fbpx
Wikipedia

Glomerulus (kidney)

The glomerulus (pl.: glomeruli) is a network of small blood vessels (capillaries) known as a tuft, located at the beginning of a nephron in the kidney. Each of the two kidneys contains about one million nephrons. The tuft is structurally supported by the mesangium (the space between the blood vessels), composed of intraglomerular mesangial cells. The blood is filtered across the capillary walls of this tuft through the glomerular filtration barrier, which yields its filtrate of water and soluble substances to a cup-like sac known as Bowman's capsule. The filtrate then enters the renal tubule of the nephron.[1]

Glomerulus
Glomerulus (red), Bowman's capsule (blue) and proximal tubule (green)
Details
Pronunciation/ɡləˈmɛr(j)ələs, ɡl-/
PrecursorMetanephric blastema
LocationNephron of kidney
Identifiers
Latinglomerulus renalis
MeSHD007678
FMA15624
Anatomical terminology
[edit on Wikidata]

The glomerulus receives its blood supply from an afferent arteriole of the renal arterial circulation. Unlike most capillary beds, the glomerular capillaries exit into efferent arterioles rather than venules. The resistance of the efferent arterioles causes sufficient hydrostatic pressure within the glomerulus to provide the force for ultrafiltration.

The glomerulus and its surrounding Bowman's capsule constitute a renal corpuscle, the basic filtration unit of the kidney.[2] The rate at which blood is filtered through all of the glomeruli, and thus the measure of the overall kidney function, is the glomerular filtration rate.

Structure edit

 
Renal corpuscle showing glomerulus and glomerular capillaries
 
Figure 2: (a) Diagram of the juxtaglomerular apparatus: it has specialized cells working as a unit which monitor the sodiujuxtaglomerular apparatus: it has three types of specm content of the fluid in the distal convoluted tubule (not labelled - it is the tubule on the left) and adjust the glomerular filtration rate and the rate of renin release. (b) Micrograph showing the glomerulus and surrounding structures.

The glomerulus is a tuft of capillaries located within Bowman's capsule within the kidney.[2] Glomerular mesangial cells structurally support the tufts. Blood enters the capillaries of the glomerulus by a single arteriole called an afferent arteriole and leaves by an efferent arteriole.[3] The capillaries consist of a tube lined by endothelial cells with a central lumen. The gaps between these endothelial cells are called fenestrae. The walls have a unique structure: there are pores between the cells that allow water and soluble substances to exit and after passing through the glomerular basement membrane and between podocyte foot processes, enter the capsule as ultrafiltrate.

Lining edit

 
Scanning electron microscope view of the inner surface of an opened (broken) capillary with fenestrae visible (100,000x magnification)

Capillaries of the glomerulus are lined by endothelial cells. These contain numerous pores—also called fenestrae—, 50–100 nm in diameter.[4] Unlike those of other capillaries with fenestrations, these fenestrations are not spanned by diaphragms.[4] They allow for the filtration of fluid, blood plasma solutes and protein, at the same time preventing the filtration of red blood cells, white blood cells, and platelets.

The glomerulus has a glomerular basement membrane sandwiched between the glomerular capillaries and the podocytes. It consists mainly of laminins, type IV collagen, agrin, and nidogen, which are synthesized and secreted by both endothelial cells and podocytes. The glomerular basement membrane is 250–400 nm in thickness, which is thicker than basement membranes of other tissue. It is a barrier to blood proteins such as albumin and globulin.[5]

The part of the podocyte in contact with the glomerular basement membrane is called a podocyte foot process or pedicle (Fig. 3): there are gaps between the foot processes through which the filtrate flows into Bowman's capsule.[4] The space between adjacent podocyte foot processes is spanned by slit diaphragms consisting of a mat of proteins, including podocin and nephrin. In addition, foot processes have a negatively charged coat (glycocalyx) that repels negatively charged molecules such as serum albumin.

Mesangium edit

The mesangium is a space which is continuous with the smooth muscles of the arterioles. It is outside the capillary lumen but surrounded by capillaries. It is in the middle (meso) between the capillaries (angis). It is contained by the basement membrane, which surrounds both the capillaries and the mesangium.

