fbpx
Wikipedia

Isotopes of neodymium

Naturally occurring neodymium (60Nd) is composed of 5 stable isotopes, 142Nd, 143Nd, 145Nd, 146Nd and 148Nd, with 142Nd being the most abundant (27.2% natural abundance), and 2 long-lived radioisotopes, 144Nd and 150Nd. In all, 33 radioisotopes of neodymium have been characterized up to now, with the most stable being naturally occurring isotopes 144Nd (alpha decay, a half-life (t1/2) of 2.29×1015 years) and 150Nd (double beta decay, t1/2 of 7×1018 years), and for practical purposes they can be considered to be stable as well. All of the remaining radioactive isotopes have half-lives that are less than 12 days, and the majority of these have half-lives that are less than 70 seconds; the most stable artificial isotope is 147Nd with a half-life of 10.98 days. This element also has 13 known meta states with the most stable being 139mNd (t1/2 5.5 hours), 135mNd (t1/2 5.5 minutes) and 133m1Nd (t1/2 ~70 seconds).

Isotopes of neodymium (60Nd)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
142Nd 27.2% stable
143Nd 12.2% stable
144Nd 23.8% 2.29×1015 y α 140Ce
145Nd 8.3% stable
146Nd 17.2% stable
148Nd 5.80% stable
150Nd 5.60% 9.3×1018 y[1] ββ 150Sm
Standard atomic weight Ar°(Nd)

The primary decay modes before the most abundant stable isotope (also the only theoretically stable isotope), 142Nd, are electron capture and positron decay, and the primary mode after is beta decay. The primary decay products before 142Nd are praseodymium isotopes and the primary products after are promethium isotopes.

Neodymium isotopes as fission products edit

Neodymium is one of the more common fission products that results from the splitting of uranium-233, uranium-235, plutonium-239 and plutonium-241. The distribution of resulting neodymium isotopes is distinctly different than those found in crustal rock formation on Earth. One of the methods used to verify that the Oklo Fossil Reactors in Gabon had produced a natural nuclear fission reactor some two billion years before present was to compare the relative abundances of neodymium isotopes found at the reactor site with those found elsewhere on Earth.[4][5][6]

