fbpx
Wikipedia

Isotopes of samarium

Naturally occurring samarium (62Sm) is composed of five stable isotopes, 144Sm, 149Sm, 150Sm, 152Sm and 154Sm, and two extremely long-lived radioisotopes, 147Sm (half life: 1.06×1011 y) and 148Sm (7×1015 y), with 152Sm being the most abundant (26.75% natural abundance). 146Sm is also fairly long-lived (6.8×107 y), but is not long-lived enough to have survived in significant quantities from the formation of the Solar System on Earth, although it remains useful in radiometric dating in the Solar System as an extinct radionuclide.[3][4]

Isotopes of samarium (62Sm)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
144Sm 3.08% stable
145Sm syn 340 d ε 145Pm
146Sm syn 6.8×107 y α 142Nd
147Sm 15.00% 1.06×1011 y α 143Nd
148Sm 11.25% 7×1015 y α 144Nd
149Sm 13.82% stable
150Sm 7.37% stable
151Sm syn 94.6 y β 151Eu
152Sm 26.74% stable
153Sm syn 46.284 h β 153Eu
154Sm 22.74% stable
Standard atomic weight Ar°(Sm)
  • 150.36±0.02
  • 150.36±0.02 (abridged)[1][2]

Other than the naturally occurring isotopes, the longest-lived radioisotopes are 151Sm, which has a half-life of 88.8 years,[5] and 145Sm, which has a half-life of 340 days. All of the remaining radioisotopes, which range from 129Sm to 168Sm, have half-lives that are less than two days, and the majority of these have half-lives that are less than 48 seconds. This element also has twelve known isomers with the most stable being 141mSm (t1/2 22.6 minutes), 143m1Sm (t1/2 66 seconds) and 139mSm (t1/2 10.7 seconds).

The long lived isotopes, 146Sm, 147Sm, and 148Sm, primarily decay by alpha decay to isotopes of neodymium. Lighter unstable isotopes of samarium primarily decay by electron capture to isotopes of promethium, while heavier ones decay by beta decay to isotopes of europium.

Isotopes of samarium are used in samarium–neodymium dating for determining the age relationships of rocks and meteorites.

151Sm is a medium-lived fission product and acts as a neutron poison in the nuclear fuel cycle. The stable fission product 149Sm is also a neutron poison.