The mesangium contains mainly:

  • Intraglomerular mesangial cells. They are not part of the filtration barrier but are specialized pericytes that participate in the regulation of the filtration rate by contracting or expanding: they contain actin and myosin filaments to accomplish this. Some mesangial cells are in physical contact with capillaries, whereas others are in physical contact with podocytes. There is two-way chemical cross talk among the mesangial cells, the capillaries, and the podocytes to fine-tune the glomerular filtration rate.
  • Mesangial matrix, an amorphous basement membrane-like material secreted by the mesangial cells.

Blood supply edit

 
Diagram of the circulation related to a single glomerulus, associated tubule, and collecting system

The glomerulus receives its blood supply from an afferent arteriole of the renal arterial circulation. Unlike most capillary beds, the glomerular capillaries exit into efferent arterioles rather than venules. The resistance of the efferent arterioles causes sufficient hydrostatic pressure within the glomerulus to provide the force for ultrafiltration.

Blood exits the glomerular capillaries by an efferent arteriole instead of a venule, as is seen in the majority of capillary systems (Fig. 4). [3] This provides tighter control over the blood flow through the glomerulus, since arterioles dilate and constrict more readily than venules, owing to their thick circular smooth muscle layer (tunica media). The blood exiting the efferent arteriole enters a renal venule, which in turn enters a renal interlobular vein and then into the renal vein.

Cortical nephrons near the corticomedullary junction (15% of all nephrons) are called juxtamedullary nephrons. The blood exiting the efferent arterioles of these nephrons enter the vasa recta, which are straight capillary branches that deliver blood to the renal medulla. These vasa recta run adjacent to the descending and ascending loop of Henle and participate in the maintenance of the medullary countercurrent exchange system.

Filtrate drainage edit

The filtrate that has passed through the three-layered filtration unit enters Bowman's capsule. From there, it flows into the renal tubule—the nephron—which follows a U-shaped path to the collecting ducts, finally exiting into a renal calyx as urine.

Function edit

Filtration edit

 
Scheme of filtration barrier (blood-urine) in the kidney. A. The endothelial cells of the glomerulus; 1. pore (fenestra).
B. Glomerular basement membrane: 1. lamina rara interna 2. lamina densa 3. lamina rara externa
C. Podocytes: 1. enzymatic and structural proteins 2. filtration slit 3. diaphragma

The main function of the glomerulus is to filter plasma to produce glomerular filtrate, which passes down the length of the nephron tubule to form urine. The rate at which the glomerulus produces filtrate from plasma (the glomerular filtration rate) is much higher than in systemic capillaries because of the particular anatomical characteristics of the glomerulus. Unlike systemic capillaries, which receive blood from high-resistance arterioles and drain to low-resistance venules, glomerular capillaries are connected in both ends to high-resistance arterioles: the afferent arteriole, and the efferent arteriole. This arrangement of two arterioles in series determines the high hydrostatic pressure on glomerular capillaries, which is one of the forces that favor filtration to Bowman's capsule.[6]

If a substance has passed through the glomerular capillary endothelial cells, glomerular basement membrane, and podocytes, then it enters the lumen of the tubule and is known as glomerular filtrate. Otherwise, it exits the glomerulus through the efferent arteriole and continues circulation as discussed below and as shown on the picture.

 

Permeability edit

The structures of the layers determine their permeability-selectivity (permselectivity). The factors that influence permselectivity are the negative charge of the basement membrane and the podocytic epithelium, as well as the effective pore size of the glomerular wall (8 nm). As a result, large and/or negatively charged molecules will pass through far less frequently than small and/or positively charged ones.[7] For instance, small ions such as sodium and potassium pass freely, while larger proteins, such as hemoglobin and albumin have practically no permeability at all.

