transfer fluid is stagnant Such temperatures are too low for efficient conversion to electricity The efficiency of heat engines increases with the temperature of the heat source To achieve this in solar thermal energy plants solar radiation is concentrated by mirrors or lenses to obtain higher temperatures a technique called Concentrated Solar Power CSP The practical effect of high efficiencies is to reduce the plant s collector size and total land use per unit power generated reducing the environmental impacts of a power plant as well as its expense As the temperature increases different forms of conversion become practical Up to 600 C steam turbines standard technology have an efficiency up to 41 Above 600 C gas turbines can be more efficient Higher temperatures are problematic because different materials and techniques are needed One proposal for very high temperatures is to use liquid fluoride salts operating between 700 C to 800 C using multi stage turbine systems to achieve 50 or more thermal efficiencies 30 The higher operating temperatures permit the plant to use higher temperature dry heat exchangers for its thermal exhaust reducing the plant s water use critical in the deserts where large solar plants are practical High temperatures also make heat storage more efficient because more watt hours are stored per unit of fluid Commercial concentrating solar thermal power CSP plants were first developed in the 1980s The world s largest solar thermal power plants are now the 370 MW Ivanpah Solar Power Facility commissioned in 2014 and the 354 MW SEGS CSP installation both located in the Mojave Desert of California where several other solar projects have been realized as well The principal advantage of CSP is the ability to efficiently add thermal storage allowing the dispatching of electricity over up to a 24 hour period Since peak electricity demand typically occurs between about 4 and 8 pm 31 many CSP power plants use 3 to 5 hours of thermal storage With current technology storage of heat is much cheaper and more efficient than storage of electricity In this way the CSP plant can produce electricity day and night If the CSP site has predictable solar radiation then the CSP plant becomes a reliable power plant Reliability can further be improved by installing a back up combustion system The back up system can use most of the CSP plant which decreases the cost of the back up system With reliability unused desert no pollution and no fuel costs the obstacles for large deployment for CSP are cost aesthetics land use and similar factors for the necessary connecting high tension lines Although only a small percentage of the desert is necessary to meet global electricity demand still a large area must be covered with mirrors or lenses to obtain a significant amount of energy An important way to decrease cost is the use of a simple design When considering land use impacts associated with the exploration and extraction through to transportation and conversion of fossil fuels which are used for most of our electrical power utility scale solar power compares as one of the most land efficient energy resources available 32 The federal government has dedicated nearly 2 000 times more acreage to oil and gas leases than to solar development In 2010 the Bureau of Land Management approved nine large scale solar projects with a total generating capacity of 3 682 megawatts representing approximately 40 000 acres In contrast in 2010 the Bureau of Land Management processed more than 5 200 applications gas and oil leases and issued 1 308 leases for a total of 3 2 million acres Currently 38 2 million acres of onshore public lands and an additional 36 9 million acres of offshore exploration in the Gulf of Mexico are under lease for oil and gas development exploration and production 32 failed verification System designs Edit During the day the sun has different positions For low concentration systems and low temperatures tracking can be avoided or limited to a few positions per year if nonimaging optics are used 33 34 For higher concentrations however if the mirrors or lenses do not move then the focus of the mirrors or lenses changes A tracking system that follows the position of the sun is required The tracking system increases the cost and complexity With this in mind different designs can be distinguished in how they concentrate the light and track the position of the sun Parabolic trough designs Edit Main article Parabolic trough Sketch of a parabolic trough design A change of position of the sun parallel to the receiver does not require adjustment of the mirrors Parabolic trough power plants use a curved mirrored trough which reflects the direct solar radiation onto a glass tube containing a fluid also called a receiver absorber or collector running the length of the trough positioned at the focal point of the reflectors The trough is parabolic along one