fbpx
Wikipedia

Retraction (topology)

In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace.[1] The subspace is then called a retract of the original space. A deformation retraction is a mapping that captures the idea of continuously shrinking a space into a subspace.

An absolute neighborhood retract (ANR) is a particularly well-behaved type of topological space. For example, every topological manifold is an ANR. Every ANR has the homotopy type of a very simple topological space, a CW complex.

Definitions edit

Retract edit

Let X be a topological space and A a subspace of X. Then a continuous map

 

is a retraction if the restriction of r to A is the identity map on A; that is,   for all a in A. Equivalently, denoting by

 

the inclusion, a retraction is a continuous map r such that

 

that is, the composition of r with the inclusion is the identity of A. Note that, by definition, a retraction maps X onto A. A subspace A is called a retract of X if such a retraction exists. For instance, any non-empty space retracts to a point in the obvious way (the constant map yields a retraction). If X is Hausdorff, then A must be a closed subset of X.

If   is a retraction, then the composition ι∘r is an idempotent continuous map from X to X. Conversely, given any idempotent continuous map   we obtain a retraction onto the image of s by restricting the codomain.

Deformation retract and strong deformation retract edit

A continuous map

 

is a deformation retraction of a space X onto a subspace A if, for every x in X and a in A,

 

In other words, a deformation retraction is a homotopy between a retraction and the identity map on X. The subspace A is called a deformation retract of X. A deformation retraction is a special case of a homotopy equivalence.

A retract need not be a deformation retract. For instance, having a single point as a deformation retract of a space X would imply that X is path connected (and in fact that X is contractible).

Note: An equivalent definition of deformation retraction is the following. A continuous map   is a deformation retraction if it is a retraction and its composition with the inclusion is homotopic to the identity map on X. In this formulation, a deformation retraction carries with it a homotopy between the identity map on X and itself.

If, in the definition of a deformation retraction, we add the requirement that

 

for all t in [0, 1] and a in A, then F is called a strong deformation retraction. In other words, a strong deformation retraction leaves points in A fixed throughout the homotopy. (Some authors, such as Hatcher, take this as the definition of deformation retraction.)

As an example, the n-sphere   is a strong deformation retract of   as strong deformation retraction one can choose the map

 

Note that the condition of being a strong deformation retract is strictly stronger than being a deformation retract. For instance, let X be the subspace of   consisting of closed line segments connecting the origin and the point   for n a positive integer, together with the closed line segment connecting the origin with  . Let X have the subspace topology inherited from the Euclidean topology on  . Now let A be the subspace of X consisting of the line segment connecting the origin with  . Then A is a deformation retract of X but not a strong deformation retract of X.[2]

Cofibration and neighborhood deformation retract edit

A map f: AX of topological spaces is a (Hurewicz) cofibration if it has the homotopy extension property for maps to any space. This is one of the central concepts of homotopy theory. A cofibration f is always injective, in fact a homeomorphism to its image.[3] If X is Hausdorff (or a compactly generated weak Hausdorff space), then the image of a cofibration f is closed in X.

Among all closed inclusions, cofibrations can be characterized as follows. The inclusion of a closed subspace A in a space X is a cofibration if and only if A is a neighborhood deformation retract of X, meaning that there is a continuous map   with   and a homotopy   such that   for all     for all   and   and   if  .[4]

For example, the inclusion of a subcomplex in a CW complex is a cofibration.

Properties edit

  • One basic property of a retract A of X (with retraction  ) is that every continuous map   has at least one extension   namely  .
  • If a subspace is a retract of a space, then the inclusion induces an injection between fundamental groups.
  • Deformation retraction is a particular case of homotopy equivalence. In fact, two spaces are homotopy equivalent if and only if they are both homeomorphic to deformation retracts of a single larger space.
  • Any topological space that deformation retracts to a point is contractible and vice versa. However, there exist contractible spaces that do not strongly deformation retract to a point.[5]

No-retraction theorem edit

The boundary of the n-dimensional ball, that is, the (n−1)-sphere, is not a retract of the ball. (See Brouwer fixed-point theorem § A proof using homology or cohomology.)

