fbpx
Wikipedia

Root mean square

In mathematics and its applications, the root mean square of a set of numbers (abbreviated as RMS, RMS or rms and denoted in formulas as either or ) is defined as the square root of the mean square (the arithmetic mean of the squares) of the set.[1] The RMS is also known as the quadratic mean (denoted )[2][3] and is a particular case of the generalized mean. The RMS of a continuously varying function (denoted ) can be defined in terms of an integral of the squares of the instantaneous values during a cycle.

For alternating electric current, RMS is equal to the value of the constant direct current that would produce the same power dissipation in a resistive load.[1] In estimation theory, the root-mean-square deviation of an estimator is a measure of the imperfection of the fit of the estimator to the data.

Definition

The RMS value of a set of values (or a continuous-time waveform) is the square root of the arithmetic mean of the squares of the values, or the square of the function that defines the continuous waveform. In physics, the RMS current value can also be defined as the "value of the direct current that dissipates the same power in a resistor."

In the case of a set of n values  , the RMS is

 

The corresponding formula for a continuous function (or waveform) f(t) defined over the interval   is

 

and the RMS for a function over all time is

 

The RMS over all time of a periodic function is equal to the RMS of one period of the function. The RMS value of a continuous function or signal can be approximated by taking the RMS of a sample consisting of equally spaced observations. Additionally, the RMS value of various waveforms can also be determined without calculus, as shown by Cartwright.[4]

In the case of the RMS statistic of a random process, the expected value is used instead of the mean.

In common waveforms

 
Sine, square, triangle, and sawtooth waveforms. In each, the centerline is at 0, the positive peak is at   and the negative peak is at  
 
A rectangular pulse wave of duty cycle D, the ratio between the pulse duration ( ) and the period (T); illustrated here with a = 1.
 
Graph of a sine wave's voltage vs. time (in degrees), showing RMS, peak (PK), and peak-to-peak (PP) voltages.

If the waveform is a pure sine wave, the relationships between amplitudes (peak-to-peak, peak) and RMS are fixed and known, as they are for any continuous periodic wave. However, this is not true for an arbitrary waveform, which may not be periodic or continuous. For a zero-mean sine wave, the relationship between RMS and peak-to-peak amplitude is:

Peak-to-peak  

For other waveforms, the relationships are not the same as they are for sine waves. For example, for either a triangular or sawtooth wave

Peak-to-peak  
Waveform Variables and operators RMS
DC    
Sine wave    
Square wave    
DC-shifted square wave    
Modified sine wave    
Triangle wave    
Sawtooth wave    
Pulse wave    
Phase-to-phase voltage    
where:
  • y is displacement,
  • t is time,
  • f is frequency,
  • Ai is amplitude (peak value),
  • D is the duty cycle or the proportion of the time period (1/f) spent high,
  • frac(r) is the fractional part of r.

In waveform combinations

Waveforms made by summing known simple waveforms have an RMS value that is the root of the sum of squares of the component RMS values, if the component waveforms are orthogonal (that is, if the average of the product of one simple waveform with another is zero for all pairs other than a waveform times itself).[5]

 

Alternatively, for waveforms that are perfectly positively correlated, or "in phase" with each other, their RMS values sum directly.

Uses

In electrical engineering

Voltage

A special case of RMS of waveform combinations is:[6]

 

where   refers to the direct current (or average) component of the signal, and   is the alternating current component of the signal.

Average electrical power

Electrical engineers often need to know the power, P, dissipated by an electrical resistance, R. It is easy to do the calculation when there is a constant current, I, through the resistance. For a load of R ohms, power is defined simply as:

 

However, if the current is a time-varying function, I(t), this formula must be extended to reflect the fact that the current (and thus the instantaneous power) is varying over time. If the function is periodic (such as household AC power), it is still meaningful to discuss the average power dissipated over time, which is calculated by taking the average power dissipation:

 

So, the RMS value, IRMS, of the function I(t) is the constant current that yields the same power dissipation as the time-averaged power dissipation of the current I(t).

Average power can also be found using the same method that in the case of a time-varying voltage, V(t), with RMS value VRMS,

 

This equation can be used for any periodic waveform, such as a sinusoidal or sawtooth waveform, allowing us to calculate the mean power delivered into a specified load.

