fbpx
Wikipedia

Protein kinase C zeta type

Protein kinase C, zeta (PKCζ), also known as PRKCZ, is a protein in humans that is encoded by the PRKCZ gene. The PRKCZ gene encodes at least two alternative transcripts, the full-length PKCζ and an N-terminal truncated form PKMζ. PKMζ is thought to be responsible for maintaining long-term memories in the brain. The importance of PKCζ in the creation and maintenance of long-term potentiation was first described by Todd Sacktor and his colleagues at the SUNY Downstate Medical Center in 1993.[5]

PRKCZ
Identifiers
AliasesPRKCZ, PKC-ZETA, PKC2, protein kinase C zeta
External IDsOMIM: 176982 MGI: 97602 HomoloGene: 55681 GeneCards: PRKCZ
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001039079
NM_008860
NM_001355178

RefSeq (protein)

NP_001034168
NP_032886
NP_001342107

Location (UCSC)Chr 1: 2.05 – 2.19 MbChr 4: 155.34 – 155.45 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Structure edit

PKC-zeta has an N-terminal regulatory domain, followed by a hinge region and a C-terminal catalytic domain. Second messengers stimulate PKCs by binding to the regulatory domain, translocating the enzyme from cytosol to membrane, and producing a conformational change that removes auto-inhibition of the PKC catalytic protein kinase activity. PKM-zeta, a brain-specific isoform of PKC-zeta generated from an alternative transcript, lacks the regulatory region of full-length PKC-zeta and is therefore constitutively active.[6]

PKMζ is the independent catalytic domain of PKCζ and, lacking an autoinhibitory regulatory domain of the full-length PKCζ, is constitutively and persistently active, without the need of a second messenger. It was originally thought of as being a cleavage product of full-length PKCζ, an atypical isoform of protein kinase C (PKC). Like other PKC isoforms, PKCζ is a serine/threonine kinase that adds phosphate groups to target proteins. It is atypical in that unlike other PKC isoforms, PKCζ does not require calcium or diacylglycerol (DAG) to become active, but rather relies on a different second messenger, presumably generated through a phosphoinositide 3-kinase (PI3-kinase) pathway. It is now known that PKMζ is not the result of cleavage of full-length PKCζ, but rather, in the mammalian brain, is translated from its own brain-specific mRNA, that is transcribed by an internal promoter within the PKCζ gene.[6] The promoter for full-length PKCζ is largely inactive in the forebrain and so PKMζ is the dominant form of ζ in the forebrain and the only PKM that is translated from its own mRNA.

Function edit

PKCζ edit

Atypical PKC (aPKC) isoforms [zeta (this enzyme) and lambda/iota] play important roles in insulin-stimulated glucose transport. Human adipocytes contain PKC-zeta, rather than PKC-lambda/iota, as their major aPKC. Inhibition of the PKCζ enzyme inhibits insulin-stimulated glucose transport while activation of PKCζ increases glucose transport.[7]

PKMζ edit

PKMζ is thought to be responsible for maintaining the late phase of long-term potentiation (LTP).[8][9][10] LTP is one of the major cellular mechanisms that are widely considered to underlie learning and memory.[11] This theory arose from the observation that PKMζ perfused into neurons causes synaptic potentiation, and selective inhibitors of PKMζ like zeta inhibitory peptide (ZIP), when bath applied one hour after tetanization, inhibit the late phase or maintenance of LTP. Thus, PKMζ was thought to be both necessary and sufficient for maintaining LTP. Subsequent work showed that inhibiting PKMζ reversed LTP maintenance when applied up to 5 hours after LTP was induced in hippocampal slices, and after 22 hours in vivo. Inhibiting PKMζ in behaving animals erased spatial long-term memories in the hippocampus that were up to one month old, without affecting spatial short-term memories,[10] and erased long-term memories for fear conditioning and inhibitory avoidance in the basolateral amygdala.[12] When ZIP was injected into rats' sensorimotor cortices, it erased muscle memories for a task, even after several weeks of training.[13] In the neocortex, thought to be the site of storage for most long-term memories, PKMζ inhibition erased associative memories for conditioned taste aversion in the insular cortex, up to 3 months after training.[14][15] The protein also seems to be involved, through the nucleus accumbens, in the consolidation and reconsolidation of the memory related to drug addiction.[16] Although results from PKCζ/PKMζ-null mice demonstrate LTP and memory appear largely the same as wild-type mice,[17][18] the normal function of PKMζ in LTP and long-term memory storage was shown to be compensated by the other atypical PKC isoform, PKCι/λ in the knock-out.[19][20][21]

Alteration in PKMζ may be involved in neurodegeneration Alzheimer's disease.[22]

Inhibitors edit

  • 1,3,5-Trisubstituted Pyrazolines[23]

Interactions edit

PRKCZ has been shown to interact with:

