fbpx
Wikipedia

Patch dynamics

Patch dynamics is an ecological perspective that the structure, function, and dynamics of ecological systems can be understood through studying their interactive patches. Patch dynamics, as a term, may also refer to the spatiotemporal changes within and among patches that make up a landscape. Patch dynamics is ubiquitous in terrestrial and aquatic systems across organizational levels and spatial scales. From a patch dynamics perspective, populations, communities, ecosystems, and landscapes may all be studied effectively as mosaics of patches that differ in size, shape, composition, history, and boundary characteristics.

The idea of patch dynamics dates back to the 1940s when plant ecologists studied the structure and dynamics of vegetation in terms of the interactive patches that it comprises. A mathematical theory of patch dynamics was developed by Simon Levin and Robert Paine in the 1970s, originally to describe the pattern and dynamics of an intertidal community as a patch mosaic created and maintained by tidal disturbances. Patch dynamics became a dominant theme in ecology between the late 1970s and the 1990s.

Patch dynamics is a conceptual approach to ecosystem and habitat analysis that emphasizes dynamics of heterogeneity within a system (i.e. that each area of an ecosystem is made up of a mosaic of small 'sub-ecosystems').[1]

Diverse patches of habitat created by natural disturbance regimes are seen as critical to the maintenance of this diversity (ecology). A habitat patch is any discrete area with a definite shape, spatial and configuration used by a species for breeding or obtaining other resources. Mosaics are the patterns within landscapes that are composed of smaller elements, such as individual forest stands, shrubland patches, highways, farms, or towns.

Patches and mosaics edit

Historically, due to the short time scale of human observation, mosaic landscapes were perceived to be static patterns of human population mosaics.[2] This focus centered on the idea that the status of a particular population, community, or ecosystem could be understood by studying a particular patch within a mosaic. However, this perception ignored the conditions that interact with, and connect patches. In 1979, Bormann and Likens coined the phrase shifting mosaic to describe the theory that landscapes change and fluctuate, and are in fact dynamic.[3] This is related to the battle of cells that occurs in a Petri dish[citation needed].

Patch dynamics refers to the concept that landscapes are dynamic.[1] There are three states that a patch can exist in: potential, active, and degraded. Patches in the potential state are transformed into active patches through colonization of the patch by dispersing species arriving from other active or degrading patches. Patches are transformed from the active state to the degraded state when the patch is abandoned, and patches change from degraded to active through a process of recovery.[4]

Logging, fire, farming, and reforestation can all contribute to the process of colonization, and can effectively change the shape of the patch. Patch dynamics also refers to changes in the structure, function, and composition of individual patches that can, for example, affect the rate of nutrient cycling[citation needed].

Patches are also linked. Although patches may be separated in space, migration can occur from one patch to another. This migration maintains the population of some patches, and can be the mechanism by which some plant species spread. This implies that ecological systems within landscapes are open, rather than closed and isolated. (Pickett, 2006)

Conservation efforts edit

Recognizing the patch dynamics within a system is needed for conservation (ecology) efforts to succeed. Successful conservation includes understanding how a patch changes and predicting how they will be affected by external forces.[5] These externalities include natural effects, such as land use, disturbance, restoration, and succession, and the effects of human activities. In a sense, conservation is the active maintenance of patch dynamics (Pickett, 2006). The analysis of patch dynamics could be used to predict changes in biodiversity of an ecosystem. When patches of species can be tracked, it has been shown that fluctuations on the biggest patch (the most dominant species) can be used as an early warning of a biodiversity collapse.[6] That means that if external conditions, like climate change and habitat fragmentation, change the internal dynamics of patches, a sharp reduction in biodiversity can be detected before it is produced.[6][7]

