fbpx
Wikipedia

Diglyceride

A diglyceride, or diacylglycerol (DAG), is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages.[1] Two possible forms exist, 1,2-diacylglycerols and 1,3-diacylglycerols. Diglycerides are natural components of food fats, though minor in comparison to triglycerides.[2] DAGs can act as surfactants and are commonly used as emulsifiers in processed foods. DAG-enriched oil (particularly 1,3-DAG) has been investigated extensively as a fat substitute due to its ability to suppress the accumulation of body fat;[3][4] with total annual sales of approximately USD 200 million in Japan since its introduction in the late 1990s till 2009.[3]

General chemical structures of 1,2-diacylglycerols (top) and 1,3-diacylglycerols (bottom), where R1 and R2 are fatty acid side chains

Production edit

Diglycerides are a minor component of many seed oils and are normally present at ~1–6%; or in the case of cottonseed oil as much as 10%.[5] Industrial production is primarily achieved by a glycerolysis reaction between triglycerides and glycerol. The raw materials for this may be either vegetable oils or animal fats.[6]

Food additive edit

Diglycerides, generally in a mix with monoglycerides (E471), are common food additives largely used as emulsifiers. The values given in the nutritional labels for total fat, saturated fat, and trans fat do not include those present in mono- and diglycerides.[citation needed] They often are included in bakery products, beverages, ice cream, peanut butter, chewing gum, shortening, whipped toppings, margarine, confections, and some snack products, such as Pringles.

Biological functions edit

Protein kinase C activation edit

 
PIP2 cleavage to IP3 and DAG initiates intracellular calcium release and PKC activation. Note: PLC is not an intermediate like the image may confuse, it actually catalyzes the IP3/DAG separation

In biochemical signaling, diacylglycerol functions as a second messenger signaling lipid, and is a product of the hydrolysis of the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) by the enzyme phospholipase C (PLC) (a membrane-bound enzyme) that, through the same reaction, produces inositol trisphosphate (IP3). Although inositol trisphosphate diffuses into the cytosol, diacylglycerol remains within the plasma membrane, due to its hydrophobic properties. IP3 stimulates the release of calcium ions from the smooth endoplasmic reticulum, whereas DAG is a physiological activator of protein kinase C (PKC). The production of DAG in the membrane facilitates translocation of PKC from the cytosol to the plasma membrane.

Munc13 activation edit

Diacylglycerol has been shown to exert some of its excitatory actions on vesicle release through interactions with the presynaptic priming protein family Munc13. Binding of DAG to the C1 domain of Munc13 increases the fusion competence of synaptic vesicles resulting in potentiated release.

Diacylglycerol can be mimicked by the tumor-promoting compounds phorbol esters.[7]

Other edit

In addition to activating PKC, diacylglycerol has a number of other functions in the cell:

Metabolism edit

 
glycerol-3-phosphate

Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.

Dietary fat is mainly composed of triglycerides. Because triglycerides cannot be absorbed by the digestive system, triglycerides must first be enzymatically digested into monoacylglycerol, diacylglycerol, or free fatty acids. Diacylglycerol is a precursor to triacylglycerol (triglyceride), which is formed in the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase.

Since diacylglycerol is synthesized via phosphatidic acid, it will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.[8]

Diacylglycerol can be phosphorylated to phosphatidic acid by diacylglycerol kinase.

Insulin resistance edit

Activation of PKC-θ by diacylglycerol may cause insulin resistance in muscle by decreasing IRS1-associated PI3K activity.[9] Similarly, activation of PKCε by diacyglycerol may cause insulin resistance in the liver.[9][10]