axis and linear in the orthogonal axis For change of the daily position of the sun perpendicular to the receiver the trough tilts east to west so that the direct radiation remains focused on the receiver However seasonal changes in the angle of sunlight parallel to the trough does not require adjustment of the mirrors since the light is simply concentrated elsewhere on the receiver Thus the trough design does not require tracking on a second axis The receiver may be enclosed in a glass vacuum chamber The vacuum significantly reduces convective heat loss A fluid also called heat transfer fluid passes through the receiver and becomes very hot Common fluids are synthetic oil molten salt and pressurized steam The fluid containing the heat is transported to a heat engine where about a third of the heat is converted to electricity Full scale parabolic trough systems consist of many such troughs laid out in parallel over a large area of land Since 1985 a solar thermal system using this principle has been in full operation in California in the United States It is called the Solar Energy Generating Systems SEGS system 35 Other CSP designs lack this kind of long experience and therefore it can currently be said that the parabolic trough design is the most thoroughly proven CSP technology The SEGS is a collection of nine plants with a total capacity of 354 MW and has been the world s largest solar power plant both thermal and non thermal for many years A newer plant is Nevada Solar One plant with a capacity of 64 MW The 150 MW Andasol solar power stations are in Spain with each site having a capacity of 50 MW Note however that those plants have heat storage which requires a larger field of solar collectors relative to the size of the steam turbine generator to store heat and send heat to the steam turbine at the same time Heat storage enables better utilization of the steam turbine With day and some nighttime operation of the steam turbine Andasol 1 at 50 MW peak capacity produces more energy than Nevada Solar One at 64 MW peak capacity due to the former plant s thermal energy storage system and larger solar field The 280MW Solana Generating Station came online in Arizona in 2013 with 6 hours of power storage Hassi R Mel integrated solar combined cycle power station in Algeria and Martin Next Generation Solar Energy Center both use parabolic troughs in a combined cycle with natural gas Enclosed trough Edit Main article Parabolic trough Inside an enclosed trough systemThe enclosed trough architecture encapsulates the solar thermal system within a greenhouse like glasshouse The glasshouse creates a protected environment to withstand the elements that can negatively impact reliability and efficiency of the solar thermal system 36 Lightweight curved solar reflecting mirrors are suspended within the glasshouse structure A single axis tracking system positions the mirrors to track the sun and focus its light onto a network of stationary steel pipes also suspended from the glasshouse structure 37 Steam is generated directly using oil field quality water as water flows from the inlet throughout the length of the pipes without heat exchangers or intermediate working fluids The steam produced is then fed directly to the field s existing steam distribution network where the steam is continuously injected deep into the oil reservoir Sheltering the mirrors from the wind allows them to achieve higher temperature rates and prevents dust from building up as a result from exposure to humidity 36 GlassPoint Solar the company that created the Enclosed Trough design states its technology can produce heat for EOR for about 5 per million British thermal units in sunny regions compared to between 10 and 12 for other conventional solar thermal technologies 38 GlassPoint s enclosed trough system has been utilized at the Miraah facility in Oman and a new project has recently been announced for the company to bring its enclosed trough technology to the South Belridge Oil Field near Bakersfield California 39 Power tower designs Edit Main article Solar power tower Ivanpah Solar Electric Generating System with all three towers under load Feb 2014 Taken from I 15 in San Bernardino County California The Clark Mountain Range can be seen in the distance Power towers also known as central tower power plants or heliostat power plants capture and focus the sun s thermal energy with thousands of tracking mirrors called heliostats in roughly a two square mile field A tower resides in the center of the heliostat field The heliostats focus concentrated sunlight on a receiver which sits on top of the tower Within the receiver the concentrated sunlight heats molten salt to over 1 000 F 538 C The heated molten salt then flows into a thermal storage tank where it is stored maintaining 98 thermal efficiency and eventually pumped to a steam generator The steam drives a standard turbine to generate