fbpx
Wikipedia

Prefrontal cortex

In mammalian brain anatomy, the prefrontal cortex (PFC) covers the front part of the frontal lobe of the cerebral cortex. The PFC contains the Brodmann areas BA8, BA9, BA10, BA11, BA12, BA13, BA14, BA24, BA25, BA32, BA44, BA45, BA46, and BA47.[1]

Prefrontal cortex
Brodmann areas, 8, 9, 10, 11, 12, 13, 14, 24, 25, 32, 44, 45, 46, and 47 are all in the prefrontal cortex[1]
Details
Part ofFrontal lobe
PartsSuperior frontal gyrus
Middle frontal gyrus
Inferior frontal gyrus
ArteryAnterior cerebral
Middle cerebral
VeinSuperior sagittal sinus
Identifiers
LatinCortex praefrontalis
MeSHD017397
NeuroNames2429
NeuroLex IDnlx_anat_090801
FMA224850
Anatomical terms of neuroanatomy
[edit on Wikidata]

The basic activity of this brain region is considered to be orchestration of thoughts and actions in accordance with internal goals.[2] Many authors have indicated an integral link between a person's will to live, personality, and the functions of the prefrontal cortex.[3]

This brain region has been implicated in executive functions, such as planning, decision making, working memory, personality expression, moderating social behavior and controlling certain aspects of speech and language.[4][5][6] Executive function relates to abilities to differentiate among conflicting thoughts, determine good and bad, better and best, same and different, future consequences of current activities, working toward a defined goal, prediction of outcomes, expectation based on actions, and social "control" (the ability to suppress urges that, if not suppressed, could lead to socially unacceptable outcomes).

The frontal cortex supports concrete rule learning. More anterior regions along the rostro-caudal axis of frontal cortex support rule learning at higher levels of abstraction.[7]

Structure

Definition

There are three possible ways to define the prefrontal cortex:

  • as the granular frontal cortex
  • as the projection zone of the medial dorsal nucleus of the thalamus
  • as that part of the frontal cortex whose electrical stimulation does not evoke movements

Granular frontal cortex

The prefrontal cortex has been defined based on cytoarchitectonics by the presence of a cortical granular layer IV. It is not entirely clear who first used this criterion. Many of the early cytoarchitectonic researchers restricted the use of the term prefrontal to a much smaller region of cortex including the gyrus rectus and the gyrus rostralis (Campbell, 1905; G. E. Smith, 1907; Brodmann, 1909; von Economo and Koskinas, 1925). In 1935, however, Jacobsen used the term prefrontal to distinguish granular prefrontal areas from agranular motor and premotor areas.[8] In terms of Brodmann areas, the prefrontal cortex traditionally includes areas 8, 9, 10, 11, 12, 13, 14, 24, 25, 32, 44, 45, 46, and 47,[1] however, not all of these areas are strictly granular – 44 is dysgranular, caudal 11 and orbital 47 are agranular.[9] The main problem with this definition is that it works well only in primates but not in nonprimates, as the latter lack a granular layer IV.[10]

Projection zone

To define the prefrontal cortex as the projection zone of the mediodorsal nucleus of the thalamus builds on the work of Rose and Woolsey,[11] who showed that this nucleus projects to anterior and ventral parts of the brain in nonprimates, however, Rose and Woolsey termed this projection zone "orbitofrontal." It seems to have been Akert, who, for the first time in 1964, explicitly suggested that this criterion could be used to define homologues of the prefrontal cortex in primates and nonprimates.[12] This allowed the establishment of homologies despite the lack of a granular frontal cortex in nonprimates.

The projection zone definition is still widely accepted today (e.g. Fuster[13]), although its usefulness has been questioned.[9][14] Modern tract tracing studies have shown that projections of the mediodorsal nucleus of the thalamus are not restricted to the granular frontal cortex in primates. As a result, it was suggested to define the prefrontal cortex as the region of cortex that has stronger reciprocal connections with the mediodorsal nucleus than with any other thalamic nucleus.[10] Uylings et al.[10] acknowledge, however, that even with the application of this criterion, it might be rather difficult to define the prefrontal cortex unequivocally.

Electrically silent area of frontal cortex

A third definition of the prefrontal cortex is the area of frontal cortex whose electrical stimulation does not lead to observable movements. For example, in 1890 David Ferrier[15] used the term in this sense. One complication with this definition is that the electrically "silent" frontal cortex includes both granular and non-granular areas.[9]

Subdivisions

 

According to Striedter[16] the PFC of humans can be delineated into two functionally, morphologically, and evolutionarily different regions: the ventromedial PFC (vmPFC) consisting of the ventral prefrontal cortex and the medial prefrontal cortex present in all mammals, and the lateral prefrontal cortex (LPFC), consisting of the dorsolateral prefrontal cortex and the ventrolateral prefrontal cortex, present only in primates.

The LPFC contains the Brodmann areas BA8, BA9, BA10, BA45, BA46, and BA47. Some researchers also include BA44. The vmPFC contains the Brodmann areas BA12, BA25, BA32, BA33, BA24, BA11, BA13, and BA14.

The table below shows different ways to subdivide parts of the human prefrontal cortex based upon Brodmann areas.[1]

8 9 10 46 45 47 44 12 25 32 33 24 11 13 14
lateral ventromedial
dorsolateral ventrolateral medial ventral

Interconnections

The prefrontal cortex is highly interconnected with much of the brain, including extensive connections with other cortical, subcortical and brain stem sites.[18] The dorsal prefrontal cortex is especially interconnected with brain regions involved with attention, cognition and action,[19] while the ventral prefrontal cortex interconnects with brain regions involved with emotion.[20] The prefrontal cortex also receives inputs from the brainstem arousal systems, and its function is particularly dependent on its neurochemical environment.[21] Thus, there is coordination between our state of arousal and our mental state.[22] The interplay between the prefrontal cortex and socioemotional system of the brain is relevant for adolescent development, as proposed by the Dual Systems Model.

The medial prefrontal cortex has been implicated in the generation of slow-wave sleep (SWS), and prefrontal atrophy has been linked to decreases in SWS.[23] Prefrontal atrophy occurs naturally as individuals age, and it has been demonstrated that older adults experience impairments in memory consolidation as their medial prefrontal cortices degrade.[23] In monkeys, significant atrophy has been found as a result of neuroleptic or antipsychotic psychiatric medication.[24] In older adults, instead of being transferred and stored in the neocortex during SWS, memories start to remain in the hippocampus where they were encoded, as evidenced by increased hippocampal activation compared to younger adults during recall tasks, when subjects learned word associations, slept, and then were asked to recall the learned words.[23]

The ventrolateral prefrontal cortex (VLPFC) has been implicated in various aspects of speech production and language comprehension. The VLPFC is richly connected to various regions of the brain including the lateral and medial temporal lobe, the superior temporal cortex, the infertemporal cortex, the perirhinal cortex, and the parahippoccampal cortex.[25] These brain areas are implicated in memory retrieval and consolidation, language processing, and association of emotions. These connections allow the VLPFC to mediate explicit and implicit memory retrieval and integrate it with language stimulus to help plan coherent speech.[26] In other words, choosing the correct words and staying “on topic” during conversation come from the VLPFC.

Function

Executive function

The original studies of Fuster and of Goldman-Rakic emphasized the fundamental ability of the prefrontal cortex to represent information not currently in the environment, and the central role of this function in creating the "mental sketch pad". Goldman-Rakic spoke of how this representational knowledge was used to intelligently guide thought, action, and emotion, including the inhibition of inappropriate thoughts, distractions, actions, and feelings.[27] In this way, working memory can be seen as fundamental to attention and behavioral inhibition. Fuster speaks of how this prefrontal ability allows the wedding of past to future, allowing both cross-temporal and cross-modal associations in the creation of goal-directed, perception-action cycles.[28] This ability to represent underlies all other higher executive functions.

Shimamura proposed Dynamic Filtering Theory to describe the role of the prefrontal cortex in executive functions. The prefrontal cortex is presumed to act as a high-level gating or filtering mechanism that enhances goal-directed activations and inhibits irrelevant activations. This filtering mechanism enables executive control at various levels of processing, including selecting, maintaining, updating, and rerouting activations. It has also been used to explain emotional regulation.[29]

Miller and Cohen proposed an Integrative Theory of Prefrontal Cortex Function, that arises from the original work of Goldman-Rakic and Fuster. The two theorize that “cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represents goals and means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task”.[30] In essence, the two theorize that the prefrontal cortex guides the inputs and connections, which allows for cognitive control of our actions.