By taking the square root of both these equations and multiplying them together, the power is found to be:

 

Both derivations depend on voltage and current being proportional (that is, the load, R, is purely resistive). Reactive loads (that is, loads capable of not just dissipating energy but also storing it) are discussed under the topic of AC power.

In the common case of alternating current when I(t) is a sinusoidal current, as is approximately true for mains power, the RMS value is easy to calculate from the continuous case equation above. If Ip is defined to be the peak current, then:

 

where t is time and ω is the angular frequency (ω = 2π/T, where T is the period of the wave).

Since Ip is a positive constant:

 

Using a trigonometric identity to eliminate squaring of trig function:

 

but since the interval is a whole number of complete cycles (per definition of RMS), the sine terms will cancel out, leaving:

 

A similar analysis leads to the analogous equation for sinusoidal voltage:

 

where IP represents the peak current and VP represents the peak voltage.

Because of their usefulness in carrying out power calculations, listed voltages for power outlets (for example, 120 V in the US, or 230 V in Europe) are almost always quoted in RMS values, and not peak values. Peak values can be calculated from RMS values from the above formula, which implies VP = VRMS × 2, assuming the source is a pure sine wave. Thus the peak value of the mains voltage in the USA is about 120 × 2, or about 170 volts. The peak-to-peak voltage, being double this, is about 340 volts. A similar calculation indicates that the peak mains voltage in Europe is about 325 volts, and the peak-to-peak mains voltage, about 650 volts.

RMS quantities such as electric current are usually calculated over one cycle. However, for some purposes the RMS current over a longer period is required when calculating transmission power losses. The same principle applies, and (for example) a current of 10 amps used for 12 hours each 24-hour day represents an average current of 5 amps, but an RMS current of 7.07 amps, in the long term.

The term RMS power is sometimes erroneously used in the audio industry as a synonym for mean power or average power (it is proportional to the square of the RMS voltage or RMS current in a resistive load). For a discussion of audio power measurements and their shortcomings, see Audio power.

Speed

In the physics of gas molecules, the root-mean-square speed is defined as the square root of the average squared-speed. The RMS speed of an ideal gas is calculated using the following equation:

 

where R represents the gas constant, 8.314 J/(mol·K), T is the temperature of the gas in kelvins, and M is the molar mass of the gas in kilograms per mole. In physics, speed is defined as the scalar magnitude of velocity. For a stationary gas, the average speed of its molecules can be in the order of thousands of km/hr, even though the average velocity of its molecules is zero.

Error

When two data sets — one set from theoretical prediction and the other from actual measurement of some physical variable, for instance — are compared, the RMS of the pairwise differences of the two data sets can serve as a measure how far on average the error is from 0. The mean of the absolute values of the pairwise differences could be a useful measure of the variability of the differences. However, the RMS of the differences is usually the preferred measure, probably due to mathematical convention and compatibility with other formulae.

In frequency domain

The RMS can be computed in the frequency domain, using Parseval's theorem. For a sampled signal  , where   is the sampling period,

 

where   and N is the sample size, that is, the number of observations in the sample and FFT coefficients.

In this case, the RMS computed in the time domain is the same as in the frequency domain:

 

Relationship to other statistics

 
Geometric proof without words that max (a,b) > root mean square (RMS) or quadratic mean (QM) > arithmetic mean (AM) > geometric mean (GM) > harmonic mean (HM) > min (a,b) of two distinct positive numbers a and b [7]

If   is the arithmetic mean and   is the standard deviation of a population or a waveform, then:[8]

 

From this it is clear that the RMS value is always greater than or equal to the average, in that the RMS includes the "error" / square deviation as well.

Physical scientists often use the term root mean square as a synonym for standard deviation when it can be assumed the input signal has zero mean, that is, referring to the square root of the mean squared deviation of a signal from a given baseline or fit.[9][10] This is useful for electrical engineers in calculating the "AC only" RMS of a signal. Standard deviation being the RMS of a signal's variation about the mean, rather than about 0, the DC component is removed (that is, RMS(signal) = stdev(signal) if the mean signal is 0).