References edit

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000067606 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000029053 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Sacktor TC, Osten P, Valsamis H, Jiang X, Naik MU, Sublette E (1993). "Persistent activation of the zeta isoform of protein kinase C in the maintenance of long-term potentiation". Proceedings of the National Academy of Sciences of the United States of America. 90 (18): 8342–8346. Bibcode:1993PNAS...90.8342S. doi:10.1073/pnas.90.18.8342. PMC 47352. PMID 8378304.
  6. ^ a b Hernandez AI, Blace N, Crary JF, Serrano PA, Leitges M, Libien JM, Weinstein G, Tcherapanov A, Sacktor TC (October 2003). "Protein kinase M zeta synthesis from a brain mRNA encoding an independent protein kinase C zeta catalytic domain. Implications for the molecular mechanism of memory". J. Biol. Chem. 278 (41): 40305–16. doi:10.1074/jbc.M307065200. PMID 12857744.
  7. ^ Bandyopadhyay G, Sajan MP, Kanoh Y, Standaert ML, Quon MJ, Lea-Currie R, Sen A, Farese RV (February 2002). "PKC-zeta mediates insulin effects on glucose transport in cultured preadipocyte-derived human adipocytes". J. Clin. Endocrinol. Metab. 87 (2): 716–23. doi:10.1210/jcem.87.2.8252. PMID 11836310.
  8. ^ Ling DS, Benardo LS, Serrano PA, Blace N, Kelly MT, Crary JF, Sacktor TC (2002). "Protein kinase Mzeta is necessary and sufficient for LTP maintenance". Nat. Neurosci. 5 (4): 295–6. doi:10.1038/nn829. PMID 11914719. S2CID 11200668.
  9. ^ Serrano P, Yao Y, Sacktor TC (2005). "Persistent phosphorylation by protein kinase Mzeta maintains late-phase long-term potentiation". J Neurosci. 25 (8): 1979–84. doi:10.1523/JNEUROSCI.5132-04.2005. PMC 6726070. PMID 15728837.
  10. ^ a b Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006). "Storage of spatial information by the maintenance mechanism of LTP". Science. 313 (5790): 1141–4. Bibcode:2006Sci...313.1141P. CiteSeerX 10.1.1.453.2136. doi:10.1126/science.1128657. PMID 16931766. S2CID 7260010.
  11. ^ Cooke SF, Bliss TV (2006). "Plasticity in the human central nervous system". Brain. 129 (Pt 7): 1659–73. doi:10.1093/brain/awl082. PMID 16672292.
  12. ^ Serrano P, Friedman EL, Kenney J, Taubenfeld SM, Zimmerman JM, Hanna J, Alberini C, Kelley AE, Maren S, Rudy JW, Yin JC, Sacktor TC, Fenton AA (2008). Lu B (ed.). "PKMζ maintains spatial, instrumental, and classically conditioned long-term memories". PLOS Biology. 6 (12): 2698–706. doi:10.1371/journal.pbio.0060318. PMC 2605920. PMID 19108606.
  13. ^ von Kraus LM, Sacktor TC, Francis JT (2010). Brezina V (ed.). "Erasing Sensorimotor Memories via PKMζ Inhibition". PLOS ONE. 5 (6): e11125. Bibcode:2010PLoSO...511125V. doi:10.1371/journal.pone.0011125. PMC 2886075. PMID 20559553.
  14. ^ Shema R, Sacktor TC, Dudai Y (2007). "Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKMζ". Science. 317 (5840): 951–3. Bibcode:2007Sci...317..951S. doi:10.1126/science.1144334. PMID 17702943. S2CID 15707301.
  15. ^ Shema R, Hazvi S, Sacktor TC, Dudai Y (2009). "Boundary conditions for the maintenance of memory by PKMζ in neocortex". Learn. Mem. 16 (2): 122–8. doi:10.1101/lm.1183309. PMC 2661244. PMID 19181618.
  16. ^ Crespo JA, Stöckl P, Ueberall F, Jenny M, Saria A, Zernig G (February 2012). "Activation of PKCzeta and PKMzeta in the nucleus accumbens core is necessary for the retrieval, consolidation and reconsolidation of the drug memory". PLOS ONE. 7 (2): e30502. Bibcode:2012PLoSO...730502C. doi:10.1371/journal.pone.0030502. PMC 3277594. PMID 22348011.