The prefrontal cortex is of significant importance when top-down processing is needed. Top-down processing by definition is when behavior is guided by internal states or intentions. According to the two, “The PFC is critical in situations when the mappings between sensory inputs, thoughts, and actions either are weakly established relative to other existing ones or are rapidly changing”.[30] An example of this can be portrayed in the Wisconsin Card Sorting Test (WCST). Subjects engaging in this task are instructed to sort cards according to the shape, color, or number of symbols appearing on them. The thought is that any given card can be associated with a number of actions and no single stimulus-response mapping will work. Human subjects with PFC damage are able to sort the card in the initial simple tasks, but unable to do so as the rules of classification change.

Miller and Cohen conclude that the implications of their theory can explain how much of a role the PFC has in guiding control of cognitive actions. In the researchers' own words, they claim that, “depending on their target of influence, representations in the PFC can function variously as attentional templates, rules, or goals by providing top-down bias signals to other parts of the brain that guide the flow of activity along the pathways needed to perform a task”.[30]

Experimental data indicate a role for the prefrontal cortex in mediating normal sleep physiology, dreaming and sleep-deprivation phenomena.[31]

When analyzing and thinking about attributes of other individuals, the medial prefrontal cortex is activated, however, it is not activated when contemplating the characteristics of inanimate objects.[32]

Studies using fMRI have shown that the medial prefrontal cortex (mPFC), specifically the anterior medial prefrontal cortex (amPFC), may modulate mimicry behavior. Neuroscientists are suggesting that social priming influences activity and processing in the amPFC, and that this area of the prefrontal cortex modulates mimicry responses and behavior.[33]

As of recent, researchers have used neuroimaging techniques to find that along with the basal ganglia, the prefrontal cortex is involved with learning exemplars, which is part of the exemplar theory, one of the three main ways our mind categorizes things. The exemplar theory states that we categorize judgements by comparing it to a similar past experience within our stored memories.[34]

A 2014 meta-analysis by Professor Nicole P.Yuan from the University of Arizona found that larger prefrontal cortex volume and greater PFC cortical thickness were associated with better executive performance.[35]

Attention and memory

 
Lebedev et al. experiment that dissociated representation of spatial attention from representation of spatial memory in prefrontal cortex [36]

A widely accepted theory regarding the function of the brain's prefrontal cortex is that it serves as a store of short-term memory. This idea was first formulated by Jacobsen, who reported in 1936 that damage to the primate prefrontal cortex caused short-term memory deficits.[37] Karl Pribram and colleagues (1952) identified the part of the prefrontal cortex responsible for this deficit as area 46, also known as the dorsolateral prefrontal cortex (dlPFC).[38] More recently, Goldman-Rakic and colleagues (1993) evoked short-term memory loss in localized regions of space by temporary inactivation of portions of the dlPFC.[39] Once the concept of working memory (see also Baddeley's model of working memory) was established in contemporary neuroscience by Alan Baddeley (1986), these neuropsychological findings contributed to the theory that the prefrontal cortex implements working memory and, in some extreme formulations, only working memory.[40] In the 1990s this theory developed a wide following, and it became the predominant theory of PF function, especially for nonhuman primates. The concept of working memory used by proponents of this theory focused mostly on the short-term maintenance of information, and rather less on the manipulation or monitoring of such information or on the use of that information for decisions. Consistent with the idea that the prefrontal cortex functions predominantly in maintenance memory, delay-period activity in the PF has often been interpreted as a memory trace. (The phrase "delay-period activity" applies to neuronal activity that follows the transient presentation of an instruction cue and persists until a subsequent "go" or "trigger" signal.)

To explore alternative interpretations of delay-period activity in the prefrontal cortex, Lebedev et al. (2004) investigated the discharge rates of single prefrontal neurons as monkeys attended to a stimulus marking one location while remembering a different, unmarked location.[36] Both locations served as potential targets of a saccadic eye movement. Although the task made intensive demands on short-term memory, the largest proportion of prefrontal neurons represented attended locations, not remembered ones. These findings showed that short-term memory functions cannot account for all, or even most, delay-period activity in the part of the prefrontal cortex explored. The authors suggested that prefrontal activity during the delay-period contributes more to the process of attentional selection (and selective attention) than to memory storage.[6][41]

Speech production and language

Various areas of the prefrontal cortex have been implicated in a multitude of critical functions regarding speech production, language comprehension, and response planning before speaking.[5] Cognitive neuroscience has shown that the left ventrolateral prefrontal cortex is vital in the processing of words and sentences.

The right prefrontal cortex has been found to be responsible for coordinating the retrieval of explicit memory for use in speech, whereas the deactivation of the left is responsible for mediating implicit memory retrieval to be used in verb generation.[5] Recollection of nouns (explicit memory) is impaired in some amnesic patients with damaged right prefrontal cortices, but verb generation remains intact because of its reliance on left prefrontal deactivation.[26]

Many researchers now include BA45 in the prefrontal cortex because together with BA44 it makes up an area of the frontal lobe called Broca's area.[17] Broca's Area is widely considered the output area of the language production pathway in the brain (as opposed to Wernicke's area in the medial temporal lobe, which is seen as the language input area). BA45 has been shown to be implicated for the retrieval of relevant semantic knowledge to be used in conversation/speech.[5] The right lateral prefrontal cortex (RLPFC) is implicated in the planning of complex behavior, and together with bilateral BA45, they act to maintain focus and coherence during speech production.[26] However, left BA45 has been shown to be activated significantly while maintaining speech coherence in young people. Older people have been shown to recruit the right BA45 more so than their younger counterparts.[26] This aligns with the evidence of decreased lateralization in other brain systems during aging.

In addition, this increase in BA45 and RLPFC activity in combination of BA47 in older patients has been shown to contribute to “off-topic utterances.” The BA47 area in the prefrontal cortex is implicated in “stimulus-driven” retrieval of less-salient knowledge than is required to contribute to a conversation.[26] In other words, elevated activation of the BA47 together with altered activity in BA45 and the broader RLPFC has been shown to contribute to the inclusion of less relevant information and irrelevant tangential conversational speech patterns in older subjects.

Clinical significance

In the last few decades, brain imaging systems have been used to determine brain region volumes and nerve linkages. Several studies have indicated that reduced volume and interconnections of the frontal lobes with other brain regions is observed in patients diagnosed with mental disorders and prescribed potent antipsychotics; those subjected to repeated stressors;[42] those who excessively consume sexually explicit materials;[43] suicides;[44] those incarcerated; criminals; sociopaths; those affected by lead poisoning;[45] and daily male cannabis users (only 13 people were tested).[46] It is believed that at least some of the human abilities to feel guilt or remorse, and to interpret reality, are dependent on a well-functioning prefrontal cortex.[47] The advanced neurocircuitry and self-regulatory function of the human prefrontal cortex is also associated with the higher sentience in humans,[48] as the prefrontal cortex in humans occupies a far larger percentage of the brain than in any other animal. And it is theorized that, as the brain has tripled in size over five million years of human evolution,[49] the prefrontal cortex has increased in size sixfold.[50]

A review on executive functions in healthy exercising individuals noted that the left and right halves of the prefrontal cortex, which is divided by the medial longitudinal fissure, appears to become more interconnected in response to consistent aerobic exercise.[51] Two reviews of structural neuroimaging research indicate that marked improvements in prefrontal and hippocampal gray matter volume occur in healthy adults that engage in medium intensity exercise for several months.[52][53]

A functional neuroimaging review of meditation-based practices suggested that practicing mindfulness enhances prefrontal activation, which was noted to be correlated with increased well-being and reduced anxiety, although cohort studies are needed to better solidify this theory.[54]

Treatments with anti-cancer drugs often are toxic to the cells of the brain, leading to memory loss and cognitive dysfunction that can persist long after the period of exposure. Such a condition is referred to as chemo brain. To determine the basis of this condition, mice were treated with the chemotherapeutic agent mitomycin C.[55] In the prefrontal cortex, this treatment resulted in an increase of the oxidative DNA damage 8-oxodG, a decrease in the enzyme OGG1 that ordinarily repairs such damage, and epigenetic alterations.

Chronic intake of alcohol leads to persistent alterations in brain function including altered decision-making ability. The prefrontal cortex of chronic alcoholics has been shown to be vulnerable to oxidative DNA damage and neuronal cell death.[56]

History

Perhaps the seminal case in prefrontal cortex function is that of Phineas Gage, whose left frontal lobe was destroyed when a large iron rod was driven through his head in an 1848 accident. The standard presentation is that, although Gage retained normal memory, speech and motor skills, his personality changed radically: He became irritable, quick-tempered, and impatient—characteristics he did not previously display — so that friends described him as "no longer Gage"; and, whereas he had previously been a capable and efficient worker, afterward he was unable to complete.[57] However, careful analysis of primary evidence shows that descriptions of Gage's psychological changes are usually exaggerated when held against the description given by Gage's doctor, the most striking feature being that changes described years after Gage's death are far more dramatic than anything reported while he was alive.[58][59]

Subsequent studies on patients with prefrontal injuries have shown that the patients verbalized what the most appropriate social responses would be under certain circumstances. Yet, when actually performing, they instead pursued behavior aimed at immediate gratification, despite knowing the longer-term results would be self-defeating.