electricity This process also known as the Rankine cycle is similar to a standard coal fired power plant except it is fueled by solar energy The advantage of this design above the parabolic trough design is the higher temperature Thermal energy at higher temperatures can be converted to electricity more efficiently and can be more cheaply stored for later use Furthermore there is less need to flatten the ground area In principle a power tower can be built on the side of a hill Mirrors can be flat and plumbing is concentrated in the tower The disadvantage is that each mirror must have its own dual axis control while in the parabolic trough design single axis tracking can be shared for a large array of mirrors A cost performance comparison between power tower and parabolic trough concentrators was made by the NREL which estimated that by 2020 electricity could be produced from power towers for 5 47 kWh and for 6 21 kWh from parabolic troughs The capacity factor for power towers was estimated to be 72 9 and 56 2 for parabolic troughs 40 There is some hope that the development of cheap durable mass producible heliostat power plant components could bring this cost down 41 The first commercial tower power plant was PS10 in Spain with a capacity of 11 MW completed in 2007 Since then a number of plants have been proposed several have been built in a number of countries Spain Germany U S Turkey China India but several proposed plants were cancelled as photovoltaic solar prices plummeted A solar power tower went online in South Africa in 2016 42 Ivanpah Solar Power Facility in California generates 392 MW of electricity from three towers making it the largest solar power tower plant when it came online in late 2013 Dish designs Edit A parabolic solar dish concentrating the sun s rays on the heating element of a Stirling engine The entire unit acts as a solar tracker A dish Stirling system uses a large reflective parabolic dish similar in shape to a satellite television dish It focuses all the sunlight that strikes the dish up onto a single point above the dish where a receiver captures the heat and transforms it into a useful form Typically the dish is coupled with a Stirling engine in a Dish Stirling System but also sometimes a steam engine is used 43 These create rotational kinetic energy that can be converted to electricity using an electric generator 44 In 2005 Southern California Edison announced an agreement to purchase solar powered Stirling engines from Stirling Energy Systems over a twenty year period and in quantities 20 000 units sufficient to generate 500 megawatts of electricity In January 2010 Stirling Energy Systems and Tessera Solar commissioned the first demonstration 1 5 megawatt power plant Maricopa Solar using Stirling technology in Peoria Arizona 45 At the beginning of 2011 Stirling Energy s development arm Tessera Solar sold off its two large projects the 709 MW Imperial project and the 850 MW Calico project to AES Solar and K Road respectively 46 47 In 2012 the Maricopa plant was bought and dismantled by United Sun Systems 48 United Sun Systems released a new generation system based on a V shaped Stirling engine and a peak production of 33 kW The new CSP Stirling technology brings down LCOE to USD 0 02 in utility scale citation needed According to its developer Rispasso Energy a Swedish firm in 2015 its Dish Sterling system being tested in the Kalahari Desert in South Africa showed 34 efficiency 49 Fresnel technologies Edit Fresnel reflectorA linear Fresnel reflector power plant uses a series of long narrow shallow curvature or even flat mirrors to focus light onto one or more linear receivers positioned above the mirrors On top of the receiver a small parabolic mirror can be attached for further focusing the light These systems aim to offer lower overall costs by sharing a receiver between several mirrors as compared with trough and dish concepts while still using the simple line focus geometry with one axis for tracking This is similar to the trough design and different from central towers and dishes with dual axis The receiver is stationary and so fluid couplings are not required as in troughs and dishes The mirrors also do not need to support the receiver so they are structurally simpler When suitable aiming strategies are used mirrors aimed at different receivers at different times of day this can allow a denser packing of mirrors on available land area Rival single axis tracking technologies include the relatively new linear Fresnel reflector LFR and compact LFR CLFR technologies The LFR differs from that of the parabolic trough in that the absorber is fixed in space above the mirror field Also the reflector is composed of many low row segments which focus collectively on an elevated long tower receiver running parallel to the reflector rotational axis 50 Prototypes of Fresnel lens concentrators have been produced for