See also edit

References edit

  1. ^ a b Pickett, Steward T.A.; White, P.S. (1985). The Ecology of Natural Disturbance and Patch Dynamics. Academic Press. ISBN 0123960215.
  2. ^ Bogin, Barry (1999). Patterns of human growth (2nd ed.). Cambridge: Cambridge University Press. ISBN 9780521564380.
  3. ^ Bormann, F. Herbert; Likens, Gene E. (1979). Pattern and Process in a Forested Ecosystem. doi:10.1007/978-1-4612-6232-9. ISBN 978-0-387-94344-2.
  4. ^ Wright, Justin P.; Gurney, W.S.C.; C.G., Jones (2004). (PDF). OIKOS. 105 (2): 336–348. doi:10.1111/j.0030-1299.2004.12654.x. ISSN 0030-1299. Archived from the original (PDF) on 2010-06-26.
  5. ^ Furness, Euan N.; Garwood, Russell J.; Mannion, Philip D.; Sutton, Mark D. (2021). "Evolutionary simulations clarify and reconcile biodiversity-disturbance models". Proceedings of the Royal Society B: Biological Sciences. 288 (1949). doi:10.1098/rspb.2021.0240. ISSN 0962-8452. PMC 8059584. PMID 33878917.
  6. ^ a b Saravia, Leonardo A.; Momo, Fernando R. (2017-07-01). "Biodiversity collapse and early warning indicators in a spatial phase transition between neutral and niche communities". Oikos. 127: 111–124. doi:10.1111/oik.04256. ISSN 1600-0706.
  7. ^ Corrado, Raffaele (2014). "Early warning signals of desertification transitions in semiarid ecosystems". Physical Review E. 90 (6): 062705. Bibcode:2014PhRvE..90f2705C. doi:10.1103/physreve.90.062705. PMID 25615127.

Further reading edit

  • Forman, R.T.T. 1995. Land Mosaics: The Ecology of Landscapes and Regions. Cambridge University Press, Cambridge, UK.
  • Groom, Martha J., Meffe, Gary K., Carroll, Ronald. 2006. Principles of Conservation Biology, Third Edition. Mosaics and Patch Dynamics by Steward T.A. Pickett
  • Levin, S. A., and R. T. Paine. 1974. Disturbance, patch formation and community structure. Proceedings of the National Academy of Sciences (USA) 71:2744-2747.
  • Levin, S. A., T. M. Powell, and J. H. Steele, editors. 1993. Patch Dynamics. Springer-Verlag, Berlin.
  • Wu, J. G., and O. L. Loucks. 1995. From balance of nature to hierarchical patch dynamics: A paradigm shift in ecology. Quarterly Review of Biology 70:439-466.
  • Patch Dynamics [1]