List of isotopes edit

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4][n 5]
Decay
mode

[n 6]
Daughter
isotope

[n 7]
Spin and
parity
[n 8][n 5]
Natural abundance (mole fraction)
Excitation energy[n 5] Normal proportion Range of variation
124Nd 60 64 123.95223(64)# 500# ms 0+
125Nd 60 65 124.94888(43)# 600(150) ms 5/2(+#)
126Nd 60 66 125.94322(43)# 1# s [>200 ns] β+ 126Pr 0+
127Nd 60 67 126.94050(43)# 1.8(4) s β+ 127Pr 5/2+#
β+, p (rare) 126Ce
128Nd 60 68 127.93539(21)# 5# s β+ 128Pr 0+
β+, p (rare) 127Ce
129Nd 60 69 128.93319(22)# 4.9(2) s β+ 129Pr 5/2+#
β+, p (rare) 128Ce
130Nd 60 70 129.92851(3) 21(3) s β+ 130Pr 0+
131Nd 60 71 130.92725(3) 33(3) s β+ 131Pr (5/2)(+#)
β+, p (rare) 130Ce
132Nd 60 72 131.923321(26) 1.56(10) min β+ 132Pr 0+
133Nd 60 73 132.92235(5) 70(10) s β+ 133Pr (7/2+)
133m1Nd 127.97(11) keV ~70 s β+ 133Pr (1/2)+
133m2Nd 176.10(10) keV ~300 ns (9/2–)
134Nd 60 74 133.918790(13) 8.5(15) min β+ 134Pr 0+
134mNd 2293.1(4) keV 410(30) µs (8)–
135Nd 60 75 134.918181(21) 12.4(6) min β+ 135Pr 9/2(–)
135mNd 65.0(2) keV 5.5(5) min β+ 135Pr (1/2+)
136Nd 60 76 135.914976(13) 50.65(33) min β+ 136Pr 0+
137Nd 60 77 136.914567(12) 38.5(15) min β+ 137Pr 1/2+
137mNd 519.43(17) keV 1.60(15) s IT 137Nd (11/2–)
138Nd 60 78 137.911950(13) 5.04(9) h β+ 138Pr 0+
138mNd 3174.9(4) keV 410(50) ns (10+)
139Nd 60 79 138.911978(28) 29.7(5) min β+ 139Pr 3/2+
139m1Nd 231.15(5) keV 5.50(20) h β+ (88.2%) 139Pr 11/2–
IT (11.8%) 139Nd
139m2Nd 2570.9+X keV ≥141 ns
140Nd 60 80 139.90955(3) 3.37(2) d EC 140Pr 0+
140mNd 2221.4(1) keV 600(50) µs 7–
141Nd 60 81 140.909610(4) 2.49(3) h β+ 141Pr 3/2+
141mNd 756.51(5) keV 62.0(8) s IT (99.95%) 141Nd 11/2–
β+ (.05%) 141Pr
142Nd 60 82 141.9077233(25) Stable 0+ 0.272(5) 0.2680–0.2730
143Nd[n 9] 60 83 142.9098143(25) Observationally Stable[n 10] 7/2− 0.122(2) 0.1212–0.1232
144Nd[n 9][n 11] 60 84 143.9100873(25) 2.29(16)×1015 y α 140Ce 0+ 0.238(3) 0.2379–0.2397
145Nd[n 9] 60 85 144.9125736(25) Observationally Stable[n 12] 7/2− 0.083(1) 0.0823–0.0835
146Nd[n 9] 60 86 145.9131169(25) Observationally Stable[n 13] 0+ 0.172(3) 0.1706–0.1735
147Nd[n 9] 60 87 146.9161004(25) 10.98(1) d β 147Pm 5/2−
148Nd[n 9] 60 88 147.916893(3) Observationally Stable[n 14] 0+ 0.057(1) 0.0566–0.0578
149Nd[n 9] 60 89 148.920149(3) 1.728(1) h β 149Pm 5/2−
150Nd[n 9][n 11][n 15] 60 90 149.920891(3) 9.3(7)×1018 y[1] ββ 150Sm 0+ 0.056(2) 0.0553–0.0569
151Nd 60 91 150.923829(3) 12.44(7) min β 151Pm 3/2+
152Nd 60 92 151.924682(26) 11.4(2) min β 152Pm 0+
153Nd 60 93 152.927698(29) 31.6(10) s β 153Pm (3/2)−
154Nd 60 94 153.92948(12) 25.9(2) s β 154Pm 0+
154m1Nd 480(150)# keV 1.3(5) µs
154m2Nd 1349(10) keV >1 µs (5−)
155Nd 60 95 154.93293(16)# 8.9(2) s β 155Pm 3/2−#
156Nd 60 96 155.93502(22) 5.49(7) s β 156Pm 0+
156mNd 1432(5) keV 135 ns 5−
157Nd 60 97 156.93903(21)# 1.17(4) s[9] β 157Pm 5/2−#
158Nd 60 98 157.94160(43)# 700# ms [>300 ns] β 158Pm 0+
159Nd 60 99 158.94609(54)# 500# ms β 159Pm 7/2+#
160Nd 60 100 159.94909(64)# 300# ms β 160Pm 0+
161Nd 60 101 160.95388(75)# 200# ms β 161Pm 1/2−#
This table header & footer:
  1. ^ mNd – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^ Modes of decay:
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ a b c d e f g h Fission product
  10. ^ Believed to undergo α decay to 139Ce with a half-life over 2.8×1019 years[1][7][8]
  11. ^ a b Primordial radionuclide
  12. ^ Believed to undergo α decay to 141Ce with a half-life of over 6.1×1019 years[1][7][8]
  13. ^ Believed to undergo ββ decay to 146Sm or α decay to 142Ce with a half-life of over 3.3×1021 years[1][7][8]
  14. ^ Believed to undergo ββ decay to 148Sm or α decay to 144Ce with a half-life of over 1.2×1019 years[1][7][8]
  15. ^ Predicted to be capable of undergoing triple beta decay and quadruple beta decay with very long partial half-lives