the collection of thermal energy by International Automated Systems 51 No full scale thermal systems using Fresnel lenses are known to be in operation although products incorporating Fresnel lenses in conjunction with photovoltaic cells are already available 52 MicroCSP Edit MicroCSP is used for community sized power plants 1 MW to 50 MW for industrial agricultural and manufacturing process heat applications and when large amounts of hot water are needed such as resort swimming pools water parks large laundry facilities sterilization distillation and other such uses Heat collection and exchange EditHeat in a solar thermal system is guided by five basic principles heat gain heat transfer heat storage heat transport and heat insulation 53 Here heat is the measure of the amount of thermal energy an object contains and is determined by the temperature mass and specific heat of the object Solar thermal power plants use heat exchangers that are designed for constant working conditions to provide heat exchange Copper heat exchangers are important in solar thermal heating and cooling systems because of copper s high thermal conductivity resistance to atmospheric and water corrosion sealing and joining by soldering and mechanical strength Copper is used both in receivers and in primary circuits pipes and heat exchangers for water tanks of solar thermal water systems 54 Heat gain is the heat accumulated from the sun in the system Solar thermal heat is trapped using the greenhouse effect the greenhouse effect in this case is the ability of a reflective surface to transmit short wave radiation and reflect long wave radiation Heat and infrared radiation IR are produced when short wave radiation light hits the absorber plate which is then trapped inside the collector Fluid usually water in the absorber tubes collect the trapped heat and transfer it to a heat storage vault Heat is transferred either by conduction or convection When water is heated kinetic energy is transferred by conduction to water molecules throughout the medium These molecules spread their thermal energy by conduction and occupy more space than the cold slow moving molecules above them The distribution of energy from the rising hot water to the sinking cold water contributes to the convection process Heat is transferred from the absorber plates of the collector in the fluid by conduction The collector fluid is circulated through the carrier pipes to the heat transfer vault Inside the vault heat is transferred throughout the medium through convection Heat storage enables solar thermal plants to produce electricity during hours without sunlight Heat is transferred to a thermal storage medium in an insulated reservoir during hours with sunlight and is withdrawn for power generation during hours lacking sunlight Thermal storage mediums will be discussed in a heat storage section Rate of heat transfer is related to the conductive and convection medium as well as the temperature differences Bodies with large temperature differences transfer heat faster than bodies with lower temperature differences Heat transport refers to the activity in which heat from a solar collector is transported to the heat storage vault Heat insulation is vital in both heat transport tubing as well as the storage vault It prevents heat loss which in turn relates to energy loss or decrease in the efficiency of the system Heat storage for electric base loads EditMain article Thermal energy storage Heat storage allows a solar thermal plant to produce electricity at night and on overcast days This allows the use of solar power for baseload generation as well as peak power generation with the potential of displacing both coal and natural gas fired power plants Additionally the utilization of the generator is higher which reduces cost Even short term storage can help by smoothing out the duck curve of rapid change in generation requirements at sunset when a grid includes large amounts of solar capacity Heat is transferred to a thermal storage medium in an insulated reservoir during the day and withdrawn for power generation at night Thermal storage media include pressurized steam concrete a variety of phase change materials and molten salts such as calcium sodium and potassium nitrate 55 56 Steam accumulator Edit The PS10 solar power tower stores heat in tanks as pressurized steam at 50 bar and 285 C The steam condenses and flashes back to steam when pressure is lowered Storage is for one hour It is suggested that longer storage is possible but that has not been proven in an existing power plant 57 Molten salt storage Edit See also Thermal energy storage The 150 MW Andasol solar power station is a commercial parabolic trough solar thermal power plant located in Spain The Andasol plant uses tanks of molten salt to store solar energy so that it can continue generating electricity even when the sun isn t shining 58 Molten