fbpx
Wikipedia

Kravchuk polynomials

Kravchuk polynomials or Krawtchouk polynomials (also written using several other transliterations of the Ukrainian surname Кравчу́к) are discrete orthogonal polynomials associated with the binomial distribution, introduced by Mykhailo Kravchuk (1929). The first few polynomials are (for q = 2):

The Kravchuk polynomials are a special case of the Meixner polynomials of the first kind.

Definition edit

For any prime power q and positive integer n, define the Kravchuk polynomial

 

Properties edit

The Kravchuk polynomial has the following alternative expressions:

 
 

Symmetry relations edit

For integers  , we have that

 

Orthogonality relations edit

For non-negative integers r, s,

 

Generating function edit

The generating series of Kravchuk polynomials is given as below. Here   is a formal variable.

 

Three term recurrence edit

The Kravchuk polynomials satisfy the three-term recurrence relation

 


See also edit

References edit

  • Kravchuk, M. (1929), "Sur une généralisation des polynomes d'Hermite.", Comptes Rendus Mathématique (in French), 189: 620–622, JFM 55.0799.01
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  • Nikiforov, A. F.; Suslov, S. K.; Uvarov, V. B. (1991), Classical Orthogonal Polynomials of a Discrete Variable, Springer Series in Computational Physics, Berlin: Springer-Verlag, ISBN 3-540-51123-7, MR 1149380.
  • Levenshtein, Vladimir I. (1995), "Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces", IEEE Transactions on Information Theory, 41 (5): 1303–1321, doi:10.1109/18.412678, MR 1366326.
  • MacWilliams, F. J.; Sloane, N. J. A. (1977), The Theory of Error-Correcting Codes, North-Holland, ISBN 0-444-85193-3

External links edit

kravchuk, polynomials, krawtchouk, polynomials, also, written, using, several, other, transliterations, ukrainian, surname, Кравчу, discrete, orthogonal, polynomials, associated, with, binomial, distribution, introduced, mykhailo, kravchuk, 1929, first, polyno. Kravchuk polynomials or Krawtchouk polynomials also written using several other transliterations of the Ukrainian surname Kravchu k are discrete orthogonal polynomials associated with the binomial distribution introduced by Mykhailo Kravchuk 1929 The first few polynomials are for q 2 K 0 x n 1 displaystyle mathcal K 0 x n 1 K 1 x n 2 x n displaystyle mathcal K 1 x n 2x n K 2 x n 2 x 2 2 n x n 2 displaystyle mathcal K 2 x n 2x 2 2nx binom n 2 K 3 x n 4 3 x 3 2 n x 2 n 2 n 2 3 x n 3 displaystyle mathcal K 3 x n frac 4 3 x 3 2nx 2 n 2 n frac 2 3 x binom n 3 The Kravchuk polynomials are a special case of the Meixner polynomials of the first kind Contents 1 Definition 2 Properties 2 1 Symmetry relations 2 2 Orthogonality relations 2 3 Generating function 2 4 Three term recurrence 3 See also 4 References 5 External linksDefinition editFor any prime power q and positive integer n define the Kravchuk polynomial K k x n q K k x j 0 k 1 j q 1 k j x j n x k j k 0 1 n displaystyle mathcal K k x n q mathcal K k x sum j 0 k 1 j q 1 k j binom x j binom n x k j quad k 0 1 ldots n nbsp Properties editThe Kravchuk polynomial has the following alternative expressions K k x n q j 0 k q j q 1 k j n j k j x j displaystyle mathcal K k x n q sum j 0 k q j q 1 k j binom n j k j binom x j nbsp K k x n q j 0 k 1 j q k j n k j j n x k j displaystyle mathcal K k x n q sum j 0 k 1 j q k j binom n k j j binom n x k j nbsp Symmetry relations edit For integers i k 0 displaystyle i k geq 0 nbsp we have that q 1 i n i K k i n q q 1 k n k K i k n q displaystyle begin aligned q 1 i n choose i mathcal K k i n q q 1 k n choose k mathcal K i k n q end aligned nbsp Orthogonality relations edit For non negative integers r s i 0 n n i q 1 i K r i n q K s i n q q n q 1 r n r d r s displaystyle sum i 0 n binom n i q 1 i mathcal K r i n q mathcal K s i n q q n q 1 r binom n r delta r s nbsp Generating function edit The generating series of Kravchuk polynomials is given as below Here z displaystyle z nbsp is a formal variable 1 q 1 z n x 1 z x k 0 K k x n q z k displaystyle begin aligned 1 q 1 z n x 1 z x amp sum k 0 infty mathcal K k x n q z k end aligned nbsp Three term recurrence edit The Kravchuk polynomials satisfy the three term recurrence relation x K k x n q q n k K k 1 x n q q n k k 1 q K k x n q k 1 q K k 1 x n q displaystyle begin aligned x mathcal K k x n q q n k mathcal K k 1 x n q q n k k 1 q mathcal K k x n q k 1 q mathcal K k 1 x n q end aligned nbsp See also editKrawtchouk matrix Hermite polynomialsReferences editKravchuk M 1929 Sur une generalisation des polynomes d Hermite Comptes Rendus Mathematique in French 189 620 622 JFM 55 0799 01 Koornwinder Tom H Wong Roderick S C Koekoek Roelof Swarttouw Rene F 2010 Hahn Class Definitions in Olver Frank W J Lozier Daniel M Boisvert Ronald F Clark Charles W eds NIST Handbook of Mathematical Functions Cambridge University Press ISBN 978 0 521 19225 5 MR 2723248 Nikiforov A F Suslov S K Uvarov V B 1991 Classical Orthogonal Polynomials of a Discrete Variable Springer Series in Computational Physics Berlin Springer Verlag ISBN 3 540 51123 7 MR 1149380 Levenshtein Vladimir I 1995 Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces IEEE Transactions on Information Theory 41 5 1303 1321 doi 10 1109 18 412678 MR 1366326 MacWilliams F J Sloane N J A 1977 The Theory of Error Correcting Codes North Holland ISBN 0 444 85193 3External links edit nbsp Wikimedia Commons has media related to Kravchuk polynomials Krawtchouk Polynomials Home Page Krawtchouk polynomial at MathWorld Retrieved from https en wikipedia org w index php title Kravchuk polynomials amp oldid 1182132264, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.