  17. ^ Volk LJ, Bachman JL, Johnson R, Yu Y, Huganir RL (January 2013). "PKM-ζ is not required for hippocampal synaptic plasticity, learning and memory". Nature. 493 (7432): 420–3. Bibcode:2013Natur.493..420V. doi:10.1038/nature11802. PMC 3830948. PMID 23283174.
  18. ^ Lee AM, Kanter BR, Wang D, Lim JP, Zou ME, Qiu C, McMahon T, Dadgar J, Fischbach-Weiss SC, Messing RO (January 2013). "Prkcz null mice show normal learning and memory". Nature. 493 (7432): 416–9. Bibcode:2013Natur.493..416L. doi:10.1038/nature11803. PMC 3548047. PMID 23283171.
  19. ^ Tsokas P, Hsieh C, Yao Y, Lesburguères E, Wallace EJ, Tcherepanov A, Jothianandan D, Hartley BR, Pan L, Rivard B, Farese RV, Sajan MP, Bergold PJ, Hernández AI, Cottrell JE, Shouval HZ, Fenton AA, Sacktor TC (2016). "Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice". eLife. 5: e14846. doi:10.7554/eLife.14846. PMC 4869915. PMID 27187150.
  20. ^ Morris RG (17 May 2016). "Forget me not". eLife. 5: e16597. doi:10.7554/eLife.16597. PMC 4869910. PMID 27187147.
  21. ^ Frankland PW, Josselyn SA (July 2016). "Neuroscience: In search of the memory molecule". Nature. 535 (7610): 41–2. Bibcode:2016Natur.535...41F. doi:10.1038/nature18903. PMID 27362229.
  22. ^ Crary JF, Shao CY, Mirra SS, Hernandez AI, Sacktor TC (April 2006). "Atypical protein kinase C in neurodegenerative disease I: PKMzeta aggregates with limbic neurofibrillary tangles and AMPA receptors in Alzheimer disease". J. Neuropathol. Exp. Neurol. 65 (4): 319–26. doi:10.1097/01.jnen.0000218442.07664.04. PMID 16691113. S2CID 17924780.
  23. ^ Abdel-Halim M, Diesel B, Kiemer AK, Abadi AH, Hartmann RW, Engel M (August 2014). "Discovery and optimization of 1,3,5-trisubstituted pyrazolines as potent and highly selective allosteric inhibitors of protein kinase C-ζ". Journal of Medicinal Chemistry. 57 (15): 6513–30. doi:10.1021/jm500521n. PMID 25058929.
  24. ^ Hodgkinson CP, Sale EM, Sale GJ (2002). "Characterization of PDK2 activity against protein kinase B gamma". Biochemistry. 41 (32): 10351–9. doi:10.1021/bi026065r. PMID 12162751.
  25. ^ a b c d Van Der Hoeven PC, Van Der Wal JC, Ruurs P, Van Dijk MC, Van Blitterswijk J (2000). "14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation". Biochem. J. 345 (2): 297–306. doi:10.1042/0264-6021:3450297. PMC 1220759. PMID 10620507.
  26. ^ Storz P, Hausser A, Link G, Dedio J, Ghebrehiwet B, Pfizenmaier K, Johannes FJ (2000). "Protein kinase C [micro] is regulated by the multifunctional chaperon protein p32". J. Biol. Chem. 275 (32): 24601–7. doi:10.1074/jbc.M002964200. PMID 10831594.
  27. ^ a b Zemlickova E, Dubois T, Kerai P, Clokie S, Cronshaw AD, Wakefield RI, Johannes FJ, Aitken A (2003). "Centaurin-alpha(1) associates with and is phosphorylated by isoforms of protein kinase C". Biochem. Biophys. Res. Commun. 307 (3): 459–65. doi:10.1016/S0006-291X(03)01187-2. PMID 12893243.
  28. ^ Kuroda S, Nakagawa N, Tokunaga C, Tatematsu K, Tanizawa K (1999). "Mammalian homologue of the Caenorhabditis elegans UNC-76 protein involved in axonal outgrowth is a protein kinase C zeta-interacting protein". J. Cell Biol. 144 (3): 403–11. doi:10.1083/jcb.144.3.403. PMC 2132904. PMID 9971736.
  29. ^ Fujita T, Ikuta J, Hamada J, Okajima T, Tatematsu K, Tanizawa K, Kuroda S (2004). "Identification of a tissue-non-specific homologue of axonal fasciculation and elongation protein zeta-1". Biochem. Biophys. Res. Commun. 313 (3): 738–44. doi:10.1016/j.bbrc.2003.12.006. PMID 14697253.