patch, dynamics, this, article, about, ecosystems, term, physics, physics, this, article, includes, list, references, related, reading, external, links, sources, remain, unclear, because, lacks, inline, citations, please, help, improve, this, article, introduc. This article is about ecosystems For the use of the term in physics see Patch dynamics physics This article includes a list of references related reading or external links but its sources remain unclear because it lacks inline citations Please help improve this article by introducing more precise citations January 2010 Learn how and when to remove this message Patch dynamics is an ecological perspective that the structure function and dynamics of ecological systems can be understood through studying their interactive patches Patch dynamics as a term may also refer to the spatiotemporal changes within and among patches that make up a landscape Patch dynamics is ubiquitous in terrestrial and aquatic systems across organizational levels and spatial scales From a patch dynamics perspective populations communities ecosystems and landscapes may all be studied effectively as mosaics of patches that differ in size shape composition history and boundary characteristics The idea of patch dynamics dates back to the 1940s when plant ecologists studied the structure and dynamics of vegetation in terms of the interactive patches that it comprises A mathematical theory of patch dynamics was developed by Simon Levin and Robert Paine in the 1970s originally to describe the pattern and dynamics of an intertidal community as a patch mosaic created and maintained by tidal disturbances Patch dynamics became a dominant theme in ecology between the late 1970s and the 1990s Patch dynamics is a conceptual approach to ecosystem and habitat analysis that emphasizes dynamics of heterogeneity within a system i e that each area of an ecosystem is made up of a mosaic of small sub ecosystems 1 Diverse patches of habitat created by natural disturbance regimes are seen as critical to the maintenance of this diversity ecology A habitat patch is any discrete area with a definite shape spatial and configuration used by a species for breeding or obtaining other resources Mosaics are the patterns within landscapes that are composed of smaller elements such as individual forest stands shrubland patches highways farms or towns Contents 1 Patches and mosaics 2 Conservation efforts 3 See also 4 References 5 Further readingPatches and mosaics editHistorically due to the short time scale of human observation mosaic landscapes were perceived to be static patterns of human population mosaics 2 This focus centered on the idea that the status of a particular population community or ecosystem could be understood by studying a particular patch within a mosaic However this perception ignored the conditions that interact with and connect patches In 1979 Bormann and Likens coined the phrase shifting mosaic to describe the theory that landscapes change and fluctuate and are in fact dynamic 3 This is related to the battle of cells that occurs in a Petri dish citation needed Patch dynamics refers to the concept that landscapes are dynamic 1 There are three states that a patch can exist in potential active and degraded Patches in the potential state are transformed into active patches through colonization of the patch by dispersing species arriving from other active or degrading patches Patches are transformed from the active state to the degraded state when the patch is abandoned and patches change from degraded to active through a process of recovery 4 Logging fire farming and reforestation can all contribute to the process of colonization and can effectively change the shape of the patch Patch dynamics also refers to changes in the structure function and composition of individual patches that can for example affect the rate of nutrient cycling citation needed Patches are also linked Although patches may be separated in space migration can occur from one patch to another This migration maintains the population of some patches and can be the mechanism by which some plant species spread This implies that ecological systems within landscapes are open rather than closed and isolated Pickett 2006 Conservation efforts editRecognizing the patch dynamics within a system is needed for conservation ecology efforts to succeed Successful conservation includes understanding how a patch changes and predicting how they will be affected by external forces 5 These externalities include natural effects such as land use disturbance restoration and succession and the effects of human activities In a sense conservation is the active maintenance of patch dynamics Pickett 2006 The analysis of patch dynamics could be used to predict changes in biodiversity of an ecosystem When patches of species can be tracked it has been shown that fluctuations on the biggest patch the most dominant species can be used as an early warning of a biodiversity collapse 6 That means that if external conditions like climate change and habitat fragmentation change the internal dynamics of patches a sharp reduction in biodiversity can be detected before it is produced 6 7 See also editConservation biology Edge effect Forest dynamics Habitat conservation Habitat corridor Habitat fragmentation Island biogeography Landscape ecology Spatial ecologyReferences edit a b Pickett Steward T A White P S 1985 The Ecology of Natural Disturbance and Patch Dynamics Academic Press ISBN 0123960215 Bogin Barry 1999 Patterns of human growth 2nd ed Cambridge Cambridge University Press ISBN 9780521564380 Bormann F Herbert Likens Gene E 1979 Pattern and Process in a Forested Ecosystem doi 10 1007 978 1 4612 6232 9 ISBN 978 0 387 94344 2 Wright Justin P Gurney W S C C G Jones 2004 Patch dynamics in a landscape modified by ecosystem engineers PDF OIKOS 105 2 336 348 doi 10 1111 j 0030 1299 2004 12654 x ISSN 0030 1299 Archived from the original PDF on 2010 06 26 Furness Euan N Garwood Russell J Mannion Philip D Sutton Mark D 2021 Evolutionary simulations clarify and reconcile biodiversity disturbance models Proceedings of the Royal Society B Biological Sciences 288 1949 doi 10 1098 rspb 2021 0240 ISSN 0962 8452 PMC 8059584 PMID 33878917 a b Saravia Leonardo A Momo Fernando R 2017 07 01 Biodiversity collapse and early warning indicators in a spatial phase transition between neutral and niche communities Oikos 127 111 124 doi 10 1111 oik 04256 ISSN 1600 0706 Corrado Raffaele 2014 Early warning signals of desertification transitions in semiarid ecosystems Physical Review E 90 6 062705 Bibcode 2014PhRvE 90f2705C doi 10 1103 physreve 90 062705 PMID 25615127 Further reading editForman R T T 1995 Land Mosaics The Ecology of Landscapes and Regions Cambridge University Press Cambridge UK Groom Martha J Meffe Gary K Carroll Ronald 2006 Principles of Conservation Biology Third Edition Mosaics and Patch Dynamics by Steward T A Pickett Levin S A and R T Paine 1974 Disturbance patch formation and community structure Proceedings of the National Academy of Sciences USA 71 2744 2747 Levin S A T M Powell and J H Steele editors 1993 Patch Dynamics Springer Verlag Berlin Wu J G and O L Loucks 1995 From balance of nature to hierarchical patch dynamics A paradigm shift in ecology Quarterly Review of Biology 70 439 466 Patch Dynamics 1 Retrieved from https en wikipedia org w index php title Patch dynamics amp oldid 1171082851, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.