The interpretation of this data indicates that not only are skills of comparison and understanding of eventual outcomes harbored in the prefrontal cortex but the prefrontal cortex (when functioning correctly) controls the mental option to delay immediate gratification for a better or more rewarding longer-term gratification result. This ability to wait for a reward is one of the key pieces that define optimal executive function of the human brain.[citation needed]

There is much current research devoted to understanding the role of the prefrontal cortex in neurological disorders. Clinical trials have begun on certain drugs that have been shown to improve prefrontal cortex function, including guanfacine, which acts through the alpha-2A adrenergic receptor. A downstream target of this drug, the HCN channel, is one of the most recent areas of exploration in prefrontal cortex pharmacology.[60]

Etymology

The term "prefrontal" as describing a part of the brain appears to have been introduced by Richard Owen in 1868.[8] For him, the prefrontal area was restricted to the anterior-most part of the frontal lobe (approximately corresponding to the frontal pole). It has been hypothesized that his choice of the term was based on the prefrontal bone present in most amphibians and reptiles.[8]

Additional images

See also

References

  1. ^ a b c d e f g h i Murray E, Wise S, Grahatle K (2016). "Chapter 1: The History of Memory Systems". The Evolution of Memory Systems: Ancestors, Anatomy, and Adaptations (1st ed.). Oxford University Press. pp. 22–24. ISBN 978-0-19-150995-7. Retrieved 12 March 2017.
  2. ^ Miller EK, Freedman DJ, Wallis JD (August 2002). "The prefrontal cortex: categories, concepts and cognition". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 357 (1424): 1123–1136. doi:10.1098/rstb.2002.1099. PMC 1693009. PMID 12217179.
  3. ^ DeYoung CG, Hirsh JB, Shane MS, Papademetris X, Rajeevan N, Gray JR (June 2010). "Testing predictions from personality neuroscience. Brain structure and the big five". Psychological Science. 21 (6): 820–828. doi:10.1177/0956797610370159. PMC 3049165. PMID 20435951.
  4. ^ Yang Y, Raine A (November 2009). "Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis". Psychiatry Research. 174 (2): 81–88. doi:10.1016/j.pscychresns.2009.03.012. PMC 2784035. PMID 19833485.
  5. ^ a b c d Gabrieli JD, Poldrack RA, Desmond JE (February 1998). "The role of left prefrontal cortex in language and memory". Proceedings of the National Academy of Sciences of the United States of America. 95 (3): 906–913. Bibcode:1998PNAS...95..906G. doi:10.1073/pnas.95.3.906. PMC 33815. PMID 9448258.
  6. ^ a b Baldauf D, Desimone R (April 2014). "Neural mechanisms of object-based attention". Science. 344 (6182): 424–427. Bibcode:2014Sci...344..424B. doi:10.1126/science.1247003. PMID 24763592. S2CID 34728448.
  7. ^ Badre D, Kayser AS, D'Esposito M (April 2010). "Frontal cortex and the discovery of abstract action rules". Neuron. 66 (2): 315–326. doi:10.1016/j.neuron.2010.03.025. PMC 2990347. PMID 20435006.
  8. ^ a b c Finger S (1994). Origins of neuroscience: a history of explorations into brain function. Oxford [Oxfordshire]: Oxford University Press. ISBN 978-0-19-514694-3.[page needed]
  9. ^ a b c Preuss TM (1995). "Do rats have prefrontal cortex? The rose-woolsey-akert program reconsidered". Journal of Cognitive Neuroscience. 7 (1): 1–24. doi:10.1162/jocn.1995.7.1.1. PMID 23961750. S2CID 2856619.
  10. ^ a b c Uylings HB, Groenewegen HJ, Kolb B (November 2003). "Do rats have a prefrontal cortex?". Behavioural Brain Research. 146 (1–2): 3–17. doi:10.1016/j.bbr.2003.09.028. PMID 14643455. S2CID 32136463.
  11. ^ Rose JE, Woolsey CN (1948). "The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat". Research Publications – Association for Research in Nervous and Mental Disease. 27: 210–232. PMID 18106857.
  12. ^ Preuss TM, Goldman-Rakic PS (August 1991). "Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca". The Journal of Comparative Neurology. 310 (4): 429–474. doi:10.1002/cne.903100402. PMID 1939732. S2CID 34575725.
  13. ^ Fuster JM (2008). The Prefrontal Cortex (4th ed.). Boston: Academic Press. ISBN 978-0-12-373644-4.[page needed]
  14. ^ Markowitsch HJ, Pritzel M (1979). "The prefrontal cortex: Projection area of the thalamic mediodorsal nucleus?". Physiological Psychology. 7 (1): 1–6. doi:10.3758/bf03326611.
  15. ^ Ferrier D (June 1890). "The Croonian Lectures on Cerebral Localisation". British Medical Journal. 1 (1537): 1349–1355. doi:10.1136/bmj.1.1537.1349. PMC 2207859. PMID 20753055.
  16. ^ Striedter GF (2005). Principles of brain evolution. Sinauer Associates. ISBN 978-0-87893-820-9.
  17. ^ a b "Broca area | anatomy". Encyclopedia Britannica. Retrieved 2019-12-12.
  18. ^ Alvarez JA, Emory E (March 2006). "Executive function and the frontal lobes: a meta-analytic review". Neuropsychology Review. 16 (1): 17–42. doi:10.1007/s11065-006-9002-x. PMID 16794878. S2CID 207222975.
  19. ^ Goldman-Rakic PS (1988). "Topography of cognition: parallel distributed networks in primate association cortex". Annual Review of Neuroscience. 11: 137–156. doi:10.1146/annurev.ne.11.030188.001033. PMID 3284439.
  20. ^ Price JL (June 1999). "Prefrontal cortical networks related to visceral function and mood". Annals of the New York Academy of Sciences. 877 (1): 383–396. Bibcode:1999NYASA.877..383P. doi:10.1111/j.1749-6632.1999.tb09278.x. PMID 10415660. S2CID 37564764.
  21. ^ Robbins TW, Arnsten AF (2009). "The neuropsychopharmacology of fronto-executive function: monoaminergic modulation". Annual Review of Neuroscience. 32: 267–287. doi:10.1146/annurev.neuro.051508.135535. PMC 2863127. PMID 19555290.
  22. ^ Arnsten AF, Paspalas CD, Gamo NJ, Yang Y, Wang M (August 2010). "Dynamic Network Connectivity: A new form of neuroplasticity". Trends in Cognitive Sciences. 14 (8): 365–375. doi:10.1016/j.tics.2010.05.003. PMC 2914830. PMID 20554470.
  23. ^ a b c Mander BA, Rao V, Lu B, Saletin JM, Lindquist JR, Ancoli-Israel S, et al. (March 2013). "Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging". Nature Neuroscience. 16 (3): 357–364. doi:10.1038/nn.3324. PMC 4286370. PMID 23354332.
  24. ^ Dorph-Petersen KA, Pierri JN, Perel JM, Sun Z, Sampson AR, Lewis DA (September 2005). "The influence of chronic exposure to antipsychotic medications on brain size before and after tissue fixation: a comparison of haloperidol and olanzapine in macaque monkeys". Neuropsychopharmacology. 30 (9): 1649–1661. doi:10.1038/sj.npp.1300710. PMID 15756305. S2CID 205679212.
  25. ^ Kuhl BA, Wagner AD (2009-01-01). "Strategic Control of Memory". In Squire LR (ed.). Encyclopedia of Neuroscience. Academic Press. pp. 437–444. doi:10.1016/b978-008045046-9.00424-1. ISBN 978-0-08-045046-9.
  26. ^ a b c d e Hoffman P (January 2019). "Reductions in prefrontal activation predict off-topic utterances during speech production". Nature Communications. 10 (1): 515. Bibcode:2019NatCo..10..515H. doi:10.1038/s41467-019-08519-0. PMC 6355898. PMID 30705284.
  27. ^ Goldman-Rakic PS (October 1996). "The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 351 (1346): 1445–1453. doi:10.1098/rstb.1996.0129. JSTOR 3069191. PMID 8941956.
  28. ^ Fuster JM, Bodner M, Kroger JK (May 2000). "Cross-modal and cross-temporal association in neurons of frontal cortex". Nature. 405 (6784): 347–351. Bibcode:2000Natur.405..347F. doi:10.1038/35012613. PMID 10830963. S2CID 4421762.
  29. ^ Shimamura AP (2000). "The role of the prefrontal cortex in dynamic filtering". Psychobiology. 28 (2): 207–218. doi:10.3758/BF03331979. S2CID 140274181.
  30. ^ a b c Miller EK, Cohen JD (2001). "An integrative theory of prefrontal cortex function". Annual Review of Neuroscience. 24: 167–202. doi:10.1146/annurev.neuro.24.1.167. PMID 11283309. S2CID 7301474.