See also

References

  1. ^ a b "Root-mean-square value". A Dictionary of Physics (6 ed.). Oxford University Press. 2009. ISBN 9780199233991.
  2. ^ Thompson, Sylvanus P. (1965). Calculus Made Easy. Macmillan International Higher Education. p. 185. ISBN 9781349004874. Retrieved 5 July 2020.
  3. ^ Jones, Alan R. (2018). Probability, Statistics and Other Frightening Stuff. Routledge. p. 48. ISBN 9781351661386. Retrieved 5 July 2020.
  4. ^ Cartwright, Kenneth V (Fall 2007). "Determining the Effective or RMS Voltage of Various Waveforms without Calculus" (PDF). Technology Interface. 8 (1): 20 pages.
  5. ^ Nastase, Adrian S. "How to Derive the RMS Value of Pulse and Square Waveforms". MasteringElectronicsDesign.com. Retrieved 21 January 2015.
  6. ^ "Make Better AC RMS Measurements with your Digital Multimeter" (PDF). Keysight. Keysight. Retrieved 15 January 2019.
  7. ^ If AC = a and BC = b. OC = AM of a and b, and radius r = QO = OG.
    Using Pythagoras' theorem, QC² = QO² + OC² ∴ QC = √QO² + OC² = QM.
    Using Pythagoras' theorem, OC² = OG² + GC² ∴ GC = √OC² − OG² = GM.
    Using similar triangles, HC/GC = GC/OC ∴ HC = GC²/OC = HM.
  8. ^ Chris C. Bissell; David A. Chapman (1992). Digital signal transmission (2nd ed.). Cambridge University Press. p. 64. ISBN 978-0-521-42557-5.
  9. ^ Weisstein, Eric W. "Root-Mean-Square". MathWorld.
  10. ^ . Archived from the original on 2017-06-30. Retrieved 2013-07-18.

External links

  • A case for why RMS is a misnomer when applied to audio power
  • A Java applet on learning RMS