See also edit

References edit

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "glycerides". doi:10.1351/goldbook.G02647
  2. ^ "Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents". World Health Organization.
  3. ^ a b Phuah, Eng-Tong; Tang, Teck-Kim; Lee, Yee-Ying; et al. (2015). "Review on the Current State of Diacylglycerol Production Using Enzymatic Approach" (PDF). Food and Bioprocess Technology. 8 (6): 1169–1186. doi:10.1007/s11947-015-1505-0. ISSN 1935-5130. S2CID 84353775.
  4. ^ Lo, Seong-Koon; Tan, Chin-Ping; Long, Kamariah; et al. (2008). "Diacylglycerol Oil—Properties, Processes and Products: A Review" (PDF). Food and Bioprocess Technology. 1 (3): 223–233. doi:10.1007/s11947-007-0049-3. ISSN 1935-5130. S2CID 86604260.
  5. ^ Flickinger, Brent D.; Matsuo, Noboru (February 2003). "Nutritional characteristics of DAG oil". Lipids. 38 (2): 129–132. doi:10.1007/s11745-003-1042-8. PMID 12733744. S2CID 4061326.
  6. ^ Sonntag, Norman O. V. (1982). "Glycerolysis of fats and methyl esters — Status, review and critique". Journal of the American Oil Chemists' Society. 59 (10): 795A–802A. doi:10.1007/BF02634442. ISSN 0003-021X. S2CID 84808531.
  7. ^ Blumberg, Peter M. (1988). "Protein Kinase C as the Receptor for the Phorbol Ester Tumor Promoters: Sixth Rhoads Memorial Award Lecture". Cancer Research. 48 (1): 1–8. PMID 3275491.
  8. ^ Berg J, Tymoczko JL, Stryer L (2006). Biochemistry (6th ed.). San Francisco: W. H. Freeman. ISBN 0-7167-8724-5.[page needed]
  9. ^ a b Erion DM, Shulman GI (2010). "Diacylglycerol-mediated insulin resistance". Nature Medicine. 16 (4): 400–402. doi:10.1038/nm0410-400. PMC 3730126. PMID 20376053.
  10. ^ Petersen MC, Madiraju AK, Gassaway BM, et al. (2016). "Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance". Journal of Clinical Investigation. 126 (11): 4361–4371. doi:10.1172/JCI86013. PMC 5096902. PMID 27760050.