  31. ^ Muzur A, Pace-Schott EF, Hobson JA (November 2002). "The prefrontal cortex in sleep". Trends in Cognitive Sciences. 6 (11): 475–481. doi:10.1016/S1364-6613(02)01992-7. PMID 12457899. S2CID 5530174.
  32. ^ Mitchell JP, Heatherton TF, Macrae CN (November 2002). "Distinct neural systems subserve person and object knowledge". Proceedings of the National Academy of Sciences of the United States of America. 99 (23): 15238–15243. Bibcode:2002PNAS...9915238M. doi:10.1073/pnas.232395699. PMC 137574. PMID 12417766.
  33. ^ Wang Y, Hamilton AF (April 2015). "Anterior medial prefrontal cortex implements social priming of mimicry". Social Cognitive and Affective Neuroscience. 10 (4): 486–493. doi:10.1093/scan/nsu076. PMC 4381231. PMID 25009194.
  34. ^ Schacter, Daniel L., Daniel Todd Gilbert, and Daniel M. Wegner. Psychology. 2nd ed, pages 364–366 New York, NY: Worth Publishers, 2011. Print.
  35. ^ Yuan P, Raz N (May 2014). "Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies". Neuroscience and Biobehavioral Reviews. 42: 180–192. doi:10.1016/j.neubiorev.2014.02.005. PMC 4011981. PMID 24568942.
  36. ^ a b Lebedev MA, Messinger A, Kralik JD, Wise SP (November 2004). "Representation of attended versus remembered locations in prefrontal cortex". PLOS Biology. 2 (11): e365. doi:10.1371/journal.pbio.0020365. PMC 524249. PMID 15510225.  
  37. ^ Jacobsen C.F. (1936) Studies of cerebral function in primates. I. The functions of the frontal associations areas in monkeys. Comp Psychol Monogr 13: 3–60.
  38. ^ Pribram KH, Mishkin M, Rosvold HE, Kaplan SJ (December 1952). "Effects on delayed-response performance of lesions of dorsolateral and ventromedial frontal cortex of baboons". Journal of Comparative and Physiological Psychology. 45 (6): 565–575. doi:10.1037/h0061240. PMID 13000029.
  39. ^ Funahashi S, Bruce CJ, Goldman-Rakic PS (April 1993). "Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic "scotomas"". The Journal of Neuroscience. 13 (4): 1479–1497. doi:10.1523/JNEUROSCI.13-04-01479.1993. PMC 6576716. PMID 8463830.
  40. ^ Baddeley A. (1986) Working memory. Oxford: Oxford University Press. p.289
  41. ^ Bedini M, Baldauf D (August 2021). "Structure, function and connectivity fingerprints of the frontal eye field versus the inferior frontal junction: A comprehensive comparison". The European Journal of Neuroscience. 54 (4): 5462–5506. doi:10.1111/ejn.15393. PMC 9291791. PMID 34273134. S2CID 235999643.
  42. ^ Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, et al. (July 2006). "Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting". The Journal of Neuroscience. 26 (30): 7870–7874. doi:10.1523/JNEUROSCI.1184-06.2006. PMC 6674229. PMID 16870732.
  43. ^ "Viewers of pornography have a smaller reward system". MAX-PLANCK-GESELLSCHAFT. 2 June 2014. Retrieved 2 July 2018.
  44. ^ Rajkowska G (December 1997). "Morphometric methods for studying the prefrontal cortex in suicide victims and psychiatric patients". Annals of the New York Academy of Sciences. 836 (1): 253–268. Bibcode:1997NYASA.836..253R. doi:10.1111/j.1749-6632.1997.tb52364.x. PMID 9616803. S2CID 32947726.
  45. ^ Cecil KM, Brubaker CJ, Adler CM, Dietrich KN, Altaye M, Egelhoff JC, et al. (May 2008). Balmes J (ed.). "Decreased brain volume in adults with childhood lead exposure". PLOS Medicine. 5 (5): e112. doi:10.1371/journal.pmed.0050112. PMC 2689675. PMID 18507499.  
  46. ^ Hermann D, Sartorius A, Welzel H, Walter S, Skopp G, Ende G, Mann K (June 2007). "Dorsolateral prefrontal cortex N-acetylaspartate/total creatine (NAA/tCr) loss in male recreational cannabis users". Biological Psychiatry. 61 (11): 1281–1289. doi:10.1016/j.biopsych.2006.08.027. PMID 17239356. S2CID 35279002.
  47. ^ Anderson SW, Bechara A, Damasio H, Tranel D, Damasio AR (November 1999). "Impairment of social and moral behavior related to early damage in human prefrontal cortex". Nature Neuroscience. 2 (11): 1032–1037. doi:10.1038/14833. PMID 10526345. S2CID 204990285.
  48. ^ Fariba K, Gokarakonda SB (2021). "Impulse Control Disorders". StatPearls. Treasure Island (FL): StatPearls Publishing. PMID 32965950. Retrieved 2021-05-04.
  49. ^ Schoenemann PT, Budinger TF, Sarich VM, Wang WS (April 2000). "Brain size does not predict general cognitive ability within families". Proceedings of the National Academy of Sciences of the United States of America. 97 (9): 4932–4937. Bibcode:2000PNAS...97.4932S. doi:10.1073/pnas.97.9.4932. PMC 18335. PMID 10781101.
  50. ^ Cascio T. "House & Psychology, Episode 14". Psychology Today. Archived from the original on 2013-04-08. Retrieved 2011-11-15.
  51. ^ Guiney H, Machado L (February 2013). "Benefits of regular aerobic exercise for executive functioning in healthy populations". Psychonomic Bulletin & Review. 20 (1): 73–86. doi:10.3758/s13423-012-0345-4. PMID 23229442. S2CID 24190840.
  52. ^ Erickson KI, Leckie RL, Weinstein AM (September 2014). "Physical activity, fitness, and gray matter volume". Neurobiology of Aging. 35 (Suppl 2): S20–S28. doi:10.1016/j.neurobiolaging.2014.03.034. PMC 4094356. PMID 24952993.
  53. ^ Valkanova V, Eguia Rodriguez R, Ebmeier KP (June 2014). "Mind over matter--what do we know about neuroplasticity in adults?". International Psychogeriatrics. 26 (6): 891–909. doi:10.1017/S1041610213002482. PMID 24382194. S2CID 20765865.
  54. ^ Barnby JM, Bailey NW, Chambers R, Fitzgerald PB (November 2015). "How similar are the changes in neural activity resulting from mindfulness practice in contrast to spiritual practice?". Consciousness and Cognition. 36: 219–232. doi:10.1016/j.concog.2015.07.002. PMID 26172520. S2CID 24691336. This review examines the neuroimaging research that has focused on groups of meditating individuals, groups who engage in religious/spiritual practices, and research that has examined groups who perform both practices together, in an attempt to assess whether this may be the case. Differences in the balance of activity between the parietal and prefrontal cortical activation were found between the three groups. A relative prefrontal increase was reflective of mindfulness, which related to decreased anxiety and improved well-being. ... Future research can begin to use cohorts of participants in mindfulness studies which are controlled for using the variable of spirituality to explicitly examine how functional and structural similarities and differences may arise.
  55. ^ Kovalchuk A, Rodriguez-Juarez R, Ilnytskyy Y, Byeon B, Shpyleva S, Melnyk S, et al. (April 2016). "Sex-specific effects of cytotoxic chemotherapy agents cyclophosphamide and mitomycin C on gene expression, oxidative DNA damage, and epigenetic alterations in the prefrontal cortex and hippocampus – an aging connection". Aging. 8 (4): 697–711. doi:10.18632/aging.100920. PMC 4925823. PMID 27032448.
  56. ^ Fowler AK, Thompson J, Chen L, Dagda M, Dertien J, Dossou KS, et al. (2014). "Differential sensitivity of prefrontal cortex and hippocampus to alcohol-induced toxicity". PLOS ONE. 9 (9): e106945. Bibcode:2014PLoSO...9j6945F. doi:10.1371/journal.pone.0106945. PMC 4154772. PMID 25188266.
  57. ^ Antonio Damasio, Descartes' Error. Penguin Putman Pub., 1994[page needed]
  58. ^ Malcolm Macmillan, An Odd Kind of Fame: Stories of Phineas Gage (MIT Press, 2000), pp.116–119, 307–333, esp. pp.11,333.
  59. ^ Macmillan M (2008). . The Psychologist. British Psychological Society. 21 (9): 828–831. Archived from the original on 2010-09-03. Retrieved 2014-06-21.
  60. ^ Wang M, Ramos BP, Paspalas CD, Shu Y, Simen A, Duque A, et al. (April 2007). "Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex". Cell. 129 (2): 397–410. doi:10.1016/j.cell.2007.03.015. PMID 17448997. S2CID 741677.