References edit

  1. ^ a b c d e f g Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Neodymium". CIAAW. 2005.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Hemond, C.; Menet, C.; Menager, M.T. (1991). "U and Nd Isotopes from the New Oklo Reactor 10 (GABON): Evidence for Radioelements Migration". MRS Proceedings. 257. doi:10.1557/PROC-257-489.
  5. ^ "Oklo's Natural Nuclear Reactors". 24 October 2020.
  6. ^ "The Implications of the Oklo Phenomenon on the Constancy of Radiometric Decay Rates".
  7. ^ a b c d Sokur, N.V.; Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kasperovych, D.V.; Kobychev, V.V.; Laubenstein, M.; Leoncini, A.; Merlo, V.; Polischuk, O.G.; Tretyak, V.I. (11 July 2023). Alpha decay of naturally occurring neodymium isotopes. XII International Conference on New Frontiers in Physics.
  8. ^ a b c d Belli, P.; Bernabei, R.; Danevich, F. A.; Incicchitti, A.; Tretyak, V. I. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (140): 4–6. arXiv:1908.11458. Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. S2CID 201664098.
  9. ^ Hartley, D. J.; Kondev, F. G.; Carpenter, M. P.; Clark, J. A.; Copp, P.; Kay, B.; Lauritsen, T.; Savard, G.; Seweryniak, D.; Wilson, G. L.; Wu, J. (2023-08-14). "First β-decay spectroscopy study of 157Nd". Physical Review C. 108 (2). American Physical Society (APS): 024307. Bibcode:2023PhRvC.108b4307H. doi:10.1103/physrevc.108.024307. ISSN 2469-9985. S2CID 260913513.
  • Isotope masses from:
    • Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  • Isotopic compositions and standard atomic masses from:
    • de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
    • Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
  • "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
  • Half-life, spin, and isomer data selected from the following sources.