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4][n 5]
Decay
mode

[n 6]
Daughter
isotope

[n 7][n 8]
Spin and
parity
[n 9][n 5]
Natural abundance (mole fraction)
Excitation energy[n 5] Normal proportion Range of variation
129Sm 62 67 128.95464(54)# 550(100) ms 5/2+#
130Sm 62 68 129.94892(43)# 1# s β+ 130Pm 0+
131Sm 62 69 130.94611(32)# 1.2(2) s β+ 131Pm 5/2+#
β+, p (rare) 130Nd
132Sm 62 70 131.94069(32)# 4.0(3) s β+ 132Pm 0+
β+, p 131Nd
133Sm 62 71 132.93867(21)# 2.90(17) s β+ 133Pm (5/2+)
β+, p 132Nd
134Sm 62 72 133.93397(21)# 10(1) s β+ 134Pm 0+
135Sm 62 73 134.93252(17) 10.3(5) s β+ (99.98%) 135Pm (7/2+)
β+, p (.02%) 134Nd
135mSm 0(300)# keV 2.4(9) s β+ 135Pm (3/2+, 5/2+)
136Sm 62 74 135.928276(13) 47(2) s β+ 136Pm 0+
136mSm 2264.7(11) keV 15(1) μs (8−)
137Sm 62 75 136.92697(5) 45(1) s β+ 137Pm (9/2−)
137mSm 180(50)# keV 20# s β+ 137Pm 1/2+#
138Sm 62 76 137.923244(13) 3.1(2) min β+ 138Pm 0+
139Sm 62 77 138.922297(12) 2.57(10) min β+ 139Pm 1/2+
139mSm 457.40(22) keV 10.7(6) s IT (93.7%) 139Sm 11/2−
β+ (6.3%) 139Pm
140Sm 62 78 139.918995(13) 14.82(12) min β+ 140Pm 0+
141Sm 62 79 140.918476(9) 10.2(2) min β+ 141Pm 1/2+
141mSm 176.0(3) keV 22.6(2) min β+ (99.69%) 141Pm 11/2−
IT (.31%) 141Sm
142Sm 62 80 141.915198(6) 72.49(5) min β+ 142Pm 0+
143Sm 62 81 142.914628(4) 8.75(8) min β+ 143Pm 3/2+
143m1Sm 753.99(16) keV 66(2) s IT (99.76%) 143Sm 11/2−
β+ (.24%) 143Pm
143m2Sm 2793.8(13) keV 30(3) ms 23/2(−)
144Sm 62 82 143.911999(3) Observationally Stable[n 10] 0+ 0.0307(7)
144mSm 2323.60(8) keV 880(25) ns 6+
145Sm 62 83 144.913410(3) 340(3) d EC 145Pm 7/2−
145mSm 8786.2(7) keV 990(170) ns
[0.96(+19−15) μs]
(49/2+)
146Sm 62 84 145.913041(4) 6.8(7)×107 y α 142Nd 0+ Trace
147Sm[n 11][n 12][n 13] 62 85 146.9148979(26) 1.06(2)×1011 y α 143Nd 7/2− 0.1499(18)
148Sm[n 11] 62 86 147.9148227(26) 7(3)×1015 y α 144Nd 0+ 0.1124(10)
149Sm[n 12][n 14] 62 87 148.9171847(26) Observationally Stable[n 15] 7/2− 0.1382(7)
150Sm 62 88 149.9172755(26) Observationally Stable[n 16] 0+ 0.0738(1)
151Sm[n 12][n 14] 62 89 150.9199324(26) 88.8(24) y β 151Eu 5/2−
151mSm 261.13(4) keV 1.4(1) μs (11/2)−
152Sm[n 12] 62 90 151.9197324(27) Observationally Stable[n 17] 0+ 0.2675(16)
153Sm[n 12] 62 91 152.9220974(27) 46.284(4) h β 153Eu 3/2+
153mSm 98.37(10) keV 10.6(3) ms IT 153Sm 11/2−
154Sm[n 12] 62 92 153.9222093(27) Observationally Stable[n 18] 0+ 0.2275(29)
155Sm 62 93 154.9246402(28) 22.3(2) min β 155Eu 3/2−
156Sm 62 94 155.925528(10) 9.4(2) h β 156Eu 0+
156mSm 1397.55(9) keV 185(7) ns 5−
157Sm 62 95 156.92836(5) 8.03(7) min β 157Eu (3/2−)
158Sm 62 96 157.92999(8) 5.30(3) min β 158Eu 0+
159Sm 62 97 158.93321(11) 11.37(15) s β 159Eu 5/2−
160Sm 62 98 159.93514(21)# 9.6(3) s β 160Eu 0+
161Sm 62 99 160.93883(32)# 4.349+0.425
−0.441
 s
[8]
β 161Eu 7/2+#
162Sm 62 100 161.94122(54)# 3.369+0.200
−0.303
 s
[8]
β 162Eu 0+
163Sm 62 101 162.94536(75)# 1.744+0.180
−0.204
 s
[8]
β 163Eu 1/2−#
164Sm 62 102 163.94828(86)# 1.422+0.54
−0.59
 s
[8]
β 164Eu 0+
165Sm 62 103 164.95298(97)# 592+51
−55
 ms
[8]
β (98.64%) 165Eu 5/2−#
β, n (1.36%) 164Eu
166Sm 62 104 396+56
−63
 ms
[8]
β (95.62%) 166Eu 0+
β, n (4.38%) 165Eu
167Sm 62 105 334+83
−78
 ms
[8]
β 167Eu
β, n 166Eu
168Sm 62 106 353+210
−164
 ms
[8]
β 168Eu 0+
β, n 167Eu
This table header & footer:
  1. ^ mSm – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^ Modes of decay:
  7. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  8. ^ Bold symbol as daughter – Daughter product is stable.
  9. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  10. ^ Believed to undergo β+β+ decay to 144Nd[6]
  11. ^ a b Primordial radioisotope
  12. ^ a b c d e f Fission product
  13. ^ Used in Samarium–neodymium dating
  14. ^ a b Neutron poison in reactors
  15. ^ Believed to undergo α decay to 145Nd with a half-life over 2×1015 years[6][7]
  16. ^ Believed to undergo α decay to 146Nd[7]
  17. ^ Believed to undergo α decay to 148Nd[7]
  18. ^ Believed to undergo ββ decay to 154Gd with a half-life over 2.3×1018 years[6]