salt is used to transport heat in solar power tower systems because it is liquid at atmospheric pressure provides a low cost medium to store thermal energy its operating temperatures are compatible with today s steam turbines and it is non flammable and nontoxic Molten salt is also used in the chemical and metals industries to transport heat The first commercial molten salt mixture was a common form of saltpeter 60 sodium nitrate and 40 potassium nitrate Saltpeter melts at 220 C 430 F and is kept liquid at 290 C 550 F in an insulated storage tank Calcium nitrate can reduce the melting point to 131 C permitting more energy to be extracted before the salt freezes There are now several technical calcium nitrate grades stable at more than 500 C This solar power system can generate power in cloudy weather or at night using the heat in the tank of hot salt The tanks are insulated able to store heat for a week Tanks that power a 100 megawatt turbine for four hours would be about 9 m 30 ft tall and 24 m 80 ft in diameter The Andasol power plant in Spain is the first commercial solar thermal power plant using molten salt for heat storage and nighttime generation It came on line March 2009 59 On July 4 2011 a company in Spain celebrated an historic moment for the solar industry Torresol s 19 9 MW concentrating solar power plant became the first ever to generate uninterrupted electricity for 24 hours straight using a molten salt heat storage 60 In January 2019 Shouhang Energy Saving Dunhuang 100MW molten salt tower solar energy photothermal power station project was connected to grid and started operating Its configuration includes an 11 hour molten salt heat storage system and can generate power consecutively for 24 hours 61 Phase change materials for storage Edit Phase Change Material PCMs offer an alternative solution in energy storage 62 Using a similar heat transfer infrastructure PCMs have the potential of providing a more efficient means of storage PCMs can be either organic or inorganic materials Advantages of organic PCMs include no corrosives low or no undercooling and chemical and thermal stability Disadvantages include low phase change enthalpy low thermal conductivity and flammability Inorganics are advantageous with greater phase change enthalpy but exhibit disadvantages with undercooling corrosion phase separation and lack of thermal stability The greater phase change enthalpy in inorganic PCMs make hydrate salts a strong candidate in the solar energy storage field 63 Use of water EditA design which requires water for condensation or cooling may conflict with location of solar thermal plants in desert areas with good solar radiation but limited water resources The conflict is illustrated by plans of Solar Millennium a German company to build a plant in the Amargosa Valley of Nevada which would require 20 of the water available in the area Some other projected plants by the same and other companies in the Mojave Desert of California may also be affected by difficulty in obtaining adequate and appropriate water rights California water law currently prohibits use of potable water for cooling 64 Other designs require less water The Ivanpah Solar Power Facility in south eastern California conserves scarce desert water by using air cooling to convert the steam back into water Compared to conventional wet cooling this results in a 90 reduction in water usage at the cost of some loss of efficiency The water is then returned to the boiler in a closed process which is environmentally friendly 65 Electrical conversion efficiency EditOf all of these technologies the solar dish Stirling engine has the highest energy efficiency A single solar dish Stirling engine installed at Sandia National Laboratories National Solar Thermal Test Facility NSTTF produces as much as 25 kW of electricity with a conversion efficiency of 31 25 66 Solar parabolic trough plants have been built with efficiencies of about 20 citation needed Fresnel reflectors have a slightly lower efficiency but this is compensated by the denser packing The gross conversion efficiencies taking into account that the solar dishes or troughs occupy only a fraction of the total area of the power plant are determined by net generating capacity over the solar energy that falls on the total area of the solar plant The 500 megawatt MW SCE SES plant would extract about 2 75 of the radiation 1 kW m see Solar power for a discussion that falls on its 4 500 acres 18 2 km 67 For the 50 MW AndaSol Power Plant 68 that is being built in Spain total area of 1 300 1 500 m 1 95 km gross conversion efficiency comes out at 2 6 Efficiency does not directly relate to cost total cost includes the cost of construction and maintenance Standards EditEN 12975 efficiency test See also Edit Energy portal Renewable energy portalDover Sun House Central solar heating Energy tower downdraft EnerWorks List of solar thermal