Absolute neighborhood retract (ANR) edit

A closed subset   of a topological space   is called a neighborhood retract of   if   is a retract of some open subset of   that contains  .

Let   be a class of topological spaces, closed under homeomorphisms and passage to closed subsets. Following Borsuk (starting in 1931), a space   is called an absolute retract for the class  , written   if   is in   and whenever   is a closed subset of a space   in  ,   is a retract of  . A space   is an absolute neighborhood retract for the class  , written   if   is in   and whenever   is a closed subset of a space   in  ,   is a neighborhood retract of  .

Various classes   such as normal spaces have been considered in this definition, but the class   of metrizable spaces has been found to give the most satisfactory theory. For that reason, the notations AR and ANR by themselves are used in this article to mean   and  .[6]

A metrizable space is an AR if and only if it is contractible and an ANR.[7] By Dugundji, every locally convex metrizable topological vector space   is an AR; more generally, every nonempty convex subset of such a vector space   is an AR.[8] For example, any normed vector space (complete or not) is an AR. More concretely, Euclidean space   the unit cube  and the Hilbert cube   are ARs.

ANRs form a remarkable class of "well-behaved" topological spaces. Among their properties are:

  • Every open subset of an ANR is an ANR.
  • By Hanner, a metrizable space that has an open cover by ANRs is an ANR.[9] (That is, being an ANR is a local property for metrizable spaces.) It follows that every topological manifold is an ANR. For example, the sphere   is an ANR but not an AR (because it is not contractible). In infinite dimensions, Hanner's theorem implies that every Hilbert cube manifold as well as the (rather different, for example not locally compact) Hilbert manifolds and Banach manifolds are ANRs.
  • Every locally finite CW complex is an ANR.[10] An arbitrary CW complex need not be metrizable, but every CW complex has the homotopy type of an ANR (which is metrizable, by definition).[11]
  • Every ANR X is locally contractible in the sense that for every open neighborhood   of a point   in  , there is an open neighborhood   of   contained in   such that the inclusion   is homotopic to a constant map. A finite-dimensional metrizable space is an ANR if and only if it is locally contractible in this sense.[12] For example, the Cantor set is a compact subset of the real line that is not an ANR, since it is not even locally connected.
  • Counterexamples: Borsuk found a compact subset of   that is an ANR but not strictly locally contractible.[13] (A space is strictly locally contractible if every open neighborhood   of each point   contains a contractible open neighborhood of  .) Borsuk also found a compact subset of the Hilbert cube that is locally contractible (as defined above) but not an ANR.[14]
  • Every ANR has the homotopy type of a CW complex, by Whitehead and Milnor.[15] Moreover, a locally compact ANR has the homotopy type of a locally finite CW complex; and, by West, a compact ANR has the homotopy type of a finite CW complex.[16] In this sense, ANRs avoid all the homotopy-theoretic pathologies of arbitrary topological spaces. For example, the Whitehead theorem holds for ANRs: a map of ANRs that induces an isomorphism on homotopy groups (for all choices of base point) is a homotopy equivalence. Since ANRs include topological manifolds, Hilbert cube manifolds, Banach manifolds, and so on, these results apply to a large class of spaces.
  • Many mapping spaces are ANRs. In particular, let Y be an ANR with a closed subspace A that is an ANR, and let X be any compact metrizable space with a closed subspace B. Then the space   of maps of pairs   (with the compact-open topology on the mapping space) is an ANR.[17] It follows, for example, that the loop space of any CW complex has the homotopy type of a CW complex.
  • By Cauty, a metrizable space   is an ANR if and only if every open subset of   has the homotopy type of a CW complex.[18]
  • By Cauty, there is a metric linear space   (meaning a topological vector space with a translation-invariant metric) that is not an AR. One can take   to be separable and an F-space (that is, a complete metric linear space).[19] (By Dugundji's theorem above,   cannot be locally convex.) Since   is contractible and not an AR, it is also not an ANR. By Cauty's theorem above,   has an open subset   that is not homotopy equivalent to a CW complex. Thus there is a metrizable space   that is strictly locally contractible but is not homotopy equivalent to a CW complex. It is not known whether a compact (or locally compact) metrizable space that is strictly locally contractible must be an ANR.