Samarium-149

Samarium-149 (149Sm) is an observationally stable isotope of samarium (predicted to decay, but no decays have ever been observed, giving it a half-life at least several orders of magnitude longer than the age of the universe), and a product of the decay chain from the fission product 149Nd (yield 1.0888%). 149Sm is a neutron-absorbing nuclear poison with significant effect on nuclear reactor operation, second only to 135Xe. Its neutron cross section is 40140 barns for thermal neutrons.

The equilibrium concentration (and thus the poisoning effect) builds to an equilibrium value in about 500 hours (about 20 days) of reactor operation, and since 149Sm is stable, the concentration remains essentially constant during further reactor operation. This contrasts with xenon-135, which accumulates from the beta decay of iodine-135 (a short lived fission product) and has a high neutron cross section, but itself decays with a half-life of 9.2 hours (so does not remain in constant concentration long after the reactor shutdown), causing the so-called xenon pit.

Samarium-151

Medium-lived
fission products[further explanation needed]
t½
(year)
Yield
(%)
Q
(keV)
βγ
155Eu 4.76 0.0803 252 βγ
85Kr 10.76 0.2180 687 βγ
113mCd 14.1 0.0008 316 β
90Sr 28.9 4.505   2826 β
137Cs 30.23 6.337   1176 βγ
121mSn 43.9 0.00005 390 βγ
151Sm 88.8 0.5314 77 β
Yield, % per fission[9]
Thermal Fast 14 MeV
232Th not fissile 0.399 ± 0.065 0.165 ± 0.035
233U 0.333 ± 0.017 0.312 ± 0.014 0.49 ± 0.11
235U 0.4204 ± 0.0071 0.431 ± 0.015 0.388 ± 0.061
238U not fissile 0.810 ± 0.012 0.800 ± 0.057
239Pu 0.776 ± 0.018 0.797 ± 0.037 ?
241Pu 0.86 ± 0.24 0.910 ± 0.025 ?

Samarium-151 (151Sm) has a half-life of 88.8 years, undergoing low-energy beta decay, and has a fission product yield of 0.4203% for thermal neutrons and 235U, about 39% of 149Sm's yield. The yield is somewhat higher for 239Pu.

Its neutron absorption cross section for thermal neutrons is high at 15200 barns, about 38% of 149Sm's absorption cross section, or about 20 times that of 235U. Since the ratios between the production and absorption rates of 151Sm and 149Sm are almost equal, the two isotopes should reach similar equilibrium concentrations. Since 149Sm reaches equilibrium in about 500 hours (20 days), 151Sm should reach equilibrium in about 50 days.

Since nuclear fuel is used for several years (burnup) in a nuclear power plant, the final amount of 151Sm in the spent nuclear fuel at discharge is only a small fraction of the total 151Sm produced during the use of the fuel. According to one study, the mass fraction of 151Sm in spent fuel is about 0.0025 for heavy loading of MOX fuel and about half that for uranium fuel, which is roughly two orders of magnitude less than the mass fraction of about 0.15 for the medium-lived fission product 137Cs.[10] The decay energy of 151Sm is also about an order of magnitude less than that of 137Cs. The low yield, low survival rate, and low decay energy mean that 151Sm has insignificant nuclear waste impact compared to the two main medium-lived fission products 137Cs and 90Sr.

    Samarium-153

    Samarium-153 (153Sm) has a half-life of 46.3 hours, undergoing β decay into 153Eu. As a component of samarium lexidronam, it is used in palliation of bone cancer.[11] It is treated by the body in a similar manner to calcium, and it localizes selectively to bone.