root, mean, square, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar, jstor, march, . This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Root mean square news newspapers books scholar JSTOR March 2010 Learn how and when to remove this template message In mathematics and its applications the root mean square of a set of numbers x i displaystyle x i abbreviated as RMS RMS or rms and denoted in formulas as either x R M S displaystyle x mathrm RMS or R M S x displaystyle mathrm RMS x is defined as the square root of the mean square the arithmetic mean of the squares of the set 1 The RMS is also known as the quadratic mean denoted M 2 displaystyle M 2 2 3 and is a particular case of the generalized mean The RMS of a continuously varying function denoted f R M S displaystyle f mathrm RMS can be defined in terms of an integral of the squares of the instantaneous values during a cycle For alternating electric current RMS is equal to the value of the constant direct current that would produce the same power dissipation in a resistive load 1 In estimation theory the root mean square deviation of an estimator is a measure of the imperfection of the fit of the estimator to the data Contents 1 Definition 2 In common waveforms 2 1 In waveform combinations 3 Uses 3 1 In electrical engineering 3 1 1 Voltage 3 1 2 Average electrical power 3 2 Speed 3 3 Error 4 In frequency domain 5 Relationship to other statistics 6 See also 7 References 8 External linksDefinition EditThe RMS value of a set of values or a continuous time waveform is the square root of the arithmetic mean of the squares of the values or the square of the function that defines the continuous waveform In physics the RMS current value can also be defined as the value of the direct current that dissipates the same power in a resistor In the case of a set of n values x 1 x 2 x n displaystyle x 1 x 2 dots x n the RMS is x RMS 1 n x 1 2 x 2 2 x n 2 displaystyle x text RMS sqrt frac 1 n left x 1 2 x 2 2 cdots x n 2 right The corresponding formula for a continuous function or waveform f t defined over the interval T 1 t T 2 displaystyle T 1 leq t leq T 2 is f RMS 1 T 2 T 1 T 1 T 2 f t 2 d t displaystyle f text RMS sqrt 1 over T 2 T 1 int T 1 T 2 f t 2 rm d t and the RMS for a function over all time is f RMS lim T 1 2 T T T f t 2 d t displaystyle f text RMS lim T rightarrow infty sqrt 1 over 2T int T T f t 2 rm d t The RMS over all time of a periodic function is equal to the RMS of one period of the function The RMS value of a continuous function or signal can be approximated by taking the RMS of a sample consisting of equally spaced observations Additionally the RMS value of various waveforms can also be determined without calculus as shown by Cartwright 4 In the case of the RMS statistic of a random process the expected value is used instead of the mean In common waveforms Edit Sine square triangle and sawtooth waveforms In each the centerline is at 0 the positive peak is at y A 1 displaystyle y A 1 and the negative peak is at y A 1 displaystyle y A 1 A rectangular pulse wave of duty cycle D the ratio between the pulse duration t displaystyle tau and the period T illustrated here with a 1 Graph of a sine wave s voltage vs time in degrees showing RMS peak PK and peak to peak PP voltages If the waveform is a pure sine wave the relationships between amplitudes peak to peak peak and RMS are fixed and known as they are for any continuous periodic wave However this is not true for an arbitrary waveform which may not be periodic or continuous For a zero mean sine wave the relationship between RMS and peak to peak amplitude is Peak to peak 2 2 RMS 2 8 RMS displaystyle 2 sqrt 2 times text RMS approx 2 8 times text RMS For other waveforms the relationships are not the same as they are for sine waves For example for either a triangular or sawtooth wave Peak to peak 2 3 RMS 3 5 RMS displaystyle 2 sqrt 3 times text RMS approx 3 5 times text RMS Waveform Variables and operators RMSDC y A 0 displaystyle y A 0 A 0 displaystyle A 0 Sine wave y A 1 sin 2 p f t displaystyle y A 1 sin 2 pi ft A 1 2 displaystyle frac A 1 sqrt 2 Square wave y A 1 frac f t lt 0 5 A 1 frac f t gt 0 5 displaystyle y begin cases A 1 amp operatorname frac ft lt 0 5 A 1 amp operatorname frac ft gt 0 5 end cases A 1 displaystyle A 1 DC shifted square wave y A 0 A 1 frac f t lt 0 5 A 1 frac f t gt 0 5 displaystyle y A 0 begin cases A 1 amp operatorname frac ft lt 0 5 A 1 amp operatorname frac ft gt 0 5 end cases A 0 2 A 1 2 displaystyle sqrt A 0 2 A 1 2 Modified sine wave y 0 frac f t lt 0 25 A 1 0 25 lt frac f t lt 0 5 0 0 5 lt frac f t lt 0 75 A 1 frac f t gt 0 75 displaystyle y begin cases 0 amp operatorname frac ft lt 0 25 A 1 amp 0 25 lt operatorname frac ft lt 0 5 0 amp 0 5 lt operatorname frac ft lt 0 75 A 1 amp operatorname frac ft gt 0 75 end cases A 1 2 displaystyle frac A 1 sqrt 2 Triangle wave y 2 A 1 frac f t A 1 displaystyle y left 2A 1 operatorname frac ft A 1 right A 1 3 displaystyle A 1 over sqrt 3 Sawtooth wave y 2 A 1 frac f t A 1 displaystyle y 2A 1 operatorname frac ft A 1 A 1 3 displaystyle A 1 over sqrt 3 Pulse wave y A 1 frac f t lt D 0 frac f t gt D displaystyle y begin cases A 1 amp operatorname frac ft lt D 0 amp operatorname frac ft gt D end cases A 1 D displaystyle A 1 sqrt D Phase to phase voltage y A 1 sin t A 1 sin t 2 p 3 displaystyle y A 1 sin t A 1 sin left t frac 2 pi 3 right A 1 3 2 displaystyle