  30. ^ Diaz-Meco MT, Moscat J (2001). "MEK5, a new target of the atypical protein kinase C isoforms in mitogenic signaling". Mol. Cell. Biol. 21 (4): 1218–27. doi:10.1128/MCB.21.4.1218-1227.2001. PMC 99575. PMID 11158308.
  31. ^ San-Antonio B, Iñiguez MA, Fresno M (2002). "Protein kinase Czeta phosphorylates nuclear factor of activated T cells and regulates its transactivating activity". J. Biol. Chem. 277 (30): 27073–80. doi:10.1074/jbc.M106983200. PMID 12021260.
  32. ^ Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005). "Towards a proteome-scale map of the human protein–protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID 16189514. S2CID 4427026.
  33. ^ Liu XF, Ishida H, Raziuddin R, Miki T (2004). "Nucleotide exchange factor ECT2 interacts with the polarity protein complex Par6/Par3/protein kinase Czeta (PKCzeta) and regulates PKCzeta activity". Mol. Cell. Biol. 24 (15): 6665–75. doi:10.1128/MCB.24.15.6665-6675.2004. PMC 444862. PMID 15254234.
  34. ^ a b Noda Y, Takeya R, Ohno S, Naito S, Ito T, Sumimoto H (2001). "Human homologues of the Caenorhabditis elegans cell polarity protein PAR6 as an adaptor that links the small GTPases Rac and Cdc42 to atypical protein kinase C". Genes Cells. 6 (2): 107–19. doi:10.1046/j.1365-2443.2001.00404.x. PMID 11260256.
  35. ^ Díaz-Meco MT, Municio MM, Frutos S, Sanchez P, Lozano J, Sanz L, Moscat J (1996). "The product of par-4, a gene induced during apoptosis, interacts selectively with the atypical isoforms of protein kinase C". Cell. 86 (5): 777–86. doi:10.1016/S0092-8674(00)80152-X. PMID 8797824. S2CID 15675524.
  36. ^ Balendran A, Biondi RM, Cheung PC, Casamayor A, Deak M, Alessi DR (2000). "A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta ) and PKC-related kinase 2 by PDK1". J. Biol. Chem. 275 (27): 20806–13. doi:10.1074/jbc.M000421200. PMID 10764742.
  37. ^ Hodgkinson CP, Sale GJ (2002). "Regulation of both PDK1 and the phosphorylation of PKC-zeta and -delta by a C-terminal PRK2 fragment". Biochemistry. 41 (2): 561–9. doi:10.1021/bi010719z. PMID 11781095.
  38. ^ Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ (1998). "Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1". Science. 281 (5385): 2042–5. Bibcode:1998Sci...281.2042A. doi:10.1126/science.281.5385.2042. PMID 9748166.
  39. ^ Park J, Leong ML, Buse P, Maiyar AC, Firestone GL, Hemmings BA (1999). "Serum and glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway". EMBO J. 18 (11): 3024–33. doi:10.1093/emboj/18.11.3024. PMC 1171384. PMID 10357815.
  40. ^ Leitges M, Sanz L, Martin P, Duran A, Braun U, García JF, Camacho F, Diaz-Meco MT, Rennert PD, Moscat J (2001). "Targeted disruption of the zetaPKC gene results in the impairment of the NF-kappaB pathway". Mol. Cell. 8 (4): 771–80. doi:10.1016/S1097-2765(01)00361-6. PMID 11684013.
  41. ^ Seibenhener ML, Roehm J, White WO, Neidigh KB, Vandenplas ML, Wooten MW (1999). "Identification of Src as a novel atypical protein kinase C-interacting protein". Mol. Cell Biol. Res. Commun. 2 (1): 28–31. doi:10.1006/mcbr.1999.0140. PMID 10527887.
  42. ^ Büther K, Plaas C, Barnekow A, Kremerskothen J (2004). "KIBRA is a novel substrate for protein kinase Czeta". Biochem. Biophys. Res. Commun. 317 (3): 703–7. doi:10.1016/j.bbrc.2004.03.107. PMID 15081397.