isotopes, neodymium, naturally, occurring, neodymium, 60nd, composed, stable, isotopes, 142nd, 143nd, 145nd, 146nd, 148nd, with, 142nd, being, most, abundant, natural, abundance, long, lived, radioisotopes, 144nd, 150nd, radioisotopes, neodymium, have, been, c. Naturally occurring neodymium 60Nd is composed of 5 stable isotopes 142Nd 143Nd 145Nd 146Nd and 148Nd with 142Nd being the most abundant 27 2 natural abundance and 2 long lived radioisotopes 144Nd and 150Nd In all 33 radioisotopes of neodymium have been characterized up to now with the most stable being naturally occurring isotopes 144Nd alpha decay a half life t1 2 of 2 29 1015 years and 150Nd double beta decay t1 2 of 7 1018 years and for practical purposes they can be considered to be stable as well All of the remaining radioactive isotopes have half lives that are less than 12 days and the majority of these have half lives that are less than 70 seconds the most stable artificial isotope is 147Nd with a half life of 10 98 days This element also has 13 known meta states with the most stable being 139mNd t1 2 5 5 hours 135mNd t1 2 5 5 minutes and 133m1Nd t1 2 70 seconds Isotopes of neodymium 60Nd Main isotopes 1 Decay abun dance half life t1 2 mode pro duct 142Nd 27 2 stable 143Nd 12 2 stable 144Nd 23 8 2 29 1015 y a 140Ce 145Nd 8 3 stable 146Nd 17 2 stable 148Nd 5 80 stable 150Nd 5 60 9 3 1018 y 1 b b 150SmStandard atomic weight Ar Nd 144 242 0 003 2 144 24 0 01 abridged 3 viewtalkedit The primary decay modes before the most abundant stable isotope also the only theoretically stable isotope 142Nd are electron capture and positron decay and the primary mode after is beta decay The primary decay products before 142Nd are praseodymium isotopes and the primary products after are promethium isotopes Neodymium isotopes as fission products editNeodymium is one of the more common fission products that results from the splitting of uranium 233 uranium 235 plutonium 239 and plutonium 241 The distribution of resulting neodymium isotopes is distinctly different than those found in crustal rock formation on Earth One of the methods used to verify that the Oklo Fossil Reactors in Gabon had produced a natural nuclear fission reactor some two billion years before present was to compare the relative abundances of neodymium isotopes found at the reactor site with those found elsewhere on Earth 4 5 6 List of isotopes editNuclide n 1 Z N Isotopic mass Da n 2 n 3 Half life n 4 n 5 Decaymode n 6 Daughterisotope n 7 Spin andparity n 8 n 5 Natural abundance mole fraction Excitation energy n 5 Normal proportion Range of variation 124Nd 60 64 123 95223 64 500 ms 0 125Nd 60 65 124 94888 43 600 150 ms 5 2 126Nd 60 66 125 94322 43 1 s gt 200 ns b 126Pr 0 127Nd 60 67 126 94050 43 1 8 4 s b 127Pr 5 2 b p rare 126Ce 128Nd 60 68 127 93539 21 5 s b 128Pr 0 b p rare 127Ce 129Nd 60 69 128 93319 22 4 9 2 s b 129Pr 5 2 b p rare 128Ce 130Nd 60 70 129 92851 3 21 3 s b 130Pr 0 131Nd 60 71 130 92725 3 33 3 s b 131Pr 5 2 b p rare 130Ce 132Nd 60 72 131 923321 26 1 56 10 min b 132Pr 0 133Nd 60 73 132 92235 5 70 10 s b 133Pr 7 2 133m1Nd 127 97 11 keV 70 s b 133Pr 1 2 133m2Nd 176 10 10 keV 300 ns 9 2 134Nd 60 74 133 918790 13 8 5 15 min b 134Pr 0 134mNd 2293 1 4 keV 410 30 µs 8 135Nd 60 75 134 918181 21 12 4 6 min b 135Pr 9 2 135mNd 65 0 2 keV 5 5 5 min b 135Pr 1 2 136Nd 60 76 135 914976 13 50 65 33 min b 136Pr 0 137Nd 60 77 136 914567 12 38 5 15 min b 137Pr 1 2 137mNd 519 43 17 keV 1 60 15 s IT 137Nd 11 2 138Nd 60 78 137 911950 13 5 04 9 h b 138Pr 0 138mNd 3174 9 4 keV 410 50 ns 10 139Nd 60 79 138 911978 28 29 7 5 min b 139Pr 3 2 139m1Nd 231 15 5 keV 5 50 20 h b 88 2 139Pr 11 2 IT 11 8 139Nd 139m2Nd 2570 9 X keV 141 ns 140Nd 60 80 139 90955 3 3 37 2 d EC 140Pr 0 140mNd 2221 4 1 keV 600 50 µs 7 141Nd 60 81 140 909610 4 2 49 3 h b 141Pr 3 2 141mNd 756 51 5 keV 62 0 8 s IT 99 95 141Nd 11 2 b 05 141Pr 142Nd 60 82 141 9077233 25 Stable 0 0 272 5 0 2680 0 2730 143Nd n 9 60 83 142 9098143 25 Observationally Stable n 10 7 2 0 122 2 0 1212 0 1232 144Nd n 9 n 11 60 84 143 9100873 25 2 29 16 1015 y a 140Ce 0 0 238 3 0 2379 0 2397 145Nd n 9 60 85 144 9125736 25 Observationally Stable n 12 7 2 0 083 1 0 0823 0 0835 146Nd n 9 60 86 145 9131169 25 Observationally Stable n 13 0 0 172 3 0 1706 0 1735 147Nd n 9 60 87 146 9161004 25 10 98 1 d b 147Pm 5 2 148Nd n 9 60 88 147 916893 3 Observationally Stable n 14 0 0 057 1 0 0566 0 0578 149Nd n 9 60 89 148 920149 3 1 728 1 h b 149Pm 5 2 150Nd n 9 n 11 n 15 60 90 149 920891 3 9 3 7 1018 y 1 b b 150Sm 0 0 056 2 0 0553 0 0569 151Nd 60 91 150 923829 3 12 44 7 min b 151Pm 3 2 152Nd 60 92 151 924682 26 11 4 2 min b 152Pm 0 153Nd 60 93 152 927698 29 31 6 10 s b 153Pm 3 2 154Nd 60 94 153 