External links

  • Diagram (universe-review.ca)
  • Stained brain slice images which include the "Prefrontal cortex" at the BrainMaps project

prefrontal, cortex, mammalian, brain, anatomy, prefrontal, cortex, covers, front, part, frontal, lobe, cerebral, cortex, contains, brodmann, areas, ba10, ba11, ba12, ba13, ba14, ba24, ba25, ba32, ba44, ba45, ba46, ba47, brodmann, areas, prefrontal, cortex, det. In mammalian brain anatomy the prefrontal cortex PFC covers the front part of the frontal lobe of the cerebral cortex The PFC contains the Brodmann areas BA8 BA9 BA10 BA11 BA12 BA13 BA14 BA24 BA25 BA32 BA44 BA45 BA46 and BA47 1 Prefrontal cortexBrodmann areas 8 9 10 11 12 13 14 24 25 32 44 45 46 and 47 are all in the prefrontal cortex 1 DetailsPart ofFrontal lobePartsSuperior frontal gyrus Middle frontal gyrus Inferior frontal gyrusArteryAnterior cerebral Middle cerebralVeinSuperior sagittal sinusIdentifiersLatinCortex praefrontalisMeSHD017397NeuroNames2429NeuroLex IDnlx anat 090801FMA224850Anatomical terms of neuroanatomy edit on Wikidata The basic activity of this brain region is considered to be orchestration of thoughts and actions in accordance with internal goals 2 Many authors have indicated an integral link between a person s will to live personality and the functions of the prefrontal cortex 3 This brain region has been implicated in executive functions such as planning decision making working memory personality expression moderating social behavior and controlling certain aspects of speech and language 4 5 6 Executive function relates to abilities to differentiate among conflicting thoughts determine good and bad better and best same and different future consequences of current activities working toward a defined goal prediction of outcomes expectation based on actions and social control the ability to suppress urges that if not suppressed could lead to socially unacceptable outcomes The frontal cortex supports concrete rule learning More anterior regions along the rostro caudal axis of frontal cortex support rule learning at higher levels of abstraction 7 Contents 1 Structure 1 1 Definition 1 1 1 Granular frontal cortex 1 1 2 Projection zone 1 1 3 Electrically silent area of frontal cortex 1 2 Subdivisions 1 3 Interconnections 2 Function 2 1 Executive function 2 2 Attention and memory 2 3 Speech production and language 3 Clinical significance 4 History 4 1 Etymology 5 Additional images 6 See also 7 References 8 External linksStructure EditDefinition Edit This section needs to be updated Please help update this article to reflect recent events or newly available information March 2017 There are three possible ways to define the prefrontal cortex as the granular frontal cortex as the projection zone of the medial dorsal nucleus of the thalamus as that part of the frontal cortex whose electrical stimulation does not evoke movementsGranular frontal cortex Edit The prefrontal cortex has been defined based on cytoarchitectonics by the presence of a cortical granular layer IV It is not entirely clear who first used this criterion Many of the early cytoarchitectonic researchers restricted the use of the term prefrontal to a much smaller region of cortex including the gyrus rectus and the gyrus rostralis Campbell 1905 G E Smith 1907 Brodmann 1909 von Economo and Koskinas 1925 In 1935 however Jacobsen used the term prefrontal to distinguish granular prefrontal areas from agranular motor and premotor areas 8 In terms of Brodmann areas the prefrontal cortex traditionally includes areas 8 9 10 11 12 13 14 24 25 32 44 45 46 and 47 1 however not all of these areas are strictly granular 44 is dysgranular caudal 11 and orbital 47 are agranular 9 The main problem with this definition is that it works well only in primates but not in nonprimates as the latter lack a granular layer IV 10 Projection zone Edit To define the prefrontal cortex as the projection zone of the mediodorsal nucleus of the thalamus builds on the work of Rose and Woolsey 11 who showed that this nucleus projects to anterior and ventral parts of the brain in nonprimates however Rose and Woolsey termed this projection zone orbitofrontal It seems to have been Akert who for the first time in 1964 explicitly suggested that this criterion could be used to define homologues of the prefrontal cortex in primates and nonprimates 12 This allowed the establishment of homologies despite the lack of a granular frontal cortex in nonprimates The projection zone definition is still widely accepted today e g Fuster 13 although its usefulness has been questioned 9 14 Modern tract tracing studies have shown that projections of the mediodorsal nucleus of the thalamus are not restricted to the granular frontal cortex in primates As a result it was suggested to define the prefrontal cortex as the region of cortex that has stronger reciprocal connections with the mediodorsal nucleus than with any other thalamic nucleus 10 Uylings et al 10 acknowledge however that even with the application of this criterion it might be rather difficult to define the prefrontal cortex unequivocally Electrically silent area of frontal cortex Edit A third definition of the prefrontal cortex is the area of frontal cortex whose electrical stimulation does not lead to observable movements For example in 1890 David Ferrier 15 used the term in this sense One complication with this definition is that the electrically silent frontal cortex includes both granular and non granular areas 9 Subdivisions Edit This section needs attention from an expert in neuroscience See the talk page for details WikiProject Neuroscience may be able to help recruit an expert May 2019 According to Striedter 16 the PFC of humans can be delineated into two functionally morphologically and evolutionarily different regions the ventromedial PFC vmPFC consisting of the ventral prefrontal cortex and the medial prefrontal cortex present in all mammals and the lateral prefrontal cortex LPFC consisting of the dorsolateral prefrontal cortex and the ventrolateral prefrontal cortex present only in primates The LPFC contains the Brodmann areas BA8 BA9 BA10 BA45 BA46 and BA47 Some researchers also include BA44 The vmPFC contains the Brodmann areas BA12 BA25 BA32 BA33 BA24 BA11 BA13 and BA14 The table below shows different ways to subdivide parts of the human prefrontal cortex based upon Brodmann areas 1 8 9 10 46 45 47 44 12 25 32 33 24 11 13 14lateral ventromedialdorsolateral ventrolateral medial ventralThe dorsolateral prefrontal cortex is composed of the BA8 BA9 BA10 and BA46 1 The ventrolateral prefrontal cortex is composed of areas BA45 BA47 and BA44 1 The medial prefrontal cortex mPFC is composed of BA12 BA25 and anterior cingulate cortex BA32 BA33 BA24 1 The ventral prefrontal cortex is composed of areas BA11 BA13 and BA14 1 Also see the definition of the orbitofrontal cortex The dorsolateral prefrontal cortex contains BA8 including the frontal eye fields 1 The ventrolateral prefrontal cortex contains BA45 which is part of Broca s area 17 Some researchers also include BA44 the other part of Broca s area Interconnections Edit The prefrontal cortex is highly interconnected with much of the brain including extensive connections with other cortical subcortical and brain stem sites 18 The dorsal prefrontal cortex is especially interconnected with brain regions involved with attention cognition and action 19 while the ventral prefrontal cortex interconnects with brain regions involved with emotion 20 The prefrontal cortex also receives inputs from the brainstem arousal systems and its function is particularly dependent on its neurochemical environment 21 Thus there is coordination between our state of arousal and our mental state 22 The interplay between the prefrontal cortex and socioemotional system of the brain is relevant for adolescent development as proposed by the Dual Systems Model The medial prefrontal cortex has been implicated in the generation of slow wave sleep SWS and prefrontal atrophy has been linked to decreases in SWS 23 Prefrontal atrophy occurs naturally as individuals age and it has been demonstrated that older adults experience impairments in memory consolidation as their medial prefrontal cortices degrade 23 In monkeys significant atrophy has been found as a result of neuroleptic or antipsychotic psychiatric medication 24 In older adults instead of being transferred and stored in the neocortex during SWS memories start to remain in the hippocampus where they were encoded as evidenced by increased hippocampal activation compared to younger adults during recall tasks when subjects learned word associations slept and then were asked to recall the learned words 23 The ventrolateral prefrontal cortex VLPFC has been implicated in various aspects of speech production and language comprehension The VLPFC is richly connected to various regions of the brain including the lateral and medial temporal lobe the superior temporal cortex the infertemporal cortex the perirhinal cortex and the parahippoccampal cortex 25 These brain areas are implicated in memory retrieval and consolidation language processing and association of emotions These connections allow the VLPFC to mediate explicit and implicit memory retrieval and integrate it with language stimulus to help plan coherent speech 26 In other words choosing the correct words and staying on topic during conversation come from the VLPFC Function EditExecutive function Edit The original studies of Fuster and of Goldman Rakic emphasized the