    References

    • Isotope masses from:
      • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
    • Isotopic compositions and standard atomic masses from:
      • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
      • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
    • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
    • Half-life, spin, and isomer data selected from the following sources.
    1. ^ "Standard Atomic Weights: Samarium". CIAAW. 2005.
    2. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; et al. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
    3. ^ Samir Maji; et al. (2006). "Separation of samarium and neodymium: a prerequisite for getting signals from nuclear synthesis". Analyst. 131 (12): 1332–1334. Bibcode:2006Ana...131.1332M. doi:10.1039/b608157f. PMID 17124541.
    4. ^ Kinoshita, N.; Paul, M.; Kashiv, Y.; Collon, P.; Deibel, C. M.; DiGiovine, B.; Greene, J. P.; Henderson, D. J.; Jiang, C. L.; Marley, S. T.; Nakanishi, T.; Pardo, R. C.; Rehm, K. E.; Robertson, D.; Scott, R.; Schmitt, C.; Tang, X. D.; Vondrasek, R.; Yokoyama, A. (30 March 2012). "A Shorter 146Sm Half-Life Measured and Implications for 146Sm-142Nd Chronology in the Solar System". Science. 335 (6076): 1614–1617. arXiv:1109.4805. Bibcode:2012Sci...335.1614K. doi:10.1126/science.1215510. ISSN 0036-8075. PMID 22461609. S2CID 206538240.
    5. ^ He, M.; Shen, H.; Shi, G.; Yin, X.; Tian, W.; Jiang, S. (2009). "Half-life of 151Sm remeasured". Physical Review C. 80 (6): 064305. Bibcode:2009PhRvC..80f4305H. doi:10.1103/PhysRevC.80.064305.
    6. ^ a b c Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
    7. ^ a b c Belli, P.; Bernabei, R.; Danevich, F. A.; Incicchitti, A.; Tretyak, V. I. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (140): 4–6. arXiv:1908.11458. Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. S2CID 201664098.
    8. ^ a b c d e f g h Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal. 936 (107). doi:10.3847/1538-4357/ac80fc.
    9. ^ https://www-nds.iaea.org/sgnucdat/c3.htm Cumulative Fission Yields, IAEA
    10. ^ Christophe Demazière. Reactor Physics Calculations on MOX Fuel in Boiling Water Reactors (BWRs) (PDF) (Report). OECD Nuclear Energy Agency. Figure 2, page 6
    11. ^ Ballantyne, Jane C; Fishman, Scott M; Rathmell, James P. (2009-10-01). Bonica's Management of Pain. Lippincott Williams & Wilkins. pp. 655–. ISBN 978-0-7817-6827-6. Retrieved 19 July 2011.