92948 12 25 9 2 s b 154Pm 0 154m1Nd 480 150 keV 1 3 5 µs 154m2Nd 1349 10 keV gt 1 µs 5 155Nd 60 95 154 93293 16 8 9 2 s b 155Pm 3 2 156Nd 60 96 155 93502 22 5 49 7 s b 156Pm 0 156mNd 1432 5 keV 135 ns 5 157Nd 60 97 156 93903 21 1 17 4 s 9 b 157Pm 5 2 158Nd 60 98 157 94160 43 700 ms gt 300 ns b 158Pm 0 159Nd 60 99 158 94609 54 500 ms b 159Pm 7 2 160Nd 60 100 159 94909 64 300 ms b 160Pm 0 161Nd 60 101 160 95388 75 200 ms b 161Pm 1 2 This table header amp footer view mNd Excited nuclear isomer Uncertainty 1s is given in concise form in parentheses after the corresponding last digits Atomic mass marked value and uncertainty derived not from purely experimental data but at least partly from trends from the Mass Surface TMS Bold half life nearly stable half life longer than age of universe a b c Values marked are not purely derived from experimental data but at least partly from trends of neighboring nuclides TNN Modes of decay EC Electron capture IT Isomeric transition p Proton emission Bold symbol as daughter Daughter product is stable spin value Indicates spin with weak assignment arguments a b c d e f g h Fission product Believed to undergo a decay to 139Ce with a half life over 2 8 1019 years 1 7 8 a b Primordial radionuclide Believed to undergo a decay to 141Ce with a half life of over 6 1 1019 years 1 7 8 Believed to undergo b b decay to 146Sm or a decay to 142Ce with a half life of over 3 3 1021 years 1 7 8 Believed to undergo b b decay to 148Sm or a decay to 144Ce with a half life of over 1 2 1019 years 1 7 8 Predicted to be capable of undergoing triple beta decay and quadruple beta decay with very long partial half livesReferences edit a b c d e f g Kondev F G Wang M Huang W J Naimi S Audi G 2021 The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 45 3 030001 doi 10 1088 1674 1137 abddae Standard Atomic Weights Neodymium CIAAW 2005 Prohaska Thomas Irrgeher Johanna Benefield Jacqueline Bohlke John K Chesson Lesley A Coplen Tyler B Ding Tiping Dunn Philip J H Groning Manfred Holden Norman E Meijer Harro A J 2022 05 04 Standard atomic weights of the elements 2021 IUPAC Technical Report Pure and Applied Chemistry doi 10 1515 pac 2019 0603 ISSN 1365 3075 Hemond C Menet C Menager M T 1991 U and Nd Isotopes from the New Oklo Reactor 10 GABON Evidence for Radioelements Migration MRS Proceedings 257 doi 10 1557 PROC 257 489 Oklo s Natural Nuclear Reactors 24 October 2020 The Implications of the Oklo Phenomenon on the Constancy of Radiometric Decay Rates a b c d Sokur N V Belli P Bernabei R Boiko R S Cappella F Caracciolo V Cerulli R Danevich F A Incicchitti A Kasperovych D V Kobychev V V Laubenstein M Leoncini A Merlo V Polischuk O G Tretyak V I 11 July 2023 Alpha decay of naturally occurring neodymium isotopes XII International Conference on New Frontiers in Physics a b c d Belli P Bernabei R Danevich F A Incicchitti A Tretyak V I 2019 Experimental searches for rare alpha and beta decays European Physical Journal A 55 140 4 6 arXiv 1908 11458 Bibcode 2019EPJA 55 140B doi 10 1140 epja i2019 12823 2 S2CID 201664098 Hartley D J Kondev F G Carpenter M P Clark J A Copp P Kay B Lauritsen T Savard G Seweryniak D Wilson G L Wu J 2023 08 14 First b decay spectroscopy study of 157Nd Physical Review C 108 2 American Physical Society APS 024307 Bibcode 2023PhRvC 108b4307H doi 10 1103 physrevc 108 024307 ISSN 2469 9985 S2CID 260913513 Isotope masses from Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Isotopic compositions and standard atomic masses from de Laeter John Robert Bohlke John Karl De Bievre Paul Hidaka Hiroshi Peiser H Steffen Rosman Kevin J R Taylor Philip D P 2003 Atomic weights of the elements Review 2000 IUPAC Technical Report Pure and Applied Chemistry 75 6 683 800 doi 10 1351 pac200375060683 Wieser Michael E 2006 Atomic weights of the elements 2005 IUPAC Technical Report Pure and Applied Chemistry 78 11 2051 2066 doi 10 1351 pac200678112051 News amp Notices Standard Atomic Weights Revised International Union of Pure and Applied Chemistry 19 October 2005 Half life spin and isomer data selected from the following sources Audi Georges Bersillon Olivier Blachot Jean Wapstra Aaldert Hendrik 2003 The NUBASE evaluation of nuclear and decay properties Nuclear Physics A 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 National Nuclear Data Center NuDat 2 x database Brookhaven National Laboratory Holden Norman E 2004 11 Table of the Isotopes In Lide David R ed CRC Handbook of Chemistry and Physics 85th ed Boca Raton Florida CRC Press ISBN 978 0 8493 0485 9 Retrieved from https en wikipedia org w index php title Isotopes of neodymium amp oldid 1222289319 Neodymium 143, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.