diglyceride, diglyceride, diacylglycerol, glyceride, consisting, fatty, acid, chains, covalently, bonded, glycerol, molecule, through, ester, linkages, possible, forms, exist, diacylglycerols, diacylglycerols, natural, components, food, fats, though, minor, co. A diglyceride or diacylglycerol DAG is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages 1 Two possible forms exist 1 2 diacylglycerols and 1 3 diacylglycerols Diglycerides are natural components of food fats though minor in comparison to triglycerides 2 DAGs can act as surfactants and are commonly used as emulsifiers in processed foods DAG enriched oil particularly 1 3 DAG has been investigated extensively as a fat substitute due to its ability to suppress the accumulation of body fat 3 4 with total annual sales of approximately USD 200 million in Japan since its introduction in the late 1990s till 2009 3 General chemical structures of 1 2 diacylglycerols top and 1 3 diacylglycerols bottom where R1 and R2 are fatty acid side chains Contents 1 Production 2 Food additive 3 Biological functions 3 1 Protein kinase C activation 3 2 Munc13 activation 3 3 Other 4 Metabolism 5 Insulin resistance 6 See also 7 ReferencesProduction editDiglycerides are a minor component of many seed oils and are normally present at 1 6 or in the case of cottonseed oil as much as 10 5 Industrial production is primarily achieved by a glycerolysis reaction between triglycerides and glycerol The raw materials for this may be either vegetable oils or animal fats 6 Food additive editDiglycerides generally in a mix with monoglycerides E471 are common food additives largely used as emulsifiers The values given in the nutritional labels for total fat saturated fat and trans fat do not include those present in mono and diglycerides citation needed They often are included in bakery products beverages ice cream peanut butter chewing gum shortening whipped toppings margarine confections and some snack products such as Pringles Biological functions editProtein kinase C activation edit nbsp PIP2 cleavage to IP3 and DAG initiates intracellular calcium release and PKC activation Note PLC is not an intermediate like the image may confuse it actually catalyzes the IP3 DAG separationIn biochemical signaling diacylglycerol functions as a second messenger signaling lipid and is a product of the hydrolysis of the phospholipid phosphatidylinositol 4 5 bisphosphate PIP2 by the enzyme phospholipase C PLC a membrane bound enzyme that through the same reaction produces inositol trisphosphate IP3 Although inositol trisphosphate diffuses into the cytosol diacylglycerol remains within the plasma membrane due to its hydrophobic properties IP3 stimulates the release of calcium ions from the smooth endoplasmic reticulum whereas DAG is a physiological activator of protein kinase C PKC The production of DAG in the membrane facilitates translocation of PKC from the cytosol to the plasma membrane Munc13 activation edit Diacylglycerol has been shown to exert some of its excitatory actions on vesicle release through interactions with the presynaptic priming protein family Munc13 Binding of DAG to the C1 domain of Munc13 increases the fusion competence of synaptic vesicles resulting in potentiated release Diacylglycerol can be mimicked by the tumor promoting compounds phorbol esters 7 Other edit In addition to activating PKC diacylglycerol has a number of other functions in the cell a source for prostaglandins a precursor of the endocannabinoid 2 arachidonoylglycerol an activator of a subfamily of transient receptor potential canonical TRPC cation channels TRPC3 6 7 Metabolism editMain article Fatty acid metabolism Dietary sources of fatty acids their digestion absorption transport in the blood and storage nbsp glycerol 3 phosphateSynthesis of diacylglycerol begins with glycerol 3 phosphate which is derived primarily from dihydroxyacetone phosphate a product of glycolysis usually in the cytoplasm of liver or adipose tissue cells Glycerol 3 phosphate is first acylated with acyl coenzyme A acyl CoA to form lysophosphatidic acid which is then acylated with another molecule of acyl CoA to yield phosphatidic acid Phosphatidic acid is then de phosphorylated to form diacylglycerol Dietary fat is mainly composed of triglycerides Because triglycerides cannot be absorbed by the digestive system triglycerides must first be enzymatically digested into monoacylglycerol diacylglycerol or free fatty acids Diacylglycerol is a precursor to triacylglycerol triglyceride which is formed in the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase Since diacylglycerol is synthesized via phosphatidic acid it will usually contain a saturated fatty acid at the C 1 position on the glycerol moiety and an unsaturated fatty acid at the C 2 position 8 Diacylglycerol can be phosphorylated to phosphatidic acid by diacylglycerol kinase Insulin resistance editActivation of PKC 8 by diacylglycerol may cause insulin resistance in muscle by decreasing IRS1 associated PI3K activity 9 Similarly activation of PKCe by diacyglycerol may cause insulin resistance in the liver 9 10 See also editLipid Monoglyceride Triglyceride Ultra processed foodReferences edit IUPAC Compendium of Chemical Terminology 2nd ed the Gold Book 1997 Online corrected version 2006 glycerides doi 10 1351 goldbook G02647 Toxicological evaluation of some food additives including anticaking agents antimicrobials antioxidants emulsifiers and thickening agents World Health Organization a b Phuah Eng Tong Tang Teck Kim Lee Yee Ying et al 2015 Review on the Current State of Diacylglycerol Production Using Enzymatic Approach PDF Food and Bioprocess Technology 8 6 1169 1186 doi 10 1007 s11947 015 1505 0 ISSN 1935 5130 S2CID 84353775 Lo Seong Koon Tan Chin Ping Long Kamariah et al 2008 Diacylglycerol Oil Properties Processes and Products A Review PDF Food and Bioprocess Technology 1 3 223 233 doi 10 1007 s11947 007 0049 3 ISSN 1935 5130 S2CID 86604260 Flickinger Brent D Matsuo Noboru February 2003 Nutritional characteristics of DAG oil Lipids 38 2 129 132 doi 10 1007 s11745 003 1042 8 PMID 12733744 S2CID 4061326 Sonntag Norman O V 1982 Glycerolysis of fats and methyl esters Status review and critique Journal of the American Oil Chemists Society 59 10 795A 802A doi 10 1007 BF02634442 ISSN 0003 021X S2CID 84808531 Blumberg Peter M 1988 Protein Kinase C as the Receptor for the Phorbol Ester Tumor Promoters Sixth Rhoads Memorial Award Lecture Cancer Research 48 1 1 8 PMID 3275491 Berg J Tymoczko JL Stryer L 2006 Biochemistry 6th ed San Francisco W H Freeman ISBN 0 7167 8724 5 page needed a b Erion DM Shulman GI 2010 Diacylglycerol mediated insulin resistance Nature Medicine 16 4 400 402 doi 10 1038 nm0410 400 PMC 3730126 PMID 20376053 Petersen MC Madiraju AK Gassaway BM et al 2016 Insulin receptor Thr1160 phosphorylation mediates lipid induced hepatic insulin resistance Journal of Clinical Investigation 126 11 4361 4371 doi 10 1172 JCI86013 PMC 5096902 PMID 27760050 Retrieved from https en wikipedia org w index php title Diglyceride amp oldid 1180237276, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.