The oncotic pressure on glomerular capillaries is one of the forces that resist filtration. Because large and negatively charged proteins have a low permeability, they cannot filtrate easily to Bowman's capsule. Therefore, the concentration of these proteins tends to increase as the glomerular capillaries filtrate plasma, increasing the oncotic pressure along the glomerular capillary.[6]

Starling equation edit

The rate of filtration from the glomerulus to Bowman's capsule is determined (as in systemic capillaries) by the Starling equation:[6]

 

Blood pressure regulation edit

The walls of the afferent arteriole contain specialized smooth muscle cells that synthesize renin. These juxtaglomerular cells play a major role in the renin–angiotensin system, which helps regulate blood volume and pressure.

Clinical significance edit

Damage to the glomerulus by disease can allow passage through the glomerular filtration barrier of red blood cells, white blood cells, platelets, and blood proteins such as albumin and globulin. Underlying causes for glomerular injury can be inflammatory, toxic or metabolic.[8] These can be seen in the urine (urinalysis) on microscopic and chemical (dipstick) examination. Glomerular diseases include diabetic kidney disease, glomerulonephritis (inflammation), glomerulosclerosis (hardening of the glomeruli), and IgA nephropathy.[9]

Due to the connection between the glomerulus and the glomerular filtration rate, the glomerular filtration rate is of clinical significance when suspecting a kidney disease, or when following up a case with known kidney disease, or when risking a development of renal damage such as beginning medications with known nephrotoxicity.[10]

History edit

In 1666, Italian biologist and anatomist Marcello Malpighi first described the glomeruli and demonstrated their continuity with the renal vasculature (281,282). About 175 years later, surgeon and anatomist William Bowman elucidated in detail the capillary architecture of the glomerulus and the continuity between its surrounding capsule and the proximal tubule.[11]

See also edit

Additional images edit

References edit

  1. ^ Pavenstädt H; Kriz W; Kretzler M (2003). "Cell biology of the glomerular podocyte". Physiological Reviews. 83 (1): 253–307. doi:10.1152/physrev.00020.2002. PMID 12506131.
  2. ^ a b Wheater 2006, p. 304.
  3. ^ a b Wheater 2006, p. 307.
  4. ^ a b c Wheater 2006, p. 310.
  5. ^ Suh, JH; Miner, JH (2013). "The glomerular basement membrane as a barrier to albumin". Nature Reviews. Nephrology. 9 (8): 470–477. doi:10.1038/nrneph.2013.109. PMC 3839671. PMID 23774818.
  6. ^ a b c Boron, WF.; Boulapep, EL. (2012). Medical Physiology (2nd ed.). Philadelphia: Saunders. pp. 771, 774. ISBN 978-1437717532.
  7. ^ Guyton, Arthur C.; Hall, John E. (2006). Textbook of Medical Physiology. Philadelphia: Elsevier Saunders. pp. 316–317. ISBN 978-0-7216-0240-0.
  8. ^ Wiggins, RC (2007). "The spectrum of podocytopathies: a unifying view of glomerular diseases". Kidney International. 71 (12): 1205–1214. doi:10.1038/sj.ki.5002222. PMID 17410103.
  9. ^ "Glomerular Diseases: What Is It, Causes, Symptoms & Treatment". Cleveland Clinic. Retrieved 2022-07-27.
  10. ^ Gerard J. Tortora, Bryan Derrickson [1] 2019-12-17 at the Wayback Machine Principles of Anatomy and Physiology 14th ed ISBN 978-1-118-34500-9
  11. ^ "lippicotts histology for pathologesits; satcey e. mills

Sources edit

  • Hall, Arthur C. Guyton, John E. (2005). Textbook of medical physiology (11th ed.). Philadelphia: W.B. Saunders. p. Chapter 26. ISBN 978-0-7216-0240-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Deakin, Barbara Young ... [] ; drawings by Philip J.; et al. (2006). Wheater's Functional Histology: a text and colour atlas (5th ed.). [Edinburgh?]: Churchill Livingstone/Elsevier. p. Chapter 16. ISBN 978-0-443068508.{{cite book}}: CS1 maint: multiple names: authors list (link)