fundamental ability of the prefrontal cortex to represent information not currently in the environment and the central role of this function in creating the mental sketch pad Goldman Rakic spoke of how this representational knowledge was used to intelligently guide thought action and emotion including the inhibition of inappropriate thoughts distractions actions and feelings 27 In this way working memory can be seen as fundamental to attention and behavioral inhibition Fuster speaks of how this prefrontal ability allows the wedding of past to future allowing both cross temporal and cross modal associations in the creation of goal directed perception action cycles 28 This ability to represent underlies all other higher executive functions Shimamura proposed Dynamic Filtering Theory to describe the role of the prefrontal cortex in executive functions The prefrontal cortex is presumed to act as a high level gating or filtering mechanism that enhances goal directed activations and inhibits irrelevant activations This filtering mechanism enables executive control at various levels of processing including selecting maintaining updating and rerouting activations It has also been used to explain emotional regulation 29 Miller and Cohen proposed an Integrative Theory of Prefrontal Cortex Function that arises from the original work of Goldman Rakic and Fuster The two theorize that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represents goals and means to achieve them They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs internal states and outputs needed to perform a given task 30 In essence the two theorize that the prefrontal cortex guides the inputs and connections which allows for cognitive control of our actions The prefrontal cortex is of significant importance when top down processing is needed Top down processing by definition is when behavior is guided by internal states or intentions According to the two The PFC is critical in situations when the mappings between sensory inputs thoughts and actions either are weakly established relative to other existing ones or are rapidly changing 30 An example of this can be portrayed in the Wisconsin Card Sorting Test WCST Subjects engaging in this task are instructed to sort cards according to the shape color or number of symbols appearing on them The thought is that any given card can be associated with a number of actions and no single stimulus response mapping will work Human subjects with PFC damage are able to sort the card in the initial simple tasks but unable to do so as the rules of classification change Miller and Cohen conclude that the implications of their theory can explain how much of a role the PFC has in guiding control of cognitive actions In the researchers own words they claim that depending on their target of influence representations in the PFC can function variously as attentional templates rules or goals by providing top down bias signals to other parts of the brain that guide the flow of activity along the pathways needed to perform a task 30 Experimental data indicate a role for the prefrontal cortex in mediating normal sleep physiology dreaming and sleep deprivation phenomena 31 When analyzing and thinking about attributes of other individuals the medial prefrontal cortex is activated however it is not activated when contemplating the characteristics of inanimate objects 32 Studies using fMRI have shown that the medial prefrontal cortex mPFC specifically the anterior medial prefrontal cortex amPFC may modulate mimicry behavior Neuroscientists are suggesting that social priming influences activity and processing in the amPFC and that this area of the prefrontal cortex modulates mimicry responses and behavior 33 As of recent researchers have used neuroimaging techniques to find that along with the basal ganglia the prefrontal cortex is involved with learning exemplars which is part of the exemplar theory one of the three main ways our mind categorizes things The exemplar theory states that we categorize judgements by comparing it to a similar past experience within our stored memories 34 A 2014 meta analysis by Professor Nicole P Yuan from the University of Arizona found that larger prefrontal cortex volume and greater PFC cortical thickness were associated with better executive performance 35 Attention and memory Edit Lebedev et al experiment that dissociated representation of spatial attention from representation of spatial memory in prefrontal cortex 36 A widely accepted theory regarding the function of the brain s prefrontal cortex is that it serves as a store of short term memory This idea was first formulated by Jacobsen who reported in 1936 that damage to the primate prefrontal cortex caused short term memory deficits 37 Karl Pribram and colleagues 1952 identified the part of the prefrontal cortex responsible for this deficit as area 46 also known as the dorsolateral prefrontal cortex dlPFC 38 More recently Goldman Rakic and colleagues 1993 evoked short term memory loss in localized regions of space by temporary inactivation of portions of the dlPFC 39 Once the concept of working memory see also Baddeley s model of working memory was established in contemporary neuroscience by Alan Baddeley 1986 these neuropsychological findings contributed to the theory that the prefrontal cortex implements working memory and in some extreme formulations only working memory 40 In the 1990s this theory developed a wide following and it became the predominant theory of PF function especially for nonhuman primates The concept of working memory used by proponents of this theory focused mostly on the short term maintenance of information and rather less on the manipulation or monitoring of such information or on the use of that information for decisions Consistent with the idea that the prefrontal cortex functions predominantly in maintenance memory delay period activity in the PF has often been interpreted as a memory trace The phrase delay period activity applies to neuronal activity that follows the transient presentation of an instruction cue and persists until a subsequent go or trigger signal To explore alternative interpretations of delay period activity in the prefrontal cortex Lebedev et al 2004 investigated the discharge rates of single prefrontal neurons as monkeys attended to a stimulus marking one location while remembering a different unmarked location 36 Both locations served as potential targets of a saccadic eye movement Although the task made intensive demands on short term memory the largest proportion of prefrontal neurons represented attended locations not remembered ones These findings showed that short term memory functions cannot account for all or even most delay period activity in the part of the prefrontal cortex explored The authors suggested that prefrontal activity during the delay period contributes more to the process of attentional selection and selective attention than to memory storage 6 41 Speech production and language Edit Various areas of the prefrontal cortex have been implicated in a multitude of critical functions regarding speech production language comprehension and response planning before speaking 5 Cognitive neuroscience has shown that the left ventrolateral prefrontal cortex is vital in the processing of words and sentences The right prefrontal cortex has been found to be responsible for coordinating the retrieval of explicit memory for use in speech whereas the deactivation of the left is responsible for mediating implicit memory retrieval to be used in verb generation 5 Recollection of nouns explicit memory is impaired in some amnesic patients with damaged right prefrontal cortices but verb generation remains intact because of its reliance on left prefrontal deactivation 26 Many researchers now include BA45 in the prefrontal cortex because together with BA44 it makes up an area of the frontal lobe called Broca s area 17 Broca s Area is widely considered the output area of the language production pathway in the brain as opposed to Wernicke s area in the medial temporal lobe which is seen as the language input area BA45 has been shown to be implicated for the retrieval of relevant semantic knowledge to be used in conversation speech 5 The right lateral prefrontal cortex RLPFC is implicated in the planning of complex behavior and together with bilateral BA45 they act to maintain focus and coherence during speech production 26 However left BA45 has been shown to be activated significantly while maintaining speech coherence in young people Older people have been shown to recruit the right BA45 more so than their younger counterparts 26 This aligns with the evidence of decreased lateralization in other brain systems during aging In addition this increase in BA45 and RLPFC activity in combination of BA47 in older patients has been shown to contribute to off topic utterances The BA47 area in the prefrontal cortex is implicated in stimulus driven retrieval of less salient knowledge than is required to contribute to a conversation 26 In other words elevated activation of the BA47 together with altered activity in BA45 and the broader RLPFC has been shown to contribute to the inclusion of less relevant information and irrelevant tangential conversational speech patterns in older subjects Clinical significance EditSee also Neurobiological effects of physical exercise Structural growth In the last few decades brain imaging systems have been used to determine brain region volumes