    isotopes, samarium, naturally, occurring, samarium, 62sm, composed, five, stable, isotopes, 144sm, 149sm, 150sm, 152sm, 154sm, extremely, long, lived, radioisotopes, 147sm, half, life, 1011, 148sm, 1015, with, 152sm, being, most, abundant, natural, abundance, . Naturally occurring samarium 62Sm is composed of five stable isotopes 144Sm 149Sm 150Sm 152Sm and 154Sm and two extremely long lived radioisotopes 147Sm half life 1 06 1011 y and 148Sm 7 1015 y with 152Sm being the most abundant 26 75 natural abundance 146Sm is also fairly long lived 6 8 107 y but is not long lived enough to have survived in significant quantities from the formation of the Solar System on Earth although it remains useful in radiometric dating in the Solar System as an extinct radionuclide 3 4 Isotopes of samarium 62Sm Main isotopes Decayabun dance half life t1 2 mode pro duct144Sm 3 08 stable145Sm syn 340 d e 145Pm146Sm syn 6 8 107 y a 142Nd147Sm 15 00 1 06 1011 y a 143Nd148Sm 11 25 7 1015 y a 144Nd149Sm 13 82 stable150Sm 7 37 stable151Sm syn 94 6 y b 151Eu152Sm 26 74 stable153Sm syn 46 284 h b 153Eu154Sm 22 74 stableStandard atomic weight Ar Sm 150 36 0 02150 36 0 02 abridged 1 2 viewtalkeditOther than the naturally occurring isotopes the longest lived radioisotopes are 151Sm which has a half life of 88 8 years 5 and 145Sm which has a half life of 340 days All of the remaining radioisotopes which range from 129Sm to 168Sm have half lives that are less than two days and the majority of these have half lives that are less than 48 seconds This element also has twelve known isomers with the most stable being 141mSm t1 2 22 6 minutes 143m1Sm t1 2 66 seconds and 139mSm t1 2 10 7 seconds The long lived isotopes 146Sm 147Sm and 148Sm primarily decay by alpha decay to isotopes of neodymium Lighter unstable isotopes of samarium primarily decay by electron capture to isotopes of promethium while heavier ones decay by beta decay to isotopes of europium Isotopes of samarium are used in samarium neodymium dating for determining the age relationships of rocks and meteorites 151Sm is a medium lived fission product and acts as a neutron poison in the nuclear fuel cycle The stable fission product 149Sm is also a neutron poison Contents 1 List of isotopes 2 Samarium 149 3 Samarium 151 4 Samarium 153 5 ReferencesList of isotopes EditNuclide n 1 Z N Isotopic mass Da n 2 n 3 Half life n 4 n 5 Decaymode n 6 Daughterisotope n 7 n 8 Spin andparity n 9 n 5 Natural abundance mole fraction Excitation energy n 5 Normal proportion Range of variation129Sm 62 67 128 95464 54 550 100 ms 5 2 130Sm 62 68 129 94892 43 1 s b 130Pm 0 131Sm 62 69 130 94611 32 1 2 2 s b 131Pm 5 2 b p rare 130Nd132Sm 62 70 131 94069 32 4 0 3 s b 132Pm 0 b p 131Nd133Sm 62 71 132 93867 21 2 90 17 s b 133Pm 5 2 b p 132Nd134Sm 62 72 133 93397 21 10 1 s b 134Pm 0 135Sm 62 73 134 93252 17 10 3 5 s b 99 98 135Pm 7 2 b p 02 134Nd135mSm 0 300 keV 2 4 9 s b 135Pm 3 2 5 2 136Sm 62 74 135 928276 13 47 2 s b 136Pm 0 136mSm 2264 7 11 keV 15 1 ms 8 137Sm 62 75 136 92697 5 45 1 s b 137Pm 9 2 137mSm 180 50 keV 20 s b 137Pm 1 2 138Sm 62 76 137 923244 13 3 1 2 min b 138Pm 0 139Sm 62 77 138 922297 12 2 57 10 min b 139Pm 1 2 139mSm 457 40 22 keV 10 7 6 s IT 93 7 139Sm 11 2 b 6 3 139Pm140Sm 62 78 139 918995 13 14 82 12 min b 140Pm 0 141Sm 62 79 140 918476 9 10 2 2 min b 141Pm 1 2 141mSm 176 0 3 keV 22 6 2 min b 99 69 141Pm 11 2 IT 31 141Sm142Sm 62 80 141 915198 6 72 49 5 min b 142Pm 0 143Sm 62 81 142 914628 4 8 75 8 min b 143Pm 3 2 143m1Sm 753 99 16 keV 66 2 s IT 99 76 143Sm 11 2 b 24 143Pm143m2Sm 2793 8 13 keV 30 3 ms 23 2 144Sm 62 82 143 911999 3 Observationally Stable n 10 0 0 0307 7 144mSm 2323 60 8 keV 880 25 ns 6 145Sm 62 83 144 913410 3 340 3 d EC 145Pm 7 2 145mSm 8786 2 7 keV 990 170 ns 0 96 19 15 ms 49 2 146Sm 62 84 145 913041 4 6 8 7 107 y a 142Nd 0 Trace147Sm n 