Further reading edit

  • Slater SJ, Ho C, Stubbs CD (2003). "The use of fluorescent phorbol esters in studies of protein kinase C-membrane interactions". Chem. Phys. Lipids. 116 (1–2): 75–91. doi:10.1016/S0009-3084(02)00021-X. PMID 12093536.
  • Carter CA, Kane CJ (2005). "Therapeutic potential of natural compounds that regulate the activity of protein kinase C". Curr. Med. Chem. 11 (21): 2883–902. doi:10.2174/0929867043364090. PMID 15544481.

protein, kinase, zeta, type, protein, kinase, zeta, pkcζ, also, known, prkcz, protein, humans, that, encoded, prkcz, gene, prkcz, gene, encodes, least, alternative, transcripts, full, length, pkcζ, terminal, truncated, form, pkmζ, pkmζ, thought, responsible, m. Protein kinase C zeta PKCz also known as PRKCZ is a protein in humans that is encoded by the PRKCZ gene The PRKCZ gene encodes at least two alternative transcripts the full length PKCz and an N terminal truncated form PKMz PKMz is thought to be responsible for maintaining long term memories in the brain The importance of PKCz in the creation and maintenance of long term potentiation was first described by Todd Sacktor and his colleagues at the SUNY Downstate Medical Center in 1993 5 PRKCZIdentifiersAliasesPRKCZ PKC ZETA PKC2 protein kinase C zetaExternal IDsOMIM 176982 MGI 97602 HomoloGene 55681 GeneCards PRKCZGene location Human Chr Chromosome 1 human 1 Band1p36 33Start2 050 411 bp 1 End2 185 395 bp 1 Gene location Mouse Chr Chromosome 4 mouse 2 Band4 E2 4 86 17 cMStart155 344 586 bp 2 End155 445 818 bp 2 RNA expression patternBgeeHumanMouse ortholog Top expressed inmiddle temporal gyrusBrodmann area 9prefrontal cortexBrodmann area 23nucleus accumbenssuperior frontal gyrusponsputamenparietal lobepostcentral gyrusTop expressed insuperior frontal gyruscerebellar cortexolfactory tuberclenucleus accumbensprefrontal cortexcerebellar vermissubiculumyolk sacmedial dorsal nucleuslateral geniculate nucleusMore reference expression dataBioGPSMore reference expression dataGene ontologyMolecular functionphospholipase binding protein domain specific binding kinase activity ATP binding protein kinase activity metal ion binding protein serine threonine kinase activity insulin receptor substrate binding transferase activity 14 3 3 protein binding potassium channel regulator activity protein binding protein kinase binding nucleotide binding protein kinase C activityCellular componentcytoplasm filamentous actin endosome nuclear envelope membrane cell cell junction bicellular tight junction microtubule organizing center apical cortex perinuclear region of cytoplasm nucleus nuclear matrix apical plasma membrane membrane raft extracellular exosome intracellular membrane bounded organelle myelin sheath abaxonal region cell cortex vesicle cell junction cell leading edge axon hillock cytosol plasma membrane stress fiber postsynaptic density protein containing complex Schaffer collateral CA1 synapse glutamatergic synapseBiological processpositive regulation of glucose import insulin receptor signaling pathway protein heterooligomerization negative regulation of hydrolase activity protein kinase C signaling protein phosphorylation negative regulation of insulin receptor signaling pathway cell surface receptor signaling pathway activation of phospholipase D activity positive regulation of synaptic transmission positive regulation of ERK1 and ERK2 cascade positive regulation of excitatory postsynaptic potential transforming growth factor beta receptor signaling pathway negative regulation of protein containing complex assembly negative regulation of peptidyl tyrosine phosphorylation establishment of cell polarity cellular response to insulin stimulus protein localization to plasma membrane inflammatory response phosphorylation positive regulation of cell matrix adhesion membrane depolarization negative regulation of apoptotic process positive regulation of interleukin 4 production positive regulation of protein transport positive regulation of NF kappaB transcription factor activity positive regulation of insulin receptor signaling pathway positive regulation of T helper 2 cell cytokine production microtubule cytoskeleton organization actin cytoskeleton reorganization activation of protein kinase B activity membrane hyperpolarization vesicle transport along microtubule neuron projection extension long term memory peptidyl serine phosphorylation positive regulation of cell population proliferation positive regulation of T helper 2 cell differentiation cell migration signal transduction long term potentiation intracellular signal transduction regulation of neurotransmitter receptor localization to postsynaptic specialization membraneSources Amigo QuickGOOrthologsSpeciesHumanMouseEntrez559018762EnsemblENSG00000067606ENSMUSG00000029053UniProtQ05513Q02956RefSeq mRNA NM 001033581NM 001033582NM 001242874NM 002744NM 001350803NM 001350804NM 001350805NM 001350806NM 001039079NM 008860NM 001355178RefSeq protein NP 001028753NP 001028754NP 001229803NP 002735NP 