and nerve linkages Several studies have indicated that reduced volume and interconnections of the frontal lobes with other brain regions is observed in patients diagnosed with mental disorders and prescribed potent antipsychotics those subjected to repeated stressors 42 those who excessively consume sexually explicit materials 43 suicides 44 those incarcerated criminals sociopaths those affected by lead poisoning 45 and daily male cannabis users only 13 people were tested 46 It is believed that at least some of the human abilities to feel guilt or remorse and to interpret reality are dependent on a well functioning prefrontal cortex 47 The advanced neurocircuitry and self regulatory function of the human prefrontal cortex is also associated with the higher sentience in humans 48 as the prefrontal cortex in humans occupies a far larger percentage of the brain than in any other animal And it is theorized that as the brain has tripled in size over five million years of human evolution 49 the prefrontal cortex has increased in size sixfold 50 A review on executive functions in healthy exercising individuals noted that the left and right halves of the prefrontal cortex which is divided by the medial longitudinal fissure appears to become more interconnected in response to consistent aerobic exercise 51 Two reviews of structural neuroimaging research indicate that marked improvements in prefrontal and hippocampal gray matter volume occur in healthy adults that engage in medium intensity exercise for several months 52 53 A functional neuroimaging review of meditation based practices suggested that practicing mindfulness enhances prefrontal activation which was noted to be correlated with increased well being and reduced anxiety although cohort studies are needed to better solidify this theory 54 Treatments with anti cancer drugs often are toxic to the cells of the brain leading to memory loss and cognitive dysfunction that can persist long after the period of exposure Such a condition is referred to as chemo brain To determine the basis of this condition mice were treated with the chemotherapeutic agent mitomycin C 55 In the prefrontal cortex this treatment resulted in an increase of the oxidative DNA damage 8 oxodG a decrease in the enzyme OGG1 that ordinarily repairs such damage and epigenetic alterations Chronic intake of alcohol leads to persistent alterations in brain function including altered decision making ability The prefrontal cortex of chronic alcoholics has been shown to be vulnerable to oxidative DNA damage and neuronal cell death 56 History EditPerhaps the seminal case in prefrontal cortex function is that of Phineas Gage whose left frontal lobe was destroyed when a large iron rod was driven through his head in an 1848 accident The standard presentation is that although Gage retained normal memory speech and motor skills his personality changed radically He became irritable quick tempered and impatient characteristics he did not previously display so that friends described him as no longer Gage and whereas he had previously been a capable and efficient worker afterward he was unable to complete 57 However careful analysis of primary evidence shows that descriptions of Gage s psychological changes are usually exaggerated when held against the description given by Gage s doctor the most striking feature being that changes described years after Gage s death are far more dramatic than anything reported while he was alive 58 59 Subsequent studies on patients with prefrontal injuries have shown that the patients verbalized what the most appropriate social responses would be under certain circumstances Yet when actually performing they instead pursued behavior aimed at immediate gratification despite knowing the longer term results would be self defeating The interpretation of this data indicates that not only are skills of comparison and understanding of eventual outcomes harbored in the prefrontal cortex but the prefrontal cortex when functioning correctly controls the mental option to delay immediate gratification for a better or more rewarding longer term gratification result This ability to wait for a reward is one of the key pieces that define optimal executive function of the human brain citation needed There is much current research devoted to understanding the role of the prefrontal cortex in neurological disorders Clinical trials have begun on certain drugs that have been shown to improve prefrontal cortex function including guanfacine which acts through the alpha 2A adrenergic receptor A downstream target of this drug the HCN channel is one of the most recent areas of exploration in prefrontal cortex pharmacology 60 Etymology Edit The term prefrontal as describing a part of the brain appears to have been introduced by Richard Owen in 1868 8 For him the prefrontal area was restricted to the anterior most part of the frontal lobe approximately corresponding to the frontal pole It has been hypothesized that his choice of the term was based on the prefrontal bone present in most amphibians and reptiles 8 Additional images Edit Animation prefrontal cortex of left cerebral hemisphere shown in red Front view Lateral view Medial perspectiveSee also EditThis article uses anatomical terminology Lobotomy Interference theory Self model theory of subjectivity Dorsomedial prefrontal cortex Ventromedial prefrontal cortexReferences Edit a b c d e f g h i Murray E Wise S Grahatle K 2016 Chapter 1 The History of Memory Systems The Evolution of Memory Systems Ancestors Anatomy and Adaptations 1st ed Oxford University Press pp 22 24 ISBN 978 0 19 150995 7 Retrieved 12 March 2017 Miller EK Freedman DJ Wallis JD August 2002 The prefrontal cortex categories concepts and cognition Philosophical Transactions of the Royal Society of London Series B Biological Sciences 357 1424 1123 1136 doi 10 1098 rstb 2002 1099 PMC 1693009 PMID 12217179 DeYoung CG Hirsh JB Shane MS Papademetris X Rajeevan N Gray JR June 2010 Testing predictions from personality neuroscience Brain structure and the big five Psychological Science 21 6 820 828 doi 10 1177 0956797610370159 PMC 3049165 PMID 20435951 Yang Y Raine A November 2009 Prefrontal structural and functional brain imaging findings in antisocial violent and psychopathic individuals a meta analysis Psychiatry Research 174 2 81 88 doi 10 1016 j pscychresns 2009 03 012 PMC 2784035 PMID 19833485 a b c d Gabrieli JD Poldrack RA Desmond JE February 1998 The role of left prefrontal cortex in language and memory Proceedings of the National Academy of Sciences of the United States of America 95 3 906 913 Bibcode 1998PNAS 95 906G doi 10 1073 pnas 95 3 906 PMC 33815 PMID 9448258 a b Baldauf D Desimone R April 2014 Neural mechanisms of object based attention Science 344 6182 424 427 Bibcode 2014Sci 344 424B doi 10 1126 science 1247003 PMID 24763592 S2CID 34728448 Badre D Kayser AS D Esposito M April 2010 Frontal cortex and the discovery of abstract action rules Neuron 66 2 315 326 doi 10 1016 j neuron 2010 03 025 PMC 2990347 PMID 20435006 a b c Finger S 1994 Origins of neuroscience a history of explorations into brain function Oxford Oxfordshire Oxford University Press ISBN 978 0 19 514694 3 page needed a b c Preuss TM 1995 Do rats have prefrontal cortex The rose woolsey akert program reconsidered Journal of Cognitive Neuroscience 7 1 1 24 doi 10 1162 jocn 1995 7 1 1 PMID 23961750 S2CID 2856619 a b c Uylings HB Groenewegen HJ Kolb B November 2003 Do rats have a prefrontal cortex Behavioural Brain Research 146 1 2 3 17 doi 10 1016 j bbr 2003 09 028 PMID 14643455 S2CID 32136463 Rose JE Woolsey CN 1948 The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit sheep and cat Research Publications Association for Research in Nervous and Mental Disease 27 210 232 PMID 18106857 Preuss TM Goldman Rakic PS August 1991 Myelo and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca The Journal of Comparative Neurology 310 4 429 474 doi 10 1002 cne 903100402 PMID 1939732 S2CID 34575725 Fuster JM 2008 The Prefrontal Cortex 4th ed Boston Academic Press ISBN 978 0 12 373644 4 page needed Markowitsch HJ Pritzel M 1979 The prefrontal cortex Projection area of the thalamic mediodorsal nucleus Physiological Psychology 7 1 1 6 doi 10 3758 bf03326611 Ferrier D June 1890 The Croonian Lectures on Cerebral Localisation British Medical Journal 1 1537 1349 1355 doi 10 1136 bmj 1 1537 1349 PMC 2207859 PMID 20753055 Striedter GF 2005 Principles of brain evolution Sinauer Associates ISBN 978 0 87893 820 9 a b Broca area anatomy Encyclopedia Britannica Retrieved 2019 12 12 Alvarez JA Emory E March 2006 Executive function and the frontal lobes a meta analytic review Neuropsychology Review 16 1 17 42 doi 10 1007 s11065 006 9002 x PMID 16794878 S2CID 207222975 Goldman Rakic PS 1988 Topography of cognition parallel distributed networks in primate association cortex Annual Review of Neuroscience 11 137 156 doi 10 1146 annurev ne 11 030188 001033 PMID 3284439 Price JL June 1999 Prefrontal cortical networks related to visceral function and mood Annals of the New York Academy of Sciences 877 1 383 396 Bibcode 1999NYASA 877 383P doi 10 1111 j 1749 6632 1999 tb09278 x PMID 10415660 S2CID 37564764 Robbins TW Arnsten AF 2009 The neuropsychopharmacology of fronto executive function monoaminergic modulation Annual Review of Neuroscience 32 267 287 doi 10 1146 annurev neuro 051508 135535 PMC 2863127 PMID 19555290 Arnsten AF Paspalas CD Gamo NJ Yang Y Wang M August 2010 Dynamic Network Connectivity A new