glomerulus, kidney, glomerulus, glomeruli, network, small, blood, vessels, capillaries, known, tuft, located, beginning, nephron, kidney, each, kidneys, contains, about, million, nephrons, tuft, structurally, supported, mesangium, space, between, blood, vessel. The glomerulus pl glomeruli is a network of small blood vessels capillaries known as a tuft located at the beginning of a nephron in the kidney Each of the two kidneys contains about one million nephrons The tuft is structurally supported by the mesangium the space between the blood vessels composed of intraglomerular mesangial cells The blood is filtered across the capillary walls of this tuft through the glomerular filtration barrier which yields its filtrate of water and soluble substances to a cup like sac known as Bowman s capsule The filtrate then enters the renal tubule of the nephron 1 GlomerulusGlomerulus red Bowman s capsule blue and proximal tubule green DetailsPronunciation ɡ l e ˈ m ɛr j el e s ɡ l oʊ PrecursorMetanephric blastemaLocationNephron of kidneyIdentifiersLatinglomerulus renalisMeSHD007678FMA15624Anatomical terminology edit on Wikidata The glomerulus receives its blood supply from an afferent arteriole of the renal arterial circulation Unlike most capillary beds the glomerular capillaries exit into efferent arterioles rather than venules The resistance of the efferent arterioles causes sufficient hydrostatic pressure within the glomerulus to provide the force for ultrafiltration The glomerulus and its surrounding Bowman s capsule constitute a renal corpuscle the basic filtration unit of the kidney 2 The rate at which blood is filtered through all of the glomeruli and thus the measure of the overall kidney function is the glomerular filtration rate Contents 1 Structure 1 1 Lining 1 2 Mesangium 1 3 Blood supply 1 4 Filtrate drainage 2 Function 2 1 Filtration 2 1 1 Permeability 2 1 2 Starling equation 2 2 Blood pressure regulation 3 Clinical significance 4 History 5 See also 6 Additional images 7 References 8 SourcesStructure edit nbsp Renal corpuscle showing glomerulus and glomerular capillaries nbsp Figure 2 a Diagram of the juxtaglomerular apparatus it has specialized cells working as a unit which monitor the sodiujuxtaglomerular apparatus it has three types of specm content of the fluid in the distal convoluted tubule not labelled it is the tubule on the left and adjust the glomerular filtration rate and the rate of renin release b Micrograph showing the glomerulus and surrounding structures The glomerulus is a tuft of capillaries located within Bowman s capsule within the kidney 2 Glomerular mesangial cells structurally support the tufts Blood enters the capillaries of the glomerulus by a single arteriole called an afferent arteriole and leaves by an efferent arteriole 3 The capillaries consist of a tube lined by endothelial cells with a central lumen The gaps between these endothelial cells are called fenestrae The walls have a unique structure there are pores between the cells that allow water and soluble substances to exit and after passing through the glomerular basement membrane and between podocyte foot processes enter the capsule as ultrafiltrate Lining edit nbsp Scanning electron microscope view of the inner surface of an opened broken capillary with fenestrae visible 100 000x magnification Capillaries of the glomerulus are lined by endothelial cells These contain numerous pores also called fenestrae 50 100 nm in diameter 4 Unlike those of other capillaries with fenestrations these fenestrations are not spanned by diaphragms 4 They allow for the filtration of fluid blood plasma solutes and protein at the same time preventing the filtration of red blood cells white blood cells and platelets The glomerulus has a glomerular basement membrane sandwiched between the glomerular capillaries and the podocytes It consists mainly of laminins type IV collagen agrin and nidogen which are synthesized and secreted by both endothelial cells and podocytes The glomerular basement membrane is 250 400 nm in thickness which is thicker than basement membranes of other tissue It is a barrier to blood proteins such as albumin and globulin 5 The part of the podocyte in contact with the glomerular basement membrane is called a podocyte foot process or pedicle Fig 3 there are gaps between the foot processes through which the filtrate flows into Bowman s capsule 4 The space between adjacent podocyte foot processes is spanned by slit diaphragms consisting of a mat of proteins including podocin and nephrin In addition foot processes have a negatively charged coat glycocalyx that repels negatively charged molecules such as serum albumin