001337732NP 001337733NP 001337734NP 001337735NP 001034168NP 032886NP 001342107Location UCSC Chr 1 2 05 2 19 MbChr 4 155 34 155 45 MbPubMed search 3 4 WikidataView Edit HumanView Edit Mouse Contents 1 Structure 2 Function 2 1 PKCz 2 2 PKMz 3 Inhibitors 4 Interactions 5 References 6 Further readingStructure editPKC zeta has an N terminal regulatory domain followed by a hinge region and a C terminal catalytic domain Second messengers stimulate PKCs by binding to the regulatory domain translocating the enzyme from cytosol to membrane and producing a conformational change that removes auto inhibition of the PKC catalytic protein kinase activity PKM zeta a brain specific isoform of PKC zeta generated from an alternative transcript lacks the regulatory region of full length PKC zeta and is therefore constitutively active 6 PKMz is the independent catalytic domain of PKCz and lacking an autoinhibitory regulatory domain of the full length PKCz is constitutively and persistently active without the need of a second messenger It was originally thought of as being a cleavage product of full length PKCz an atypical isoform of protein kinase C PKC Like other PKC isoforms PKCz is a serine threonine kinase that adds phosphate groups to target proteins It is atypical in that unlike other PKC isoforms PKCz does not require calcium or diacylglycerol DAG to become active but rather relies on a different second messenger presumably generated through a phosphoinositide 3 kinase PI3 kinase pathway It is now known that PKMz is not the result of cleavage of full length PKCz but rather in the mammalian brain is translated from its own brain specific mRNA that is transcribed by an internal promoter within the PKCz gene 6 The promoter for full length PKCz is largely inactive in the forebrain and so PKMz is the dominant form of z in the forebrain and the only PKM that is translated from its own mRNA Function editPKCz edit Atypical PKC aPKC isoforms zeta this enzyme and lambda iota play important roles in insulin stimulated glucose transport Human adipocytes contain PKC zeta rather than PKC lambda iota as their major aPKC Inhibition of the PKCz enzyme inhibits insulin stimulated glucose transport while activation of PKCz increases glucose transport 7 PKMz edit PKMz is thought to be responsible for maintaining the late phase of long term potentiation LTP 8 9 10 LTP is one of the major cellular mechanisms that are widely considered to underlie learning and memory 11 This theory arose from the observation that PKMz perfused into neurons causes synaptic potentiation and selective inhibitors of PKMz like zeta inhibitory peptide ZIP when bath applied one hour after tetanization inhibit the late phase or maintenance of LTP Thus PKMz was thought to be both necessary and sufficient for maintaining LTP Subsequent work showed that inhibiting PKMz reversed LTP maintenance when applied up to 5 hours after LTP was induced in hippocampal slices and after 22 hours in vivo Inhibiting PKMz in behaving animals erased spatial long term memories in the hippocampus that were up to one month old without affecting spatial short term memories 10 and erased long term memories for fear conditioning and inhibitory avoidance in the basolateral amygdala 12 When ZIP was injected into rats sensorimotor cortices it erased muscle memories for a task even after several weeks of training 13 In the neocortex thought to be the site of storage for most long term memories PKMz inhibition erased associative memories for conditioned taste aversion in the insular cortex up to 3 months after training 14 15 The protein also seems to be involved through the nucleus accumbens in the consolidation and reconsolidation of the memory related to drug addiction 16 Although results from PKCz PKMz null mice demonstrate LTP and memory appear largely the same as wild type mice 17 18 the normal function of PKMz in LTP and long term memory storage was shown to be compensated by the other atypical PKC isoform PKCi l in the knock out 19 20 21 Alteration in PKMz may be involved in neurodegeneration Alzheimer s disease 22 Inhibitors edit1 3 5 Trisubstituted Pyrazolines 23 Interactions editPRKCZ has been shown to interact with AKT3 24 C Raf 25 C1QBP 26 CENTA1 27 FEZ1 28 FEZ2 29 MAP2K5 30 NFATC2 31 PARD6A 32 33 34 PARD6B 34 PAWR 35 PDPK1 36 37 38 39 RELA 40 Src 41 WWC1 42 YWHAB 25 and YWHAQ 25 YWHAZ 25 27 References edit a b c GRCh38 Ensembl release 89 ENSG00000067606 Ensembl May 2017 a b c GRCm38 Ensembl release 89 ENSMUSG00000029053 Ensembl May 2017 Human PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Mouse PubMed Reference National Center for Biotechnology Information U S National Library of Medicine Sacktor TC Osten P Valsamis H Jiang X Naik MU Sublette E 1993 Persistent activation of the zeta isoform of protein kinase C in the maintenance of long term potentiation Proceedings of the National Academy of Sciences of the United States of America 90 18 8342 8346 Bibcode 1993PNAS 90 8342S doi 10 1073 