11 n 12 n 13 62 85 146 9148979 26 1 06 2 1011 y a 143Nd 7 2 0 1499 18 148Sm n 11 62 86 147 9148227 26 7 3 1015 y a 144Nd 0 0 1124 10 149Sm n 12 n 14 62 87 148 9171847 26 Observationally Stable n 15 7 2 0 1382 7 150Sm 62 88 149 9172755 26 Observationally Stable n 16 0 0 0738 1 151Sm n 12 n 14 62 89 150 9199324 26 88 8 24 y b 151Eu 5 2 151mSm 261 13 4 keV 1 4 1 ms 11 2 152Sm n 12 62 90 151 9197324 27 Observationally Stable n 17 0 0 2675 16 153Sm n 12 62 91 152 9220974 27 46 284 4 h b 153Eu 3 2 153mSm 98 37 10 keV 10 6 3 ms IT 153Sm 11 2 154Sm n 12 62 92 153 9222093 27 Observationally Stable n 18 0 0 2275 29 155Sm 62 93 154 9246402 28 22 3 2 min b 155Eu 3 2 156Sm 62 94 155 925528 10 9 4 2 h b 156Eu 0 156mSm 1397 55 9 keV 185 7 ns 5 157Sm 62 95 156 92836 5 8 03 7 min b 157Eu 3 2 158Sm 62 96 157 92999 8 5 30 3 min b 158Eu 0 159Sm 62 97 158 93321 11 11 37 15 s b 159Eu 5 2 160Sm 62 98 159 93514 21 9 6 3 s b 160Eu 0 161Sm 62 99 160 93883 32 4 349 0 425 0 441 s 8 b 161Eu 7 2 162Sm 62 100 161 94122 54 3 369 0 200 0 303 s 8 b 162Eu 0 163Sm 62 101 162 94536 75 1 744 0 180 0 204 s 8 b 163Eu 1 2 164Sm 62 102 163 94828 86 1 422 0 54 0 59 s 8 b 164Eu 0 165Sm 62 103 164 95298 97 592 51 55 ms 8 b 98 64 165Eu 5 2 b n 1 36 164Eu166Sm 62 104 396 56 63 ms 8 b 95 62 166Eu 0 b n 4 38 165Eu167Sm 62 105 334 83 78 ms 8 b 167Eub n 166Eu168Sm 62 106 353 210 164 ms 8 b 168Eu 0 b n 167EuThis table header amp footer view mSm Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS Bold half life nearly stable half life longer than age of universe a b c Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Modes of decay IT Isomeric transitionp Proton emission Bold italics symbol as daughter Daughter product is nearly stable Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments Believed to undergo b b decay to 144Nd 6 a b Primordial radioisotope a b c d e f Fission product Used in Samarium neodymium dating a b Neutron poison in reactors Believed to undergo a decay to 145Nd with a half life over 2 1015 years 6 7 Believed to undergo a decay to 146Nd 7 Believed to undergo a decay to 148Nd 7 Believed to undergo b b decay to 154Gd with a half life over 2 3 1018 years 6 Samarium 149 EditSamarium 149 149Sm is an observationally stable isotope of samarium predicted to decay but no decays have ever been observed giving it a half life at least several orders of magnitude longer than the age of the universe and a product of the decay chain from the fission product 149Nd yield 1 0888 149Sm is a neutron absorbing nuclear poison with significant effect on nuclear reactor operation second only to 135Xe Its neutron cross section is 40140 barns for thermal neutrons The equilibrium concentration and thus the poisoning effect builds to an equilibrium value in about 500 hours about 20 days of reactor operation and since 149Sm is stable the concentration remains essentially constant during further reactor operation This contrasts with xenon 135 which accumulates from the beta decay of iodine 135 a short lived fission product and has a high neutron cross section but itself decays with a half life of 9 2 hours so does not remain in constant concentration long after the reactor shutdown causing the so called xenon pit Samarium 151 EditMedium lived fission products further explanation needed t year Yield Q keV bg155Eu 4 76 0 0803 252 bg85Kr 10 76 0 2180 687 bg113mCd 14 1 0 0008 316 b90Sr 28 9 4 505 2826 b137Cs 30 23 6 337 1176 bg121mSn 43 9 0 00005 390 bg151Sm 88 8 0 5314 77 bYield per fission 9 Thermal Fast 14 MeV232Th not fissile 0 399 0 065 0 165 0 035233U 0 333 0 017 0 312 0 014 0 49 0 11235U 0 4204 0 0071 0 431 0 015 0 388 0 061238U not fissile 0 810 0 012 0 800 0 057239Pu 0 776 0 018 0 797 0 037 241Pu 0 86 0 24 0 910 0 025 Samarium 151 151Sm has a half life of 88 8 years undergoing low energy beta decay and has a fission