Notes edit

  1. ^ Borsuk (1931).
  2. ^ Weintraub, Steven H. Fundamentals of Algebraic Topology. Graduate Texts in Mathematics. Vol. 270. Springer. p. 20.
  3. ^ Hatcher (2002), Proposition 4H.1.
  4. ^ Puppe (1967), Satz 1.
  5. ^ Hatcher (2002), Exercise 0.6.
  6. ^ Mardešiċ (1999), p. 242.
  7. ^ Hu (1965), Proposition II.7.2.
  8. ^ Hu (1965), Corollary II.14.2 and Theorem II.3.1.
  9. ^ Hu (1965), Theorem III.8.1.
  10. ^ Mardešiċ (1999), p. 245.
  11. ^ Fritsch & Piccinini (1990), Theorem 5.2.1.
  12. ^ Hu (1965), Theorem V.7.1.
  13. ^ Borsuk (1967), section IV.4.
  14. ^ Borsuk (1967), Theorem V.11.1.
  15. ^ Fritsch & Piccinini (1990), Theorem 5.2.1.
  16. ^ West (2004), p. 119.
  17. ^ Hu (1965), Theorem VII.3.1 and Remark VII.2.3.
  18. ^ Cauty (1994), Fund. Math. 144: 11–22.
  19. ^ Cauty (1994), Fund. Math. 146: 85–99.