pnas 90 18 8342 PMC 47352 PMID 8378304 a b Hernandez AI Blace N Crary JF Serrano PA Leitges M Libien JM Weinstein G Tcherapanov A Sacktor TC October 2003 Protein kinase M zeta synthesis from a brain mRNA encoding an independent protein kinase C zeta catalytic domain Implications for the molecular mechanism of memory J Biol Chem 278 41 40305 16 doi 10 1074 jbc M307065200 PMID 12857744 Bandyopadhyay G Sajan MP Kanoh Y Standaert ML Quon MJ Lea Currie R Sen A Farese RV February 2002 PKC zeta mediates insulin effects on glucose transport in cultured preadipocyte derived human adipocytes J Clin Endocrinol Metab 87 2 716 23 doi 10 1210 jcem 87 2 8252 PMID 11836310 Ling DS Benardo LS Serrano PA Blace N Kelly MT Crary JF Sacktor TC 2002 Protein kinase Mzeta is necessary and sufficient for LTP maintenance Nat Neurosci 5 4 295 6 doi 10 1038 nn829 PMID 11914719 S2CID 11200668 Serrano P Yao Y Sacktor TC 2005 Persistent phosphorylation by protein kinase Mzeta maintains late phase long term potentiation J Neurosci 25 8 1979 84 doi 10 1523 JNEUROSCI 5132 04 2005 PMC 6726070 PMID 15728837 a b Pastalkova E Serrano P Pinkhasova D Wallace E Fenton AA Sacktor TC 2006 Storage of spatial information by the maintenance mechanism of LTP Science 313 5790 1141 4 Bibcode 2006Sci 313 1141P CiteSeerX 10 1 1 453 2136 doi 10 1126 science 1128657 PMID 16931766 S2CID 7260010 Cooke SF Bliss TV 2006 Plasticity in the human central nervous system Brain 129 Pt 7 1659 73 doi 10 1093 brain awl082 PMID 16672292 Serrano P Friedman EL Kenney J Taubenfeld SM Zimmerman JM Hanna J Alberini C Kelley AE Maren S Rudy JW Yin JC Sacktor TC Fenton AA 2008 Lu B ed PKMz maintains spatial instrumental and classically conditioned long term memories PLOS Biology 6 12 2698 706 doi 10 1371 journal pbio 0060318 PMC 2605920 PMID 19108606 von Kraus LM Sacktor TC Francis JT 2010 Brezina V ed Erasing Sensorimotor Memories via PKMz Inhibition PLOS ONE 5 6 e11125 Bibcode 2010PLoSO 511125V doi 10 1371 journal pone 0011125 PMC 2886075 PMID 20559553 Shema R Sacktor TC Dudai Y 2007 Rapid erasure of long term memory associations in the cortex by an inhibitor of PKMz Science 317 5840 951 3 Bibcode 2007Sci 317 951S doi 10 1126 science 1144334 PMID 17702943 S2CID 15707301 Shema R Hazvi S Sacktor TC Dudai Y 2009 Boundary conditions for the maintenance of memory by PKMz in neocortex Learn Mem 16 2 122 8 doi 10 1101 lm 1183309 PMC 2661244 PMID 19181618 Crespo JA Stockl P Ueberall F Jenny M Saria A Zernig G February 2012 Activation of PKCzeta and PKMzeta in the nucleus accumbens core is necessary for the retrieval consolidation and reconsolidation of the drug memory PLOS ONE 7 2 e30502 Bibcode 2012PLoSO 730502C doi 10 1371 journal pone 0030502 PMC 3277594 PMID 22348011 Volk LJ Bachman JL Johnson R Yu Y Huganir RL January 2013 PKM z is not required for hippocampal synaptic plasticity learning and memory Nature 493 7432 420 3 Bibcode 2013Natur 493 420V doi 10 1038 nature11802 PMC 3830948 PMID 23283174 Lee AM Kanter BR Wang D Lim JP Zou ME Qiu C McMahon T Dadgar J Fischbach Weiss SC Messing RO January 2013 Prkcz null mice show normal learning and memory Nature 493 7432 416 9 Bibcode 2013Natur 493 416L doi 10 1038 nature11803 PMC 3548047 PMID 23283171 Tsokas P Hsieh C Yao Y Lesburgueres E Wallace EJ Tcherepanov A Jothianandan D Hartley BR Pan L Rivard B Farese RV Sajan MP Bergold PJ Hernandez AI Cottrell JE Shouval HZ Fenton AA Sacktor TC 2016 Compensation for PKMz in long term potentiation and spatial long term memory in mutant mice eLife 5 e14846 doi 10 7554 eLife 14846 PMC 4869915 PMID 27187150 Morris RG 17 May 2016 Forget me not eLife 5 e16597 doi 10 7554 eLife 16597 PMC 4869910 PMID 27187147 Frankland PW Josselyn SA July 2016 Neuroscience In search of the memory molecule Nature 535 7610 41 2 Bibcode 2016Natur 535 41F doi 10 1038 nature18903 PMID 27362229 Crary JF Shao CY Mirra SS Hernandez AI Sacktor TC April 2006 Atypical protein kinase C in neurodegenerative disease I PKMzeta aggregates with limbic neurofibrillary tangles and AMPA receptors in Alzheimer disease J Neuropathol Exp Neurol 65 4 319 26 doi 10 1097 01 jnen 0000218442 07664 04 PMID 16691113 S2CID 17924780 Abdel Halim M Diesel B Kiemer AK Abadi AH Hartmann RW Engel M August 2014 Discovery and optimization of 1 3 5 trisubstituted pyrazolines as potent and highly selective allosteric inhibitors of protein kinase C z Journal of Medicinal Chemistry 57 15 6513 30 doi 10 1021 jm500521n PMID 25058929 Hodgkinson CP Sale EM Sale GJ 2002 Characterization of PDK2 activity against protein kinase B gamma Biochemistry 41 32 10351 9 doi 10 1021 bi026065r PMID 12162751 a b c d Van Der Hoeven PC Van Der Wal JC Ruurs P Van Dijk MC Van Blitterswijk J 2000 14 3 3 isotypes facilitate coupling of protein kinase C zeta to Raf 1 negative regulation by 14 3 3 phosphorylation Biochem J 345 2 297 306 doi 10 1042 0264 6021 3450297 PMC 1220759 PMID 10620507 Storz P Hausser A Link G Dedio J Ghebrehiwet B Pfizenmaier K Johannes FJ 2000 Protein kinase C micro is