product yield of 0 4203 for thermal neutrons and 235U about 39 of 149Sm s yield The yield is somewhat higher for 239Pu Its neutron absorption cross section for thermal neutrons is high at 15200 barns about 38 of 149Sm s absorption cross section or about 20 times that of 235U Since the ratios between the production and absorption rates of 151Sm and 149Sm are almost equal the two isotopes should reach similar equilibrium concentrations Since 149Sm reaches equilibrium in about 500 hours 20 days 151Sm should reach equilibrium in about 50 days Since nuclear fuel is used for several years burnup in a nuclear power plant the final amount of 151Sm in the spent nuclear fuel at discharge is only a small fraction of the total 151Sm produced during the use of the fuel According to one study the mass fraction of 151Sm in spent fuel is about 0 0025 for heavy loading of MOX fuel and about half that for uranium fuel which is roughly two orders of magnitude less than the mass fraction of about 0 15 for the medium lived fission product 137Cs 10 The decay energy of 151Sm is also about an order of magnitude less than that of 137Cs The low yield low survival rate and low decay energy mean that 151Sm has insignificant nuclear waste impact compared to the two main medium lived fission products 137Cs and 90Sr ANL factsheetSamarium 153 EditSamarium 153 153Sm has a half life of 46 3 hours undergoing b decay into 153Eu As a component of samarium lexidronam it is used in palliation of bone cancer 11 It is treated by the body in a similar manner to calcium and it localizes selectively to bone References EditIsotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Standard Atomic Weights Samarium CIAAW 2005 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline et al 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 Samir Maji et al 2006 Separation of samarium and neodymium a prerequisite for getting signals from nuclear synthesis Analyst 131 12 1332 1334 Bibcode 2006Ana 131 1332M doi 10 1039 b608157f PMID 17124541 Kinoshita N Paul M Kashiv Y Collon P Deibel C M DiGiovine B Greene J P Henderson D J Jiang C L Marley S T Nakanishi T Pardo R C Rehm K E Robertson D Scott R Schmitt C Tang X D Vondrasek R Yokoyama A 30 March 2012 A Shorter 146Sm Half Life Measured and Implications for 146Sm 142Nd Chronology in the Solar System Science 335 6076 1614 1617 arXiv 1109 4805 Bibcode 2012Sci 335 1614K doi 10 1126 science 1215510 ISSN 0036 8075 PMID 22461609 S2CID 206538240 He M Shen H Shi G Yin X Tian W Jiang S 2009 Half life of 151Sm remeasured Physical Review C 80 6 064305 Bibcode 2009PhRvC 80f4305H doi 10 1103 PhysRevC 80 064305 a b c Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae a b c Belli P Bernabei R Danevich F A Incicchitti A Tretyak V I 2019 Experimental searches for rare alpha and beta decays European Physical Journal A 55 140 4 6 arXiv 1908 11458 Bibcode 2019EPJA 55 140B doi 10 1140 epja i2019 12823 2 S2CID 201664098 a b c d e f g h Kiss G G Vitez Sveiczer A Saito Y et al 2022 Measuring the b decay properties of neutron rich exotic Pm Sm Eu and Gd isotopes to constrain the nucleosynthesis yields in the rare earth region The Astrophysical Journal 936 107 doi 10 3847 1538 4357 ac80fc https www nds iaea org sgnucdat c3 htm Cumulative Fission Yields IAEA Christophe Demaziere Reactor Physics Calculations on MOX Fuel in Boiling Water Reactors BWRs PDF Report OECD Nuclear Energy Agency Figure 2 page 6 Ballantyne Jane C Fishman Scott M Rathmell James P 2009 10 01 Bonica s Management of Pain Lippincott Williams amp Wilkins pp 655 ISBN 978 0 7817 6827 6 Retrieved 19 July 2011 Retrieved from https en wikipedia org w index php title Isotopes of samarium amp oldid 1138034903 Samarium 151, wikipedia, wiki, book, books, library,

    article

    , read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.