power stations Ocean thermal energy conversion Photovoltaic thermal hybrid solar collector Solar power plants in the Mojave Desert Solar tracker Solar updraft tower SolarPACESNotes EditReferences Edit American Inventor Uses Egypt s Sun for Power Appliance Concentrates the Heat Rays and Produces Steam Which Can Be Used to Drive Irrigation Pumps in Hot Climates Norton Brian 2013 Harnessing Solar Heat Springer ISBN 978 94 007 7275 5 Butti amp Perlin 1981 p 72 sfnp error no target CITEREFButtiPerlin1981 help Energy Consumption Characteristics of Commercial Building HVAC Systems PDF United States Department of Energy pp 1 6 2 1 Archived from the original PDF on 2008 04 10 Retrieved 2008 04 09 Apte J et al Future Advanced Windows for Zero Energy Homes PDF ASHRAE Archived from the original PDF on 2008 04 10 Retrieved 2008 04 09 SDH 2011 Supplying Renewable Zero Emission Heat The SDH Project of Intelligent Energy Europe SDH Solar District Heating program Website Archived 2013 10 14 at the Wayback Machine Europe Indirect Gain Trombe Walls United States Department of Energy Archived from the original on 15 April 2012 Retrieved 2007 09 29 Douglass Elizabeth 2007 11 10 His passion for solar still burns Los Angeles Times Archived from the original on 2007 12 15 Retrieved 2007 11 14 EIA Renewable Energy Shipments of Solar Thermal Collectors by Market Sector End Use and Type Holm L 2012 Long Term Experiences with Solar District Heating in Denmark permanent dead link Presentation European Sustainable Energy Week Brussels 18 22 June 2012 Pauschinger T 2012 Solar District Heating with Seasonal Thermal Energy Storage in Germany Archived 2016 10 18 at the Wayback Machine Presentation European Sustainable Energy Week Brussels 18 22 June 2012 Wong B 2011 Drake Landing Solar Community Presentation IDEA CDEA District Energy CHP 2011 Conference Toronto June 26 29 2011 Archived 2016 03 04 at the Wayback Machine Wong B Thornton J 2013 Integrating Solar amp Heat Pumps Archived 2016 06 10 at the Wayback Machine Presentation Renewable Heat Workshop Tibet s first solar district heating plant Retrieved 20 December 2019 Mugnier D Jakob U 2012 Keeping Cool with the Sun Archived 2015 05 06 at the Wayback Machine International Sustainable Energy Review 6 1 28 30 Solar Process Heat Nrel gov 2013 04 08 Archived from the original on 2013 09 01 Retrieved 2013 08 20 Bartlett 1998 pp 393 394 sfnp error no target CITEREFBartlett1998 help Leon 2006 p 62 sfnp error no target CITEREFLeon2006 help Solar Buildings Transpired Air Collectors Ventilation Preheating PDF National Renewable Energy Laboratory Retrieved 2007 09 29 Frito Lay solar system puts the sun in SunChips takes advantage of renewable energy The Modesto Bee Archived from the original on 2008 04 08 Retrieved 2008 04 25 Denholm P March 2007 The Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States PDF Technical report National Renewable Energy Laboratory NREL TP 640 41157 Retrieved 2007 12 28 Kincaid J May 2006 Durham Campaign for Solar Jobs Report Archived from the original on 2007 07 15 Retrieved 2007 12 28 a b Bennamoun Lyes Belhamri Azeddine January 2011 Study of solar thermal energy in the north region of Algeria with simulation and modeling of an indirect convective solar drying system Nature and Technology 4 hdl 2268 105237 Butti amp Perlin 1981 pp 54 59 sfnp error no target CITEREFButtiPerlin1981 help Design of Solar Cookers Arizona Solar Center Archived from the original on 2002 03 28 Retrieved 2007 09 30 The Solar Bowl Auroville Universal Township Archived from the original on 2008 06 05 Retrieved 2008 04 25 Scheffler Reflector Solare Bruecke Archived from the original on 2008 04 22 Retrieved 2008 04 25 Solar Steam Cooking System Gadhia Solar Archived from the original on 2007 11 11 Retrieved 2008 04 25 ORNL s liquid fluoride proposal PDF Archived from the original PDF on 2007 08 16 Retrieved 2013 08 20 Peak Demand Energex Retrieved 30 November 2017 a b Joe Desmond September 24 2012 Sorry Critics Solar Is Not a Rip Off Renewable energy World Chaves Julio 2015 Introduction to Nonimaging Optics Second Edition CRC Press ISBN 978 1482206739 Roland Winston et al Nonimaging Optics Academic Press 2004 ISBN 978 0127597515 SEGS system Fplenergy com Archived from the original on 2014 08 05 Retrieved 2013 08 20 a b Deloitte Touche Tohmatsu Ltd Energy amp Resources Predictions 2012 Archived 2013 01 06 at the Wayback Machine 2 November 2011 Helman Christopher Oil from the sun Forbes April 25 2011 Goossens Ehren Chevron Uses Solar Thermal Steam to Extract Oil in California Bloomberg October 3 2011 Belridge Solar Announcement Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts Nrel gov 2010 09 23 Archived from the original on 2013 06 27 Retrieved 2013 08 20 Google s Goal Renewable Energy Cheaper than Coal November 27 2007 Retrieved 2013 08 20 Concentrating Solar Power Projects Khi Solar One NREL National Renewable Energy