regulated by the multifunctional chaperon protein p32 J Biol Chem 275 32 24601 7 doi 10 1074 jbc M002964200 PMID 10831594 a b Zemlickova E Dubois T Kerai P Clokie S Cronshaw AD Wakefield RI Johannes FJ Aitken A 2003 Centaurin alpha 1 associates with and is phosphorylated by isoforms of protein kinase C Biochem Biophys Res Commun 307 3 459 65 doi 10 1016 S0006 291X 03 01187 2 PMID 12893243 Kuroda S Nakagawa N Tokunaga C Tatematsu K Tanizawa K 1999 Mammalian homologue of the Caenorhabditis elegans UNC 76 protein involved in axonal outgrowth is a protein kinase C zeta interacting protein J Cell Biol 144 3 403 11 doi 10 1083 jcb 144 3 403 PMC 2132904 PMID 9971736 Fujita T Ikuta J Hamada J Okajima T Tatematsu K Tanizawa K Kuroda S 2004 Identification of a tissue non specific homologue of axonal fasciculation and elongation protein zeta 1 Biochem Biophys Res Commun 313 3 738 44 doi 10 1016 j bbrc 2003 12 006 PMID 14697253 Diaz Meco MT Moscat J 2001 MEK5 a new target of the atypical protein kinase C isoforms in mitogenic signaling Mol Cell Biol 21 4 1218 27 doi 10 1128 MCB 21 4 1218 1227 2001 PMC 99575 PMID 11158308 San Antonio B Iniguez MA Fresno M 2002 Protein kinase Czeta phosphorylates nuclear factor of activated T cells and regulates its transactivating activity J Biol Chem 277 30 27073 80 doi 10 1074 jbc M106983200 PMID 12021260 Rual JF Venkatesan K Hao T Hirozane Kishikawa T Dricot A Li N Berriz GF Gibbons FD Dreze M Ayivi Guedehoussou N Klitgord N Simon C Boxem M Milstein S Rosenberg J Goldberg DS Zhang LV Wong SL Franklin G Li S Albala JS Lim J Fraughton C Llamosas E Cevik S Bex C Lamesch P Sikorski RS Vandenhaute J Zoghbi HY Smolyar A Bosak S Sequerra R Doucette Stamm L Cusick ME Hill DE Roth FP Vidal M 2005 Towards a proteome scale map of the human protein protein interaction network Nature 437 7062 1173 8 Bibcode 2005Natur 437 1173R doi 10 1038 nature04209 PMID 16189514 S2CID 4427026 Liu XF Ishida H Raziuddin R Miki T 2004 Nucleotide exchange factor ECT2 interacts with the polarity protein complex Par6 Par3 protein kinase Czeta PKCzeta and regulates PKCzeta activity Mol Cell Biol 24 15 6665 75 doi 10 1128 MCB 24 15 6665 6675 2004 PMC 444862 PMID 15254234 a b Noda Y Takeya R Ohno S Naito S Ito T Sumimoto H 2001 Human homologues of the Caenorhabditis elegans cell polarity protein PAR6 as an adaptor that links the small GTPases Rac and Cdc42 to atypical protein kinase C Genes Cells 6 2 107 19 doi 10 1046 j 1365 2443 2001 00404 x PMID 11260256 Diaz Meco MT Municio MM Frutos S Sanchez P Lozano J Sanz L Moscat J 1996 The product of par 4 a gene induced during apoptosis interacts selectively with the atypical isoforms of protein kinase C Cell 86 5 777 86 doi 10 1016 S0092 8674 00 80152 X PMID 8797824 S2CID 15675524 Balendran A Biondi RM Cheung PC Casamayor A Deak M Alessi DR 2000 A 3 phosphoinositide dependent protein kinase 1 PDK1 docking site is required for the phosphorylation of protein kinase Czeta PKCzeta and PKC related kinase 2 by PDK1 J Biol Chem 275 27 20806 13 doi 10 1074 jbc M000421200 PMID 10764742 Hodgkinson CP Sale GJ 2002 Regulation of both PDK1 and the phosphorylation of PKC zeta and delta by a C terminal PRK2 fragment Biochemistry 41 2 561 9 doi 10 1021 bi010719z PMID 11781095 Le Good JA Ziegler WH Parekh DB Alessi DR Cohen P Parker PJ 1998 Protein kinase C isotypes controlled by phosphoinositide 3 kinase through the protein kinase PDK1 Science 281 5385 2042 5 Bibcode 1998Sci 281 2042A doi 10 1126 science 281 5385 2042 PMID 9748166 Park J Leong ML Buse P Maiyar AC Firestone GL Hemmings BA 1999 Serum and glucocorticoid inducible kinase SGK is a target of the PI 3 kinase stimulated signaling pathway EMBO J 18 11 3024 33 doi 10 1093 emboj 18 11 3024 PMC 1171384 PMID 10357815 Leitges M Sanz L Martin P Duran A Braun U Garcia JF Camacho F Diaz Meco MT Rennert PD Moscat J 2001 Targeted disruption of the zetaPKC gene results in the impairment of the NF kappaB pathway Mol Cell 8 4 771 80 doi 10 1016 S1097 2765 01 00361 6 PMID 11684013 Seibenhener ML Roehm J White WO Neidigh KB Vandenplas ML Wooten MW 1999 Identification of Src as a novel atypical protein kinase C interacting protein Mol Cell Biol Res Commun 2 1 28 31 doi 10 1006 mcbr 1999 0140 PMID 10527887 Buther K Plaas C Barnekow A Kremerskothen J 2004 KIBRA is a novel substrate for protein kinase Czeta Biochem Biophys Res Commun 317 3 703 7 doi 10 1016 j bbrc 2004 03 107 PMID 15081397 Further reading editSlater SJ Ho C Stubbs CD 2003 The use of fluorescent phorbol esters in studies of protein kinase C membrane interactions Chem Phys Lipids 116 1 2 75 91 doi 10 1016 S0009 3084 02 00021 X PMID 12093536 Carter CA Kane CJ 2005 Therapeutic potential of natural compounds that regulate the activity of protein kinase C Curr Med Chem 11 21 2883 902 doi 10 2174 0929867043364090 PMID 15544481 Portal nbsp Biology Retrieved from https en wikipedia org w index php title Protein kinase C zeta type amp oldid 1191183505, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.