References edit

External links edit

retraction, topology, topology, branch, mathematics, retraction, continuous, mapping, from, topological, space, into, subspace, that, preserves, position, points, that, subspace, subspace, then, called, retract, original, space, deformation, retraction, mappin. In topology a branch of mathematics a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace 1 The subspace is then called a retract of the original space A deformation retraction is a mapping that captures the idea of continuously shrinking a space into a subspace An absolute neighborhood retract ANR is a particularly well behaved type of topological space For example every topological manifold is an ANR Every ANR has the homotopy type of a very simple topological space a CW complex Contents 1 Definitions 1 1 Retract 1 2 Deformation retract and strong deformation retract 1 3 Cofibration and neighborhood deformation retract 2 Properties 3 No retraction theorem 4 Absolute neighborhood retract ANR 5 Notes 6 References 7 External linksDefinitions editRetract edit Let X be a topological space and A a subspace of X Then a continuous map r X A displaystyle r colon X to A nbsp is a retraction if the restriction of r to A is the identity map on A that is r a a textstyle r a a nbsp for all a in A Equivalently denoting by i A X displaystyle iota colon A hookrightarrow X nbsp the inclusion a retraction is a continuous map r such that r i id A displaystyle r circ iota operatorname id A nbsp that is the composition of r with the inclusion is the identity of A Note that by definition a retraction maps X onto A A subspace A is called a retract of X if such a retraction exists For instance any non empty space retracts to a point in the obvious way the constant map yields a retraction If X is Hausdorff then A must be a closed subset of X If r X A textstyle r X to A nbsp is a retraction then the composition i r is an idempotent continuous map from X to X Conversely given any idempotent continuous map s X X textstyle s X to X nbsp we obtain a retraction onto the image of s by restricting the codomain Deformation retract and strong deformation retract edit A continuous map F X 0 1 X displaystyle F colon X times 0 1 to X nbsp is a deformation retraction of a space X onto a subspace A if for every x in X and a in A F x 0 x F x 1 A and F a 1 a displaystyle F x 0 x quad F x 1 in A quad mbox and quad F a 1 a nbsp In other words a deformation retraction is a homotopy between a retraction and the identity map on X The subspace A is called a deformation retract of X A deformation retraction is a special case of a homotopy equivalence A retract need not be a deformation retract For instance having a single point as a deformation retract of a space X would imply that X is path connected and in fact that X is contractible Note An equivalent definition of deformation retraction is the following A continuous map r X A textstyle r X to A nbsp is a deformation retraction if it is a retraction and its composition with the inclusion is homotopic to the identity map on X In this formulation a deformation retraction carries with it a homotopy between the identity map on X and itself If in the definition of a deformation retraction we add the requirement that F a t a displaystyle F a t a nbsp for all t in 0 1 and a in A then F is called a strong deformation retraction In other words a strong deformation retraction leaves points in A fixed throughout the homotopy Some authors such as Hatcher take this as the definition of deformation retraction As an example the n sphere S n textstyle S n nbsp is a strong deformation retract of R n 1 0 textstyle mathbb R n 1 backslash 0 nbsp as strong deformation retraction one can choose the map F x t 1 t x t x x displaystyle F x t 1 t x t x over x nbsp Note that the condition of being a strong deformation retract is strictly stronger than being a deformation retract For instance let X be the subspace of R 2 displaystyle mathbb R 2 nbsp consisting of closed line segments connecting the origin and the point 1 n 1 displaystyle 1 n 1 nbsp for n a positive integer together with the closed line segment connecting the origin with 0 1 displaystyle 0 1 nbsp Let X have the subspace topology inherited from the Euclidean topology on R 2 displaystyle mathbb R 2 nbsp Now let A be the subspace of X consisting of the line segment connecting the origin with 0 1 displaystyle 0 1 nbsp Then A is a deformation retract of X but not a strong deformation retract of X 2 Cofibration and neighborhood deformation retract edit A map f A X of topological spaces is a Hurewicz cofibration if it has the homotopy extension property for maps to any space This is one of the central concepts of homotopy theory A cofibration f is always injective in fact a homeomorphism to its image 3 If X is Hausdorff or a compactly generated weak Hausdorff space then the image of a cofibration f is closed in X Among all closed inclusions cofibrations can be characterized as follows The inclusion of a closed subspace A