Mesangium edit The mesangium is a space which is continuous with the smooth muscles of the arterioles It is outside the capillary lumen but surrounded by capillaries It is in the middle meso between the capillaries angis It is contained by the basement membrane which surrounds both the capillaries and the mesangium The mesangium contains mainly Intraglomerular mesangial cells They are not part of the filtration barrier but are specialized pericytes that participate in the regulation of the filtration rate by contracting or expanding they contain actin and myosin filaments to accomplish this Some mesangial cells are in physical contact with capillaries whereas others are in physical contact with podocytes There is two way chemical cross talk among the mesangial cells the capillaries and the podocytes to fine tune the glomerular filtration rate Mesangial matrix an amorphous basement membrane like material secreted by the mesangial cells Blood supply edit nbsp Diagram of the circulation related to a single glomerulus associated tubule and collecting systemThe glomerulus receives its blood supply from an afferent arteriole of the renal arterial circulation Unlike most capillary beds the glomerular capillaries exit into efferent arterioles rather than venules The resistance of the efferent arterioles causes sufficient hydrostatic pressure within the glomerulus to provide the force for ultrafiltration Blood exits the glomerular capillaries by an efferent arteriole instead of a venule as is seen in the majority of capillary systems Fig 4 3 This provides tighter control over the blood flow through the glomerulus since arterioles dilate and constrict more readily than venules owing to their thick circular smooth muscle layer tunica media The blood exiting the efferent arteriole enters a renal venule which in turn enters a renal interlobular vein and then into the renal vein Cortical nephrons near the corticomedullary junction 15 of all nephrons are called juxtamedullary nephrons The blood exiting the efferent arterioles of these nephrons enter the vasa recta which are straight capillary branches that deliver blood to the renal medulla These vasa recta run adjacent to the descending and ascending loop of Henle and participate in the maintenance of the medullary countercurrent exchange system Filtrate drainage edit The filtrate that has passed through the three layered filtration unit enters Bowman s capsule From there it flows into the renal tubule the nephron which follows a U shaped path to the collecting ducts finally exiting into a renal calyx as urine Function editFiltration edit nbsp Scheme of filtration barrier blood urine in the kidney A The endothelial cells of the glomerulus 1 pore fenestra B Glomerular basement membrane 1 lamina rara interna 2 lamina densa 3 lamina rara externa C Podocytes 1 enzymatic and structural proteins 2 filtration slit 3 diaphragmaThe main function of the glomerulus is to filter plasma to produce glomerular filtrate which passes down the length of the nephron tubule to form urine The rate at which the glomerulus produces filtrate from plasma the glomerular filtration rate is much higher than in systemic capillaries because of the particular anatomical characteristics of the glomerulus Unlike systemic capillaries which receive blood from high resistance arterioles and drain to low resistance venules glomerular capillaries are connected in both ends to high resistance arterioles the afferent arteriole and the efferent arteriole This arrangement of two arterioles in series determines the high hydrostatic pressure on glomerular capillaries which is one of the forces that favor filtration to Bowman s capsule 6 If a substance has passed through the glomerular capillary endothelial cells glomerular basement membrane and podocytes then it enters the lumen of the tubule and is known as glomerular filtrate Otherwise it exits the glomerulus through the efferent arteriole and continues circulation as discussed below and as shown on the picture nbsp Permeability edit See also Table of permselectivity for different substances The structures of the layers determine their permeability selectivity permselectivity The factors that influence permselectivity are the negative charge of the basement membrane and the podocytic epithelium as well as the effective pore size of the glomerular wall 8 nm As a result large and or negatively charged molecules will pass through far less frequently than small and or positively charged ones 7 For instance small ions such as sodium and potassium pass freely while larger proteins such as hemoglobin and albumin have practically no permeability at all