Laboratory Retrieved February 28 2019 ANU Big Dish http solar thermal anu edu au Stirling Energy Systems Inc Solar Overview Stirlingenergy com Archived from the original on 2002 02 20 Retrieved 2013 08 20 O Grady Patrick 23 January 2010 SES Tessera debut new solar plant in Peoria Phoenix Business Journal Retrieved June 17 2010 Solar buys Tessera Solar s Imperial Valley project with intent to turn CSP into PV Pv tech org Archived from the original on 2013 07 19 Retrieved 2013 08 20 Wang Ucilia 2010 12 29 Tessera Solar Sells Troubled 850 MW Project Gigaom com Archived from the original on 2012 12 13 Retrieved 2013 08 20 Runyon Jennifer 2011 Solar Shakeout Continues Stirling Energy Systems Files for Chapter 7 Bankruptcy renewableenergyworld com Retrieved November 14 2011 Jeffrey Barbee May 13 2015 Could this be the world s most efficient solar electricity system Using military technology and a zero emission engine invented by a 19th century Scot Swedish firm seeks to revolutionise solar energy production The Guardian Retrieved May 13 2015 34 of the sun s energy hitting the mirrors is converted directly to grid available electric power Mills D Advances in Solar Thermal Electricity Technology Solar Energy 76 2004 19 31 28 May 2008 Web site of the International Automated Systems showing concepts about Fresnel lens Iaus com Archived from the original on 2013 09 20 Retrieved 2013 08 20 SunCube Five Solar Thermal Principles Canivan John JC Solarhomes 26 May 2008 2011 global status report by Renewable Energy Policy Network for the 21st Century REN21 REN21 Renewables Global Status Report Archived from the original on 2012 11 03 Retrieved 2012 10 21 Sandia National Lab Solar Thermal Test Facility Sandia gov 2012 11 29 Archived from the original on 2011 06 05 Retrieved 2013 08 20 National Renewable Energy Laboratory Nrel gov 2010 01 28 Archived from the original on 2013 09 01 Retrieved 2013 08 20 Biello David 2008 10 20 Sunny Outlook Can Sunshine Provide All U S Electricity Scientificamerican com Retrieved 2013 08 20 Edwin Cartlidge 18 November 2011 Saving for a Rainy Day Science 334 6058 922 924 Bibcode 2011Sci 334 922C doi 10 1126 science 334 6058 922 PMID 22096185 The Construction of the Andasol Power Plants Solarmillennium de 2012 01 12 Archived from the original on 2012 12 02 Retrieved 2013 08 20 Solar Can Be Baseload Spanish CSP Plant with Storage Produces Electricity for 24 Hours Straight Thinkprogress org 2011 07 05 Archived from the original on 2013 11 02 Retrieved 2013 08 20 Voluntary Announcement The First Hundred Megawatt Molten Salt Tower PDF HKEXnews Retrieved February 28 2019 Encapsulated Phase Change Materials EPCM Thermal Energy Storage TES Retrieved 2 November 2017 Zalba Belen Jose M Marin Luisa F Cabeza and Harald Mehling Review on Thermal Energy Storage with Phase Change Materials Heat Transfer Analysis and Applications Applied Thermal Engineering 23 2003 251 283 Alternative Energy Projects Stumble on a Need for Water article by Todd Woody in The New York Times September 29 2009 BrightSource amp Bechtel Partner on 440 MW Ivanpah CSP Project Renewable Energy World September 10 2009 Sandia Stirling Energy Systems set new world record for solar to grid conversion efficiency Press release Sandia National Laboratories 2008 02 12 Archived from the original on 2008 11 23 Retrieved 2008 11 13 Major New Solar Energy Project Announced By Southern California Edison and Stirling Energy Systems Inc press release 2x50 MW AndaSol Power Plant Projects in Spain Solarpaces org Archived from the original on 2013 05 15 Retrieved 2013 08 20 External links Edit Wikimedia Commons has media related to Solar thermal energy It s solar power s time to shine MSN Money World s Largest Solar Thermal in Saudi Arabia Onsite Renewable Technologies at United States Environmental Protection Agency website Renewable solar energy websites at Curlie Assessment of the World Bank GEF Strategy for the Market Development of Concentrating Solar Thermal Power Solar thermal energy calculator Concentrating Solar Power An overview of the technology by Gerry Wolff coordinator of TREC UK NREL Concentrating Solar Power Program Site Comprehensive review of parabolic trough technology and markets Nevada Gets First U S Solar Thermal Plant Solar thermal and concentrated solar power barometer permanent dead link 2013 Pdf Solar Water Heating TechScope Market Readiness Assessment Report UNEP permanent dead link Guide for Solar Heating and Cooling Awareness Raising Campaigns UNEP Guidelines for Standardization and Quality Assurance for Solar Thermal UNEP Guidelines for Solar Water Heating and Cooling Policy and Framework Conditions UNEP Solar Water Heating a Strategic Planning Guide for Cities in Developing Countries UNEP permanent dead link Retrieved from https en wikipedia org w index php title Solar thermal energy amp oldid 1170923701, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.