in a space X is a cofibration if and only if A is a neighborhood deformation retract of X meaning that there is a continuous map u X 0 1 displaystyle u X rightarrow 0 1 nbsp with A u 1 0 textstyle A u 1 left 0 right nbsp and a homotopy H X 0 1 X textstyle H X times 0 1 rightarrow X nbsp such that H x 0 x textstyle H x 0 x nbsp for all x X displaystyle x in X nbsp H a t a displaystyle H a t a nbsp for all a A displaystyle a in A nbsp and t 0 1 displaystyle t in 0 1 nbsp and H x 1 A textstyle H left x 1 right in A nbsp if u x lt 1 displaystyle u x lt 1 nbsp 4 For example the inclusion of a subcomplex in a CW complex is a cofibration Properties editOne basic property of a retract A of X with retraction r X A textstyle r X to A nbsp is that every continuous map f A Y textstyle f A rightarrow Y nbsp has at least one extension g X Y textstyle g X rightarrow Y nbsp namely g f r textstyle g f circ r nbsp If a subspace is a retract of a space then the inclusion induces an injection between fundamental groups Deformation retraction is a particular case of homotopy equivalence In fact two spaces are homotopy equivalent if and only if they are both homeomorphic to deformation retracts of a single larger space Any topological space that deformation retracts to a point is contractible and vice versa However there exist contractible spaces that do not strongly deformation retract to a point 5 No retraction theorem editThe boundary of the n dimensional ball that is the n 1 sphere is not a retract of the ball See Brouwer fixed point theorem A proof using homology or cohomology Absolute neighborhood retract ANR editA closed subset X textstyle X nbsp of a topological space Y textstyle Y nbsp is called a neighborhood retract of Y textstyle Y nbsp if X textstyle X nbsp is a retract of some open subset of Y textstyle Y nbsp that contains X textstyle X nbsp Let C displaystyle mathcal C nbsp be a class of topological spaces closed under homeomorphisms and passage to closed subsets Following Borsuk starting in 1931 a space X textstyle X nbsp is called an absolute retract for the class C displaystyle mathcal C nbsp written AR C textstyle operatorname AR left mathcal C right nbsp if X textstyle X nbsp is in C displaystyle mathcal C nbsp and whenever X textstyle X nbsp is a closed subset of a space Y textstyle Y nbsp in C displaystyle mathcal C nbsp X textstyle X nbsp is a retract of Y textstyle Y nbsp A space X textstyle X nbsp is an absolute neighborhood retract for the class C displaystyle mathcal C nbsp written ANR C textstyle operatorname ANR left mathcal C right nbsp if X textstyle X nbsp is in C displaystyle mathcal C nbsp and whenever X textstyle X nbsp is a closed subset of a space Y textstyle Y nbsp in C displaystyle mathcal C nbsp X textstyle X nbsp is a neighborhood retract of Y textstyle Y nbsp Various classes C displaystyle mathcal C nbsp such as normal spaces have been considered in this definition but the class M displaystyle mathcal M nbsp of metrizable spaces has been found to give the most satisfactory theory For that reason the notations AR and ANR by themselves are used in this article to mean AR M displaystyle operatorname AR left mathcal M right nbsp and ANR M displaystyle operatorname ANR left mathcal M right nbsp 6 A metrizable space is an AR if and only if it is contractible and an ANR 7 By Dugundji every locally convex metrizable topological vector space V textstyle V nbsp is an AR more generally every nonempty convex subset of such a vector space V textstyle V nbsp is an AR 8 For example any normed vector space complete or not is an AR More concretely Euclidean space R n textstyle mathbb R n nbsp the unit cube I n textstyle I n nbsp and the Hilbert cube I w textstyle I omega nbsp are ARs ANRs form a remarkable class of well behaved topological spaces Among their properties are Every open subset of an ANR is an ANR By Hanner a metrizable space that has an open cover by ANRs is an ANR 9 That is being an ANR is a local property for metrizable spaces It follows that every topological manifold is an ANR For example the sphere S n textstyle S n nbsp is an ANR but not an AR because it is not contractible In infinite dimensions Hanner s theorem implies that every Hilbert cube manifold as well as the rather different for example not locally compact Hilbert manifolds and Banach manifolds are ANRs Every locally finite CW complex is an ANR 10 An arbitrary CW complex need not be metrizable but every CW complex has the homotopy type of an ANR which is metrizable by definition 11 Every ANR X is locally contractible in the sense that for every open neighborhood U textstyle U nbsp of a point x textstyle x nbsp in X textstyle X nbsp there is an open neighborhood V textstyle V nbsp of x textstyle x nbsp contained in U textstyle U nbsp such that the inclusion V U textstyle V hookrightarrow U nbsp is homotopic to a constant map A finite dimensional metrizable space is an ANR if and only if it is locally contractible in this sense 12 For example the Cantor set is a compact subset