A 1 sqrt frac 3 2 where y is displacement t is time f is frequency Ai is amplitude peak value D is the duty cycle or the proportion of the time period 1 f spent high frac r is the fractional part of r In waveform combinations Edit Waveforms made by summing known simple waveforms have an RMS value that is the root of the sum of squares of the component RMS values if the component waveforms are orthogonal that is if the average of the product of one simple waveform with another is zero for all pairs other than a waveform times itself 5 RMS Total RMS 1 2 RMS 2 2 RMS n 2 displaystyle text RMS text Total sqrt text RMS 1 2 text RMS 2 2 cdots text RMS n 2 Alternatively for waveforms that are perfectly positively correlated or in phase with each other their RMS values sum directly Uses EditIn electrical engineering Edit Voltage Edit Further information Root mean square AC voltage A special case of RMS of waveform combinations is 6 RMS AC DC V DC 2 RMS AC 2 displaystyle text RMS text AC DC sqrt text V text DC 2 text RMS text AC 2 where V DC displaystyle text V text DC refers to the direct current or average component of the signal and RMS AC displaystyle text RMS text AC is the alternating current component of the signal Average electrical power Edit Further information AC power Electrical engineers often need to know the power P dissipated by an electrical resistance R It is easy to do the calculation when there is a constant current I through the resistance For a load of R ohms power is defined simply as P I 2 R displaystyle P I 2 R However if the current is a time varying function I t this formula must be extended to reflect the fact that the current and thus the instantaneous power is varying over time If the function is periodic such as household AC power it is still meaningful to discuss the average power dissipated over time which is calculated by taking the average power dissipation P a v I t 2 R a v where a v denotes the temporal mean of a function I t 2 a v R as R does not vary over time it can be factored out I RMS 2 R by definition of root mean square displaystyle begin aligned P av amp left I t 2 R right av amp amp text where left cdots right av text denotes the temporal mean of a function 3pt amp left I t 2 right av R amp amp text as R text does not vary over time it can be factored out 3pt amp I text RMS 2 R amp amp text by definition of root mean square end aligned So the RMS value IRMS of the function I t is the constant current that yields the same power dissipation as the time averaged power dissipation of the current I t Average power can also be found using the same method that in the case of a time varying voltage V t with RMS value VRMS P Avg V RMS 2 R displaystyle P text Avg V text RMS 2 over R This equation can be used for any periodic waveform such as a sinusoidal or sawtooth waveform allowing us to calculate the mean power delivered into a specified load By taking the square root of both these equations and multiplying them together the power is found to be P Avg V RMS I RMS displaystyle P text Avg V text RMS I text RMS Both derivations depend on voltage and current being proportional that is the load R is purely resistive Reactive loads that is loads capable of not just dissipating energy but also storing it are discussed under the topic of AC power In the common case of alternating current when I t is a sinusoidal current as is approximately true for mains power the RMS value is easy to calculate from the continuous case equation above If Ip is defined to be the peak current then I RMS 1 T 2 T 1 T 1 T 2 I p sin w t 2 d t displaystyle I text RMS sqrt 1 over T 2 T 1 int T 1 T 2 left I text p sin omega t right 2 dt where t is time and w is the angular frequency w 2p T where T is the period of the wave Since Ip is a positive constant I RMS I p 1 T 2 T 1 T 1 T 2 sin 2 w t d t displaystyle I text RMS I text p sqrt 1 over T 2 T 1 int T 1 T 2 sin 2 omega t dt Using a trigonometric identity to eliminate squaring of trig function I RMS I p 1 T 2 T 1 T 1 T 2 1 cos 2 w t 2 d t I p 1 T 2 T 1 t 2 sin 2 w t 4 w T 1 T 2 displaystyle begin aligned I text RMS amp I text p sqrt 1 over T 2 T 1 int T 1 T 2 1 cos 2 omega t over 2 dt 3pt amp I text p sqrt 1 over T 2 T 1 left t over 2 sin 2 omega t over 4 omega right T 1 T 2 end aligned but since the interval is a whole number of complete cycles per definition of RMS the sine terms will cancel out leaving I RMS I p 1 T 2 T 1 t 2 T 1 T 2 I p 1 T 2 T 1 T 2 T 1 2 I p 2 displaystyle I text RMS I text p sqrt 1 over T 2 T 1 left t over 2 right T 1 T 2 I text p sqrt 1 over T 2 T 1 T 2 T 1 over 2 I text p over sqrt 2 A similar analysis leads to the analogous equation for sinusoidal voltage V RMS V p 2 displaystyle V text RMS V text p over sqrt 2 where IP represents the peak current and VP represents the peak voltage Because of their usefulness in carrying out power calculations listed voltages for power outlets for example 120 V in the US or 230 V in Europe are almost always quoted in RMS values and not peak values Peak values can be calculated from RMS values from the above formula which implies VP VRMS 2 assuming the source is a pure sine wave Thus the peak value of the mains voltage in the USA is about 120 2 or about 170 volts The peak to peak voltage being double this is about 340 volts A similar calculation indicates that the peak mains voltage in Europe is about 325 volts and the peak to peak