The oncotic pressure on glomerular capillaries is one of the forces that resist filtration Because large and negatively charged proteins have a low permeability they cannot filtrate easily to Bowman s capsule Therefore the concentration of these proteins tends to increase as the glomerular capillaries filtrate plasma increasing the oncotic pressure along the glomerular capillary 6 Starling equation edit The rate of filtration from the glomerulus to Bowman s capsule is determined as in systemic capillaries by the Starling equation 6 GFR Kf Pgc Pbc pgc pbc displaystyle GFR K mathrm f P mathrm gc P mathrm bc pi mathrm gc pi mathrm bc nbsp GFR is the glomerular filtration rate Kf is the filtration coefficient a proportionality constant Pgc is the glomerular capillary hydrostatic pressure Pbc is the Bowman s capsule hydrostatic pressure pgc is the glomerular capillary oncotic pressure pbc is the Bowman s capsule oncotic pressureBlood pressure regulation edit The walls of the afferent arteriole contain specialized smooth muscle cells that synthesize renin These juxtaglomerular cells play a major role in the renin angiotensin system which helps regulate blood volume and pressure Clinical significance editThis section needs expansion You can help by adding to it April 2015 Damage to the glomerulus by disease can allow passage through the glomerular filtration barrier of red blood cells white blood cells platelets and blood proteins such as albumin and globulin Underlying causes for glomerular injury can be inflammatory toxic or metabolic 8 These can be seen in the urine urinalysis on microscopic and chemical dipstick examination Glomerular diseases include diabetic kidney disease glomerulonephritis inflammation glomerulosclerosis hardening of the glomeruli and IgA nephropathy 9 Due to the connection between the glomerulus and the glomerular filtration rate the glomerular filtration rate is of clinical significance when suspecting a kidney disease or when following up a case with known kidney disease or when risking a development of renal damage such as beginning medications with known nephrotoxicity 10 History editIn 1666 Italian biologist and anatomist Marcello Malpighi first described the glomeruli and demonstrated their continuity with the renal vasculature 281 282 About 175 years later surgeon and anatomist William Bowman elucidated in detail the capillary architecture of the glomerulus and the continuity between its surrounding capsule and the proximal tubule 11 See also editGlomerulus Blood brain barrierAdditional images edit nbsp Scanning electron microscope image of a glomerulus in a mouse 1000x magnification nbsp Scanning electron microscope image of a glomerulus in a mouse 5000x magnification nbsp Scanning electron microscope image of a glomerulus in a mouse 10 000x magnification nbsp Looped capillaries of glomerulus between the arteriolesReferences edit Pavenstadt H Kriz W Kretzler M 2003 Cell biology of the glomerular podocyte Physiological Reviews 83 1 253 307 doi 10 1152 physrev 00020 2002 PMID 12506131 a b Wheater 2006 p 304 a b Wheater 2006 p 307 a b c Wheater 2006 p 310 Suh JH Miner JH 2013 The glomerular basement membrane as a barrier to albumin Nature Reviews Nephrology 9 8 470 477 doi 10 1038 nrneph 2013 109 PMC 3839671 PMID 23774818 a b c Boron WF Boulapep EL 2012 Medical Physiology 2nd ed Philadelphia Saunders pp 771 774 ISBN 978 1437717532 Guyton Arthur C Hall John E 2006 Textbook of Medical Physiology Philadelphia Elsevier Saunders pp 316 317 ISBN 978 0 7216 0240 0 Wiggins RC 2007 The spectrum of podocytopathies a unifying view of glomerular diseases Kidney International 71 12 1205 1214 doi 10 1038 sj ki 5002222 PMID 17410103 Glomerular Diseases What Is It Causes Symptoms amp Treatment Cleveland Clinic Retrieved 2022 07 27 Gerard J Tortora Bryan Derrickson 1 Archived 2019 12 17 at the Wayback Machine Principles of Anatomy and Physiology 14th ed ISBN 978 1 118 34500 9 lippicotts histology for pathologesits satcey e millsSources edit nbsp Wikimedia Commons has media related to Renal corpuscle Hall Arthur C Guyton John E 2005 Textbook of medical physiology 11th ed Philadelphia W B Saunders p Chapter 26 ISBN 978 0 7216 0240 0 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link Deakin Barbara Young drawings by Philip J et al 2006 Wheater s Functional Histology a text and colour atlas 5th ed Edinburgh Churchill Livingstone Elsevier p Chapter 16 ISBN 978 0 443068508 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link Retrieved from https en wikipedia org w index php title Glomerulus kidney amp oldid 1185118533 Mesangium, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.