form of neuroplasticity Trends in Cognitive Sciences 14 8 365 375 doi 10 1016 j tics 2010 05 003 PMC 2914830 PMID 20554470 a b c Mander BA Rao V Lu B Saletin JM Lindquist JR Ancoli Israel S et al March 2013 Prefrontal atrophy disrupted NREM slow waves and impaired hippocampal dependent memory in aging Nature Neuroscience 16 3 357 364 doi 10 1038 nn 3324 PMC 4286370 PMID 23354332 Dorph Petersen KA Pierri JN Perel JM Sun Z Sampson AR Lewis DA September 2005 The influence of chronic exposure to antipsychotic medications on brain size before and after tissue fixation a comparison of haloperidol and olanzapine in macaque monkeys Neuropsychopharmacology 30 9 1649 1661 doi 10 1038 sj npp 1300710 PMID 15756305 S2CID 205679212 Kuhl BA Wagner AD 2009 01 01 Strategic Control of Memory In Squire LR ed Encyclopedia of Neuroscience Academic Press pp 437 444 doi 10 1016 b978 008045046 9 00424 1 ISBN 978 0 08 045046 9 a b c d e Hoffman P January 2019 Reductions in prefrontal activation predict off topic utterances during speech production Nature Communications 10 1 515 Bibcode 2019NatCo 10 515H doi 10 1038 s41467 019 08519 0 PMC 6355898 PMID 30705284 Goldman Rakic PS October 1996 The prefrontal landscape implications of functional architecture for understanding human mentation and the central executive Philosophical Transactions of the Royal Society of London Series B Biological Sciences 351 1346 1445 1453 doi 10 1098 rstb 1996 0129 JSTOR 3069191 PMID 8941956 Fuster JM Bodner M Kroger JK May 2000 Cross modal and cross temporal association in neurons of frontal cortex Nature 405 6784 347 351 Bibcode 2000Natur 405 347F doi 10 1038 35012613 PMID 10830963 S2CID 4421762 Shimamura AP 2000 The role of the prefrontal cortex in dynamic filtering Psychobiology 28 2 207 218 doi 10 3758 BF03331979 S2CID 140274181 a b c Miller EK Cohen JD 2001 An integrative theory of prefrontal cortex function Annual Review of Neuroscience 24 167 202 doi 10 1146 annurev neuro 24 1 167 PMID 11283309 S2CID 7301474 Muzur A Pace Schott EF Hobson JA November 2002 The prefrontal cortex in sleep Trends in Cognitive Sciences 6 11 475 481 doi 10 1016 S1364 6613 02 01992 7 PMID 12457899 S2CID 5530174 Mitchell JP Heatherton TF Macrae CN November 2002 Distinct neural systems subserve person and object knowledge Proceedings of the National Academy of Sciences of the United States of America 99 23 15238 15243 Bibcode 2002PNAS 9915238M doi 10 1073 pnas 232395699 PMC 137574 PMID 12417766 Wang Y Hamilton AF April 2015 Anterior medial prefrontal cortex implements social priming of mimicry Social Cognitive and Affective Neuroscience 10 4 486 493 doi 10 1093 scan nsu076 PMC 4381231 PMID 25009194 Schacter Daniel L Daniel Todd Gilbert and Daniel M Wegner Psychology 2nd ed pages 364 366 New York NY Worth Publishers 2011 Print Yuan P Raz N May 2014 Prefrontal cortex and executive functions in healthy adults a meta analysis of structural neuroimaging studies Neuroscience and Biobehavioral Reviews 42 180 192 doi 10 1016 j neubiorev 2014 02 005 PMC 4011981 PMID 24568942 a b Lebedev MA Messinger A Kralik JD Wise SP November 2004 Representation of attended versus remembered locations in prefrontal cortex PLOS Biology 2 11 e365 doi 10 1371 journal pbio 0020365 PMC 524249 PMID 15510225 Jacobsen C F 1936 Studies of cerebral function in primates I The functions of the frontal associations areas in monkeys Comp Psychol Monogr 13 3 60 Pribram KH Mishkin M Rosvold HE Kaplan SJ December 1952 Effects on delayed response performance of lesions of dorsolateral and ventromedial frontal cortex of baboons Journal of Comparative and Physiological Psychology 45 6 565 575 doi 10 1037 h0061240 PMID 13000029 Funahashi S Bruce CJ Goldman Rakic PS April 1993 Dorsolateral prefrontal lesions and oculomotor delayed response performance evidence for mnemonic scotomas The Journal of Neuroscience 13 4 1479 1497 doi 10 1523 JNEUROSCI 13 04 01479 1993 PMC 6576716 PMID 8463830 Baddeley A 1986 Working memory Oxford Oxford University Press p 289 Bedini M Baldauf D August 2021 Structure function and connectivity fingerprints of the frontal eye field versus the inferior frontal junction A comprehensive comparison The European Journal of Neuroscience 54 4 5462 5506 doi 10 1111 ejn 15393 PMC 9291791 PMID 34273134 S2CID 235999643 Liston C Miller MM Goldwater DS Radley JJ Rocher AB Hof PR et al July 2006 Stress induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set shifting The Journal of Neuroscience 26 30 7870 7874 doi 10 1523 JNEUROSCI 1184 06 2006 PMC 6674229 PMID 16870732 Viewers of pornography have a smaller reward system MAX PLANCK GESELLSCHAFT 2 June 2014 Retrieved 2 July 2018 Rajkowska G December 1997 Morphometric methods for studying the prefrontal cortex in suicide victims and psychiatric patients Annals of the New York Academy of Sciences 836 1 253 268 Bibcode 1997NYASA 836 253R doi 10 1111 j 1749 6632 1997 tb52364 x PMID 9616803 S2CID 32947726 Cecil KM Brubaker CJ Adler CM Dietrich KN Altaye M Egelhoff JC et al May 2008 Balmes J ed Decreased brain volume in adults with childhood lead exposure PLOS Medicine 5 5 e112 doi 10 1371 journal pmed 0050112 PMC 2689675 PMID 18507499 Hermann D Sartorius A Welzel H Walter S Skopp G Ende G Mann K June 2007 Dorsolateral prefrontal cortex N acetylaspartate total creatine NAA tCr loss in male recreational cannabis users Biological Psychiatry 61 11 1281 1289 doi 10 1016 j biopsych 2006 08 027 PMID 17239356 S2CID 35279002 Anderson SW Bechara A Damasio H Tranel D Damasio AR November 1999 Impairment of social and moral behavior related to early damage in human prefrontal cortex Nature Neuroscience 2 11 1032 1037 doi 10 1038 14833 PMID 10526345 S2CID 204990285 Fariba K Gokarakonda SB 2021 Impulse Control Disorders StatPearls Treasure Island FL StatPearls Publishing PMID 32965950 Retrieved 2021 05 04 Schoenemann PT Budinger TF Sarich VM Wang WS April 2000 Brain size does not predict general cognitive ability within families Proceedings of the National Academy of Sciences of the United States of America 97 9 4932 4937 Bibcode 2000PNAS 97 4932S doi 10 1073 pnas 97 9 4932 PMC 18335 PMID 10781101 Cascio T House amp Psychology Episode 14 Psychology Today Archived from the original on 2013 04 08 Retrieved 2011 11 15 Guiney H Machado L February 2013 Benefits of regular aerobic exercise for executive functioning in healthy populations Psychonomic Bulletin amp Review 20 1 73 86 doi 10 3758 s13423 012 0345 4 PMID 23229442 S2CID 24190840 Erickson KI Leckie RL Weinstein AM September 2014 Physical activity fitness and gray matter volume Neurobiology of Aging 35 Suppl 2 S20 S28 doi 10 1016 j neurobiolaging 2014 03 034 PMC 4094356 PMID 24952993 Valkanova V Eguia Rodriguez R Ebmeier KP June 2014 Mind over matter what do we know about neuroplasticity in adults International Psychogeriatrics 26 6 891 909 doi 10 1017 S1041610213002482 PMID 24382194 S2CID 20765865 Barnby JM Bailey NW Chambers R Fitzgerald PB November 2015 How similar are the changes in neural activity resulting from mindfulness practice in contrast to spiritual practice Consciousness and Cognition 36 219 232 doi 10 1016 j concog 2015 07 002 PMID 26172520 S2CID 24691336 This review examines the neuroimaging research that has focused on groups of meditating individuals groups who engage in religious spiritual practices and research that has examined groups who perform both practices together in an attempt to assess whether this may be the case Differences in the balance of activity between the parietal and prefrontal cortical activation were found between the three groups A relative prefrontal increase was reflective of mindfulness which related to decreased anxiety and improved well being Future research can begin to use cohorts of participants in mindfulness studies which are controlled for using the variable of spirituality to explicitly examine how functional and structural similarities and differences may arise Kovalchuk A Rodriguez Juarez R Ilnytskyy Y Byeon B Shpyleva S Melnyk S et al April 2016 Sex specific effects of cytotoxic chemotherapy agents cyclophosphamide and mitomycin C on gene expression oxidative DNA damage and epigenetic alterations in the prefrontal cortex and hippocampus an aging connection Aging 8 4 697 711 doi 10 18632 aging 100920 PMC 4925823 PMID 27032448 Fowler AK Thompson J Chen L Dagda M Dertien J Dossou KS et al 2014 Differential sensitivity of prefrontal cortex and hippocampus to alcohol induced toxicity PLOS ONE 9 9 e106945 Bibcode 2014PLoSO 9j6945F doi 10 1371 journal pone 0106945 PMC 4154772 PMID 25188266 Antonio Damasio Descartes Error Penguin Putman Pub 1994 page needed Malcolm Macmillan An Odd Kind of Fame Stories of Phineas Gage MIT Press 2000 pp 116 119 307 333 esp pp 11 333 Macmillan M 2008 Phineas Gage Unravelling the myth The Psychologist British Psychological Society 21 9 828 831 Archived from the original on 2010 09 03 Retrieved 2014 06 21 Wang M Ramos BP Paspalas CD Shu Y Simen A Duque A et al April 2007 Alpha2A adrenoceptors strengthen working memory networks by inhibiting cAMP HCN channel signaling in prefrontal cortex Cell 129 2 397 410 doi 10 1016 j cell 2007 03 015 PMID 17448997 S2CID 741677 External links Edit Wikimedia Commons has media related to Prefrontal cortex Diagram ua edu Diagram universe review ca Stained brain slice images which include the Prefrontal cortex at the BrainMaps project Retrieved from https en wikipedia org w index php title Prefrontal cortex amp oldid 1143274847, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.