mains voltage about 650 volts RMS quantities such as electric current are usually calculated over one cycle However for some purposes the RMS current over a longer period is required when calculating transmission power losses The same principle applies and for example a current of 10 amps used for 12 hours each 24 hour day represents an average current of 5 amps but an RMS current of 7 07 amps in the long term The term RMS power is sometimes erroneously used in the audio industry as a synonym for mean power or average power it is proportional to the square of the RMS voltage or RMS current in a resistive load For a discussion of audio power measurements and their shortcomings see Audio power Speed Edit Main article Root mean square speed In the physics of gas molecules the root mean square speed is defined as the square root of the average squared speed The RMS speed of an ideal gas is calculated using the following equation v RMS 3 R T M displaystyle v text RMS sqrt 3RT over M where R represents the gas constant 8 314 J mol K T is the temperature of the gas in kelvins and M is the molar mass of the gas in kilograms per mole In physics speed is defined as the scalar magnitude of velocity For a stationary gas the average speed of its molecules can be in the order of thousands of km hr even though the average velocity of its molecules is zero Error Edit Main article Root mean square deviation When two data sets one set from theoretical prediction and the other from actual measurement of some physical variable for instance are compared the RMS of the pairwise differences of the two data sets can serve as a measure how far on average the error is from 0 The mean of the absolute values of the pairwise differences could be a useful measure of the variability of the differences However the RMS of the differences is usually the preferred measure probably due to mathematical convention and compatibility with other formulae In frequency domain EditThe RMS can be computed in the frequency domain using Parseval s theorem For a sampled signal x n x t n T displaystyle x n x t nT where T displaystyle T is the sampling period n 1 N x 2 n 1 N m 1 N X m 2 displaystyle sum n 1 N x 2 n frac 1 N sum m 1 N left X m right 2 where X m FFT x n displaystyle X m operatorname FFT x n and N is the sample size that is the number of observations in the sample and FFT coefficients In this case the RMS computed in the time domain is the same as in the frequency domain RMS x n 1 N n x 2 n 1 N 2 m X m 2 m X m N 2 displaystyle text RMS x n sqrt frac 1 N sum n x 2 n sqrt frac 1 N 2 sum m bigl X m bigr 2 sqrt sum m left frac X m N right 2 Relationship to other statistics EditSee also Accuracy Geometric proof without words that max a b gt root mean square RMS or quadratic mean QM gt arithmetic mean AM gt geometric mean GM gt harmonic mean HM gt min a b of two distinct positive numbers a and b 7 If x displaystyle bar x is the arithmetic mean and s x displaystyle sigma x is the standard deviation of a population or a waveform then 8 x rms 2 x 2 s x 2 x 2 displaystyle x text rms 2 overline x 2 sigma x 2 overline x 2 From this it is clear that the RMS value is always greater than or equal to the average in that the RMS includes the error square deviation as well Physical scientists often use the term root mean square as a synonym for standard deviation when it can be assumed the input signal has zero mean that is referring to the square root of the mean squared deviation of a signal from a given baseline or fit 9 10 This is useful for electrical engineers in calculating the AC only RMS of a signal Standard deviation being the RMS of a signal s variation about the mean rather than about 0 the DC component is removed that is RMS signal stdev signal if the mean signal is 0 See also EditAverage rectified value ARV Central moment Geometric mean L2 norm Least squares List of mathematical symbols Mean squared displacement True RMS converterReferences Edit a b Root mean square value A Dictionary of Physics 6 ed Oxford University Press 2009 ISBN 9780199233991 Thompson Sylvanus P 1965 Calculus Made Easy Macmillan International Higher Education p 185 ISBN 9781349004874 Retrieved 5 July 2020 Jones Alan R 2018 Probability Statistics and Other Frightening Stuff Routledge p 48 ISBN 9781351661386 Retrieved 5 July 2020 Cartwright Kenneth V Fall 2007 Determining the Effective or RMS Voltage of Various Waveforms without Calculus PDF Technology Interface 8 1 20 pages Nastase Adrian S How to Derive the RMS Value of Pulse and Square Waveforms MasteringElectronicsDesign com Retrieved 21 January 2015 Make Better AC RMS Measurements with your Digital Multimeter PDF Keysight Keysight Retrieved 15 January 2019 If AC a and BC b OC AM of a and b and radius r QO OG Using Pythagoras theorem QC QO OC QC QO OC QM Using Pythagoras theorem OC OG GC GC OC OG GM Using similar triangles HC GC GC OC HC GC OC HM Chris C Bissell David A Chapman 1992 Digital signal transmission 2nd ed Cambridge University Press p 64 ISBN 978 0 521 42557 5 Weisstein Eric W Root Mean Square MathWorld ROOT TH1 GetRMS Archived from the original on 2017 06 30 Retrieved 2013 07 18 External links EditA case for why RMS is a misnomer when applied to audio power A Java applet on learning RMS Retrieved from https en wikipedia org w index php title Root mean square amp oldid 1135995767 Voltage, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.