of the real line that is not an ANR since it is not even locally connected Counterexamples Borsuk found a compact subset of R 3 textstyle mathbb R 3 nbsp that is an ANR but not strictly locally contractible 13 A space is strictly locally contractible if every open neighborhood U textstyle U nbsp of each point x textstyle x nbsp contains a contractible open neighborhood of x textstyle x nbsp Borsuk also found a compact subset of the Hilbert cube that is locally contractible as defined above but not an ANR 14 Every ANR has the homotopy type of a CW complex by Whitehead and Milnor 15 Moreover a locally compact ANR has the homotopy type of a locally finite CW complex and by West a compact ANR has the homotopy type of a finite CW complex 16 In this sense ANRs avoid all the homotopy theoretic pathologies of arbitrary topological spaces For example the Whitehead theorem holds for ANRs a map of ANRs that induces an isomorphism on homotopy groups for all choices of base point is a homotopy equivalence Since ANRs include topological manifolds Hilbert cube manifolds Banach manifolds and so on these results apply to a large class of spaces Many mapping spaces are ANRs In particular let Y be an ANR with a closed subspace A that is an ANR and let X be any compact metrizable space with a closed subspace B Then the space Y A X B textstyle left Y A right left X B right nbsp of maps of pairs X B Y A textstyle left X B right rightarrow left Y A right nbsp with the compact open topology on the mapping space is an ANR 17 It follows for example that the loop space of any CW complex has the homotopy type of a CW complex By Cauty a metrizable space X textstyle X nbsp is an ANR if and only if every open subset of X textstyle X nbsp has the homotopy type of a CW complex 18 By Cauty there is a metric linear space V textstyle V nbsp meaning a topological vector space with a translation invariant metric that is not an AR One can take V textstyle V nbsp to be separable and an F space that is a complete metric linear space 19 By Dugundji s theorem above V textstyle V nbsp cannot be locally convex Since V textstyle V nbsp is contractible and not an AR it is also not an ANR By Cauty s theorem above V textstyle V nbsp has an open subset U textstyle U nbsp that is not homotopy equivalent to a CW complex Thus there is a metrizable space U textstyle U nbsp that is strictly locally contractible but is not homotopy equivalent to a CW complex It is not known whether a compact or locally compact metrizable space that is strictly locally contractible must be an ANR Notes edit Borsuk 1931 Weintraub Steven H Fundamentals of Algebraic Topology Graduate Texts in Mathematics Vol 270 Springer p 20 Hatcher 2002 Proposition 4H 1 Puppe 1967 Satz 1 Hatcher 2002 Exercise 0 6 Mardesiċ 1999 p 242 Hu 1965 Proposition II 7 2 Hu 1965 Corollary II 14 2 and Theorem II 3 1 Hu 1965 Theorem III 8 1 Mardesiċ 1999 p 245 Fritsch amp Piccinini 1990 Theorem 5 2 1 Hu 1965 Theorem V 7 1 Borsuk 1967 section IV 4 Borsuk 1967 Theorem V 11 1 Fritsch amp Piccinini 1990 Theorem 5 2 1 West 2004 p 119 Hu 1965 Theorem VII 3 1 and Remark VII 2 3 Cauty 1994 Fund Math 144 11 22 Cauty 1994 Fund Math 146 85 99 References editBorsuk Karol 1931 Sur les retractes Fundamenta Mathematicae 17 152 170 doi 10 4064 fm 17 1 152 170 Zbl 0003 02701 Borsuk Karol 1967 Theory of Retracts Warsaw Panstwowe Wydawnictwo Naukowe MR 0216473 Cauty Robert 1994 Une caracterisation des retractes absolus de voisinage Fundamenta Mathematicae 144 11 22 doi 10 4064 fm 144 1 11 22 MR 1271475 Cauty Robert 1994 Un espace metrique lineaire qui n est pas un retracte absolu Fundamenta Mathematicae 146 85 99 doi 10 4064 fm 146 1 85 99 MR 1305261 Fritsch Rudolf Piccinini Renzo 1990 Cellular Structures in Topology Cambridge University Press ISBN 0 521 32784 9 MR 1074175 Hatcher Allen 2002 Algebraic Topology Cambridge University Press ISBN 0 521 79540 0 MR 1867354 Hu Sze Tsen 1965 Theory of Retracts Wayne State University Press MR 0181977 Mardesic Sibe 1999 Absolute neighborhood retracts and shape theory in James I M ed History of Topology Amsterdam North Holland pp 241 269 ISBN 0 444 82375 1 MR 1674915 May J Peter 1999 A Concise Course in Algebraic Topology PDF University of Chicago Press ISBN 0 226 51182 0 MR 1702278 Milnor John 1959 On spaces having the homotopy type of a CW complex Transactions of the American Mathematical Society 90 2 272 280 doi 10 2307 1993204 JSTOR 1993204 MR 0100267 Puppe Dieter 1967 Bemerkungen uber die Erweiterung von Homotopien Archiv der Mathematik 18 81 88 doi 10 1007 BF01899475 MR 0206954 S2CID 120021003 West James 2004 Absolute retracts in Hart K P ed Encyclopedia of General Topology Amsterdam Elsevier ISBN 0 444 50355 2 MR 2049453External links editThis article incorporates material from Neighborhood retract on PlanetMath which is licensed under the Creative Commons Attribution Share Alike License Retrieved from https en wikipedia org w index php title Retraction topology amp oldid 1215415608, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.